Skip to main content
Top
Published in: Current Diabetes Reports 7/2016

01-07-2016 | Microvascular Complications—Nephropathy (AP Maxwell, Section Editor)

The Role of Mitochondria in Diabetic Kidney Disease

Authors: Stein Hallan, Kumar Sharma

Published in: Current Diabetes Reports | Issue 7/2016

Login to get access

Abstract

Despite major improvements in the treatment of patients with diabetes mellitus, many patients still suffer from progressive diabetic kidney disease. More research is needed to improve treatment and to understand why some patients develop complications while others do not. Mitochondrial dysfunction has turned out to be central to the pathogenesis of diabetes, and we will review some new aspects in this field and the potential for treatment. The conventional theory has been that the intracellular surplus of glucose leads to mitochondrial overproduction of superoxide that contributes to general cell damage and activation of deleterious pathways specific for diabetes complications. However, recent data suggests that reduced mitochondrial activity could be the basis for disease progression and complications through increased inflammation and pro-fibrotic factors. Physical exercise is a very strong stimulus to mitochondrial biogenesis, and we now understand many of the underlying signaling pathways. Clinical trials have also shown that training, especially high-intensity training, can delay the onset of diabetes and improve insulin resistance. Furthermore, intermittent fasting and various pharmacological agents are other potential options for stimulating mitochondrial function and reducing the risk of development and progression of diabetic kidney disease.
Literature
1.
go back to reference Forouzanfar MH, Alexander L, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323.CrossRefPubMed Forouzanfar MH, Alexander L, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323.CrossRefPubMed
2.
go back to reference Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med. 2014;370(16):1514–23.CrossRefPubMed Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med. 2014;370(16):1514–23.CrossRefPubMed
3.
go back to reference Alberti KG, Zimmet P. Global burden of disease--where does diabetes mellitus fit in? Nat Rev Endocrinol. 2013;9(5):258–60.CrossRefPubMed Alberti KG, Zimmet P. Global burden of disease--where does diabetes mellitus fit in? Nat Rev Endocrinol. 2013;9(5):258–60.CrossRefPubMed
4.
go back to reference Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903.CrossRefPubMed Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903.CrossRefPubMed
5.
go back to reference Group AC, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.CrossRef Group AC, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.CrossRef
6.
go back to reference Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28.CrossRefPubMed Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28.CrossRefPubMed
7.
go back to reference Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12(4):537–77.CrossRefPubMedPubMedCentral Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12(4):537–77.CrossRefPubMedPubMedCentral
9.
go back to reference Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.CrossRefPubMed Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.CrossRefPubMed
10.•
go back to reference Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes. 2015;64(3):663–72. This article summarizes current information on ROS activity in diabetes and hypothesizes that reduced mitochondrial function is central for pathogenesis.CrossRefPubMedPubMedCentral Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes. 2015;64(3):663–72. This article summarizes current information on ROS activity in diabetes and hypothesizes that reduced mitochondrial function is central for pathogenesis.CrossRefPubMedPubMedCentral
11.
go back to reference Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966;151(3707):209–10.CrossRefPubMed Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966;151(3707):209–10.CrossRefPubMed
12.
go back to reference Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 1999;13(1):23–30.PubMed Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 1999;13(1):23–30.PubMed
13.
go back to reference Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–46.CrossRefPubMed Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–46.CrossRefPubMed
14.
go back to reference Nowotny K, Jung T, Hohn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222.CrossRefPubMedPubMedCentral Nowotny K, Jung T, Hohn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222.CrossRefPubMedPubMedCentral
15.
go back to reference Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47(6):859–66.CrossRefPubMed Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47(6):859–66.CrossRefPubMed
16.
go back to reference Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.CrossRefPubMed Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.CrossRefPubMed
17.
