Skip to main content
Top
Published in: Multidisciplinary Respiratory Medicine 1/2015

Open Access 01-12-2015 | Review

The role of iron in pulmonary pathology

Authors: Heena Khiroya, Alice M. Turner

Published in: Multidisciplinary Respiratory Medicine | Issue 1/2015

Login to get access

Abstract

Respiratory disease accounts for a large proportion of emergency admissions to hospital and diseaseassociated mortality. Genetic association studies demonstrate a link between iron metabolism and pulmonary disease phenotypes. IREB2 is a gene that produces iron regulatory protein 2 (IRP2), which has a key role in iron homeostasis. This review addresses pathways involved in iron metabolism, particularly focusing on the role of IREB2. In addition to this, environmental factors also influence phenotypic variation in respiratory disease, for example inhaled iron from cigarette smoke is deposited in the lung and causes tissue damage by altering iron homeostasis. The effects of cigarette smoke are detailed in this article, particularly in relation to lung conditions that favour the upper lobes, such as emphysema and lung cancer. Clinical applications of iron homeostasis are also discussed in this review, especially looking at the pathophysiology of chronic obstructive pulmonary disease, lung cancer, pulmonary infections and acute respiratory distress syndrome. Promising new treatments involving iron are also covered.
Literature
3.
go back to reference Ghio AJ, Hilborn ED, Stonehuerner JG, Dailey LA, Carter JD, Richards JH, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008;178(11):1130–8.CrossRefPubMed Ghio AJ, Hilborn ED, Stonehuerner JG, Dailey LA, Carter JD, Richards JH, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008;178(11):1130–8.CrossRefPubMed
4.
go back to reference Ghio AJ. Disruption of iron homeostasis and lung disease. Biochim Biophys Acta. 2009;1790(7):731–9.CrossRefPubMed Ghio AJ. Disruption of iron homeostasis and lung disease. Biochim Biophys Acta. 2009;1790(7):731–9.CrossRefPubMed
5.
go back to reference Hardin M, Zielinski J, Wan ES, Hersh CP, Castaldi PJ, Scwinder E, et al. CHRNA3/5, IREB2, and ADCY2 are associated with severe chronic obstructive pulmonary disease in Poland. Am J Respir Cell Mol Biol. 2012;47(2):203–8.PubMedCentralCrossRefPubMed Hardin M, Zielinski J, Wan ES, Hersh CP, Castaldi PJ, Scwinder E, et al. CHRNA3/5, IREB2, and ADCY2 are associated with severe chronic obstructive pulmonary disease in Poland. Am J Respir Cell Mol Biol. 2012;47(2):203–8.PubMedCentralCrossRefPubMed
6.
go back to reference Walling C, Partch RE, Weil T. Kinetics of the decomposition of hydrogen peroxide catalyzed by ferric ethylenediaminetetraacetate complex. Proc Natl Acad Sci U S A. 1975;72:140–42.PubMedCentralCrossRefPubMed Walling C, Partch RE, Weil T. Kinetics of the decomposition of hydrogen peroxide catalyzed by ferric ethylenediaminetetraacetate complex. Proc Natl Acad Sci U S A. 1975;72:140–42.PubMedCentralCrossRefPubMed
7.
go back to reference Park CH, Bacon BR, Brittenham GM, Tavill AS. Pathology of dietary carbonyl iron overload in rats. Lab Invest. 1987;57:555–63. Park CH, Bacon BR, Brittenham GM, Tavill AS. Pathology of dietary carbonyl iron overload in rats. Lab Invest. 1987;57:555–63.
9.
go back to reference Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97.CrossRefPubMed Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97.CrossRefPubMed
10.
go back to reference Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–10.CrossRefPubMed Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–10.CrossRefPubMed
11.
go back to reference Aisen P. Transferrin, the transferrin receptor, and the uptake of iron by cells. Met Ions Biol Syst. 1998;35:585–631.PubMed Aisen P. Transferrin, the transferrin receptor, and the uptake of iron by cells. Met Ions Biol Syst. 1998;35:585–631.PubMed
13.
go back to reference Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 2015;1852(7):1347–59.CrossRefPubMed Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 2015;1852(7):1347–59.CrossRefPubMed
14.
go back to reference Rouault T, Klausner R. Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul. 1997;35:1–19.CrossRefPubMed Rouault T, Klausner R. Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul. 1997;35:1–19.CrossRefPubMed
15.
go back to reference Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol. 2006;2(8):406–14.CrossRefPubMed Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol. 2006;2(8):406–14.CrossRefPubMed
16.
go back to reference LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet. 2001;27(2):209–14.CrossRefPubMed LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet. 2001;27(2):209–14.CrossRefPubMed
17.
go back to reference Galy B, Ferring D, Minana B, Bel O, Janser HG, Muckenthaler M, et al. Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood. 2005;106(7):2580–9.CrossRefPubMed Galy B, Ferring D, Minana B, Bel O, Janser HG, Muckenthaler M, et al. Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood. 2005;106(7):2580–9.CrossRefPubMed
18.
go back to reference Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004;23(2):386–95.PubMedCentralCrossRefPubMed Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004;23(2):386–95.PubMedCentralCrossRefPubMed
20.