go back to reference Naudi A, Jove M, Ayala V, et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res. 2012;2012:696215.CrossRefPubMedPubMedCentral Naudi A, Jove M, Ayala V, et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res. 2012;2012:696215.CrossRefPubMedPubMedCentral
18.••
go back to reference Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70. Excellent review of major pathways involved in the pathogenesis of diabetes complications.CrossRefPubMedPubMedCentral Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70. Excellent review of major pathways involved in the pathogenesis of diabetes complications.CrossRefPubMedPubMedCentral
19.
go back to reference Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112(7):1049–57.CrossRefPubMedPubMedCentral Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112(7):1049–57.CrossRefPubMedPubMedCentral
20.
go back to reference Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J. 2001;15(2):312–21.CrossRefPubMed Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J. 2001;15(2):312–21.CrossRefPubMed
21.
go back to reference McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart, revisited. Ann Intern Med. 2006;144(7):517–24.CrossRefPubMed McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart, revisited. Ann Intern Med. 2006;144(7):517–24.CrossRefPubMed
22.••
go back to reference Gordon JW, Dolinsky VW, Mughal W, Gordon GR, McGavock J. Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth. Biochem Cell Biol. 2015:1–14. This review summarizes data on skeletal muscle mitochondrial function and insulin resistance and provide information on high-intensity. Gordon JW, Dolinsky VW, Mughal W, Gordon GR, McGavock J. Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth. Biochem Cell Biol. 2015:1–14. This review summarizes data on skeletal muscle mitochondrial function and insulin resistance and provide information on high-intensity.
23.
go back to reference Herlein JA, Fink BD, Sivitz WI. Superoxide production by mitochondria of insulin-sensitive tissues: mechanistic differences and effect of early diabetes. Metabolism. 2010;59(2):247–57.CrossRefPubMed Herlein JA, Fink BD, Sivitz WI. Superoxide production by mitochondria of insulin-sensitive tissues: mechanistic differences and effect of early diabetes. Metabolism. 2010;59(2):247–57.CrossRefPubMed
24.
go back to reference Anello M, Lupi R, Spampinato D, et al. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia. 2005;48(2):282–9.CrossRefPubMed Anello M, Lupi R, Spampinato D, et al. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia. 2005;48(2):282–9.CrossRefPubMed
25.
go back to reference Dugan LL, You YH, Ali SS, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest. 2013;123(11):4888–99.CrossRefPubMedPubMedCentral Dugan LL, You YH, Ali SS, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest. 2013;123(11):4888–99.CrossRefPubMedPubMedCentral
26.
go back to reference DeRubertis FR, Craven PA, Melhem MF, Salah EM. Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction. Diabetes. 2004;53(3):762–8.CrossRefPubMed DeRubertis FR, Craven PA, Melhem MF, Salah EM. Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction. Diabetes. 2004;53(3):762–8.CrossRefPubMed
27.
go back to reference Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001;105(6):745–55.CrossRefPubMed Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001;105(6):745–55.CrossRefPubMed
28.
go back to reference Ristow M, Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response. 2014;12(2):288–341.CrossRefPubMedPubMedCentral Ristow M, Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response. 2014;12(2):288–341.CrossRefPubMedPubMedCentral
30.
go back to reference Eckel RH, Kahn SE, Ferrannini E, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care. 2011;34(6):1424–30.CrossRefPubMedPubMedCentral Eckel RH, Kahn SE, Ferrannini E, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care. 2011;34(6):1424–30.CrossRefPubMedPubMedCentral
31.
go back to reference McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51(1):7–18.CrossRefPubMed McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51(1):7–18.CrossRefPubMed
33.
go back to reference Karaa A, Goldstein A. The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr Diabetes. 2015;16(1):1–9.CrossRefPubMed Karaa A, Goldstein A. The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr Diabetes. 2015;16(1):1–9.CrossRefPubMed
34.
go back to reference Li HZ, Li RY, Li M. A review of maternally inherited diabetes and deafness. Front Biosci (Landmark Ed). 2014;19:777–82.CrossRef Li HZ, Li RY, Li M. A review of maternally inherited diabetes and deafness. Front Biosci (Landmark Ed). 2014;19:777–82.CrossRef
35.
go back to reference de Wit HM, Westeneng HJ, van Engelen BG, Mudde AH. MIDD or MELAS: that’s not the question MIDD evolving into MELAS: a severe phenotype of the m.3243A>G mutation due to paternal co-inheritance of type 2 diabetes and a high heteroplasmy level. Neth J Med. 2012;70(10):460–2.PubMed de Wit HM, Westeneng HJ, van Engelen BG, Mudde AH. MIDD or MELAS: that’s not the question MIDD evolving into MELAS: a severe phenotype of the m.3243A>G mutation due to paternal co-inheritance of type 2 diabetes and a high heteroplasmy level. Neth J Med. 2012;70(10):460–2.PubMed
36.
go back to reference Liu RLK, He J. Genetics and Epigenetics of Diabetic Nephropathy. Kidney Dis. 2015;1:42–51.CrossRef Liu RLK, He J. Genetics and Epigenetics of Diabetic Nephropathy. Kidney Dis. 2015;1:42–51.CrossRef
37.•
go back to reference Santos JM, Moreli ML, Tewari S, Benite-Ribeiro SA. The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: an epigenetic perspective. Metabolism. 2015;64(12):1619–28. This paper propose that aerobic exercise attenuates epigenetic modifications caused by high-energy diets and thereby delays the onset of diabetes.CrossRefPubMed Santos JM, Moreli ML, Tewari S, Benite-Ribeiro SA. The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: an epigenetic perspective. Metabolism. 2015;64(12):1619–28. This paper propose that aerobic exercise attenuates epigenetic modifications caused by high-energy diets and thereby delays the onset of diabetes.CrossRefPubMed
39.•
go back to reference Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12. This paper provides data showing reduced mitochondrial function in diabetic kidney disease using a wide range of techniques and samples in both humans and rats.CrossRefPubMedPubMedCentral Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12. This paper provides data showing reduced mitochondrial function in diabetic kidney disease using a wide range of techniques and samples in both humans and rats.CrossRefPubMedPubMedCentral
40.
go back to reference Kang HM, Ahn SH, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46.CrossRefPubMed Kang HM, Ahn SH, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46.CrossRefPubMed
41.
go back to reference Zhao LC, Zhang XD, Liao SX, Gao HC, Wang HY, Lin DH. A metabonomic comparison of urinary changes in Zucker and GK rats. J Biomed Biotechnol. 2010;2010:431894.PubMedPubMedCentral Zhao LC, Zhang XD, Liao SX, Gao HC, Wang HY, Lin DH. A metabonomic comparison of urinary changes in Zucker and GK rats. J Biomed Biotechnol. 2010;2010:431894.PubMedPubMedCentral
42.
go back to reference Heinonen S, Buzkova J, Muniandy M, et al. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes. 2015;64(9):3135–45.CrossRefPubMed Heinonen S, Buzkova J, Muniandy M, et al. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes. 2015;64(9):3135–45.CrossRefPubMed
43.
go back to reference Mendes R, Sousa N, Almeida A, et al. Exercise prescription for patients with type 2 diabetes-a synthesis of international recommendations: narrative review. Br J Sports Med. 2015 Mendes R, Sousa N, Almeida A, et al. Exercise prescription for patients with type 2 diabetes-a synthesis of international recommendations: narrative review. Br J Sports Med. 2015
44.
go back to reference Gregg EW, Chen H, Wagenknecht LE, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308(23):2489–96.CrossRefPubMedPubMedCentral Gregg EW, Chen H, Wagenknecht LE, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308(23):2489–96.CrossRefPubMedPubMedCentral
45.
go back to reference Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the community preventive services task force. Ann Intern Med. 2015;163(6):437–51.CrossRefPubMedPubMedCentral Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the community preventive services task force. Ann Intern Med. 2015;163(6):437–51.CrossRefPubMedPubMedCentral
46.
go back to reference Herzig KH, Ahola R, Leppaluoto J, Jokelainen J, Jamsa T, Keinanen-Kiukaanniemi S. Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. Int J Obes (Lond). 2014;38(8):1089–96.CrossRef Herzig KH, Ahola R, Leppaluoto J, Jokelainen J, Jamsa T, Keinanen-Kiukaanniemi S. Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. Int J Obes (Lond). 2014;38(8):1089–96.CrossRef
47.
go back to reference Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochimica et biophysica acta. 2014;1840(4):1266–75.CrossRefPubMed Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochimica et biophysica acta. 2014;1840(4):1266–75.CrossRefPubMed
48.
go back to reference Ljubicic V, Joseph AM, Saleem A, et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochimica et biophysica acta. 2010;1800(3):223–34.CrossRefPubMed Ljubicic V, Joseph AM, Saleem A, et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochimica et biophysica acta. 2010;1800(3):223–34.CrossRefPubMed
50.
go back to reference Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43(10):1849–56.CrossRefPubMed Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43(10):1849–56.CrossRefPubMed
51.
go back to reference Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol. 2013;591(Pt 24):6231–43.CrossRefPubMedPubMedCentral Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol. 2013;591(Pt 24):6231–43.CrossRefPubMedPubMedCentral
52.
go back to reference Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.CrossRefPubMedPubMedCentral Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.CrossRefPubMedPubMedCentral
53.•
go back to reference Patterson RE, Laughlin GA, LaCroix AZ, et al. Intermittent Fasting and Human Metabolic Health. J Acad Nutr Diet. 2015;115(8):1203–12. Interesting review on the mechanisms and effects of various types of fasting.CrossRefPubMed Patterson RE, Laughlin GA, LaCroix AZ, et al. Intermittent Fasting and Human Metabolic Health. J Acad Nutr Diet. 2015;115(8):1203–12. Interesting review on the mechanisms and effects of various types of fasting.CrossRefPubMed
54.
go back to reference Zamora M, Pardo R, Villena JA. Pharmacological induction of mitochondrial biogenesis as a therapeutic strategy for the treatment of type 2 diabetes. Biochem Pharmacol. 2015;98(1):16–28.CrossRefPubMed Zamora M, Pardo R, Villena JA. Pharmacological induction of mitochondrial biogenesis as a therapeutic strategy for the treatment of type 2 diabetes. Biochem Pharmacol. 2015;98(1):16–28.CrossRefPubMed
55.•
go back to reference Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253–70. Important review of the mechanisms underly the effects of our most commonly used diabetes drug.CrossRef Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253–70. Important review of the mechanisms underly the effects of our most commonly used diabetes drug.CrossRef
56.
go back to reference Hundal RS, Petersen KF, Mayerson AB, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002;109(10):1321–6.CrossRefPubMedPubMedCentral Hundal RS, Petersen KF, Mayerson AB, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002;109(10):1321–6.CrossRefPubMedPubMedCentral
57.
go back to reference Steinberg GR, Dandapani M, Hardie DG. AMPK: mediating the metabolic effects of salicylate-based drugs? Trends Endocrinol Metab. 2013;24(10):481–7.CrossRefPubMed Steinberg GR, Dandapani M, Hardie DG. AMPK: mediating the metabolic effects of salicylate-based drugs? Trends Endocrinol Metab. 2013;24(10):481–7.CrossRefPubMed
58.
go back to reference Goldfine AB, Fonseca V, Jablonski KA, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159(1):1–12.CrossRefPubMedPubMedCentral Goldfine AB, Fonseca V, Jablonski KA, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159(1):1–12.CrossRefPubMedPubMedCentral
59.
go back to reference Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54(5):1392–9.CrossRefPubMed Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54(5):1392–9.CrossRefPubMed
60.
go back to reference DeFronzo RA, Tripathy D, Schwenke DC, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(12):1104–15.CrossRefPubMed DeFronzo RA, Tripathy D, Schwenke DC, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(12):1104–15.CrossRefPubMed
61.
go back to reference Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.CrossRefPubMed Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.CrossRefPubMed
62.
go back to reference Pold R, Jensen LS, Jessen N, et al. Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes. 2005;54(4):928–34.CrossRefPubMed Pold R, Jensen LS, Jessen N, et al. Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes. 2005;54(4):928–34.CrossRefPubMed
63.
go back to reference Boon H, Bosselaar M, Praet SF, et al. Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients. Diabetologia. 2008;51(10):1893–900.CrossRefPubMed Boon H, Bosselaar M, Praet SF, et al. Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients. Diabetologia. 2008;51(10):1893–900.CrossRefPubMed
64.
go back to reference Zheng J, Ramirez VD. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol. 2000;130(5):1115–23.CrossRefPubMedPubMedCentral Zheng J, Ramirez VD. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol. 2000;130(5):1115–23.CrossRefPubMedPubMedCentral
65.
go back to reference Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14(5):612–22.CrossRefPubMed Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14(5):612–22.CrossRefPubMed
66.
go back to reference Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.CrossRefPubMed Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.CrossRefPubMed
Metadata
Title
The Role of Mitochondria in Diabetic Kidney Disease
Authors
Stein Hallan
Kumar Sharma
Publication date
01-07-2016
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 7/2016
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-016-0748-0

Other articles of this Issue 7/2016

Current Diabetes Reports 7/2016 Go to the issue

Pediatric Type 2 Diabetes (PS Zeitler, Section Editor)

Cardiac Abnormalities in Youth with Obesity and Type 2 Diabetes

Immunology and Transplantation (L Piemonti and V Sordi, Section Editors)

Where, How, and When: Positioning Posttranslational Modification Within Type 1 Diabetes Pathogenesis

Psychosocial Aspects (S Jaser and KK Hood, Section Editors)

Social Support for Diabetes Self-Management via eHealth Interventions

Immunology and Transplantation (L Piemonti and V Sordi, Section Editors)

Gut Immunity and Type 1 Diabetes: a Mélange of Microbes, Diet, and Host Interactions?

Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.