go back to reference Guo B, Phillips JD, Yu Y, Leibold EA. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem. 1995;270(37):21645–51.CrossRefPubMed Guo B, Phillips JD, Yu Y, Leibold EA. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem. 1995;270(37):21645–51.CrossRefPubMed
21.
go back to reference Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia. Free Radic Biol Med. 2011;50(6):645–66.CrossRefPubMed Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia. Free Radic Biol Med. 2011;50(6):645–66.CrossRefPubMed
22.
go back to reference Hanson ES, Foot LM, Leibold EA. Hypoxia post-translationally activates iron-regulatory protein 2. J Biol Chem. 1999;274(8):5047–52.CrossRefPubMed Hanson ES, Foot LM, Leibold EA. Hypoxia post-translationally activates iron-regulatory protein 2. J Biol Chem. 1999;274(8):5047–52.CrossRefPubMed
23.
go back to reference Kirschner RE, Fantini GA. Role of iron and oxygen-derived free radicals in ischemia-reperfusion injury. J Am Coll Surg. 1994;179(1):103–17.PubMed Kirschner RE, Fantini GA. Role of iron and oxygen-derived free radicals in ischemia-reperfusion injury. J Am Coll Surg. 1994;179(1):103–17.PubMed
24.
go back to reference Guo RF, Ward PA. Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: Insights from the IgG immune complex model. Free Radical Biol Med. 2002;33(3):303–10.CrossRef Guo RF, Ward PA. Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: Insights from the IgG immune complex model. Free Radical Biol Med. 2002;33(3):303–10.CrossRef
25.
go back to reference Nelson ME, O'Brien-Ladner AR, Wesselius LJ. Regional variation in iron and iron-binding proteins within the lungs of smokers. Am J Respir Crit Care Med. 1996;153(4 Pt 1):1353–8.CrossRefPubMed Nelson ME, O'Brien-Ladner AR, Wesselius LJ. Regional variation in iron and iron-binding proteins within the lungs of smokers. Am J Respir Crit Care Med. 1996;153(4 Pt 1):1353–8.CrossRefPubMed
26.
go back to reference O'Brien-Ladner AR, Nelson SR, Murphy WJ, Blumer BM, Wesselius LJ. Iron is a regulatory component of human IL-1beta production. Support for regional variability in the lung. Am J Respir Cell Mol Biol. 2000;23(1):112–9.CrossRefPubMed O'Brien-Ladner AR, Nelson SR, Murphy WJ, Blumer BM, Wesselius LJ. Iron is a regulatory component of human IL-1beta production. Support for regional variability in the lung. Am J Respir Cell Mol Biol. 2000;23(1):112–9.CrossRefPubMed
27.
go back to reference Pateva IB, Kerling EH, Reddy M, Chen D, Carlson SE, Tancabelic J. Effect of maternal cigarette smoking on newborn iron stores. Clin Res Trials. 2015;1(1):4–7.PubMedCentralPubMed Pateva IB, Kerling EH, Reddy M, Chen D, Carlson SE, Tancabelic J. Effect of maternal cigarette smoking on newborn iron stores. Clin Res Trials. 2015;1(1):4–7.PubMedCentralPubMed
28.
go back to reference Ghio AJ, Pritchard RJ, Dittrich KL, Samet JM. Non-heme (Fe3+) in the lung increases with age in both humans and rats. J Lab Clin Med. 1997;129(1):53–61.CrossRefPubMed Ghio AJ, Pritchard RJ, Dittrich KL, Samet JM. Non-heme (Fe3+) in the lung increases with age in both humans and rats. J Lab Clin Med. 1997;129(1):53–61.CrossRefPubMed
29.
go back to reference Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–93.CrossRefPubMed Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–93.CrossRefPubMed
30.
go back to reference DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, lange C, Litonjua A, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet. 2009;85(4):493–502.PubMedCentralCrossRefPubMed DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, lange C, Litonjua A, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet. 2009;85(4):493–502.PubMedCentralCrossRefPubMed
31.
go back to reference Chappell SL, Daly L, Lotya J, Alsaegh A, Guetta-Baranes T, Roca J, et al. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case–control study. BMC Med Genet. 2011;12:24.PubMedCentralCrossRefPubMed Chappell SL, Daly L, Lotya J, Alsaegh A, Guetta-Baranes T, Roca J, et al. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case–control study. BMC Med Genet. 2011;12:24.PubMedCentralCrossRefPubMed
32.
go back to reference Pillai SG, Kong X, Edwards LD, Cho MH, Anderson WH, Coxson HO, et al. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(12):1498–505.PubMedCentralCrossRefPubMed Pillai SG, Kong X, Edwards LD, Cho MH, Anderson WH, Coxson HO, et al. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(12):1498–505.PubMedCentralCrossRefPubMed
33.
go back to reference Zhou H, Yang J, Li D, Xiao J, Wang B, Wang L, et al. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Hum Genet. 2012;57(11):738–46.CrossRefPubMed Zhou H, Yang J, Li D, Xiao J, Wang B, Wang L, et al. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Hum Genet. 2012;57(11):738–46.CrossRefPubMed
34.
go back to reference Pastinen T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet. 2010;11(8):533–8.CrossRefPubMed Pastinen T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet. 2010;11(8):533–8.CrossRefPubMed
36.
go back to reference Rahaghi FF, Sandhaus RA, Brantly ML, Rouhani F, Campos MA, Strange C, et al. The prevalence of alpha-1 antitrypsin deficiency among patients found to have airflow obstruction. COPD. 2012;9(4):352–8.PubMed Rahaghi FF, Sandhaus RA, Brantly ML, Rouhani F, Campos MA, Strange C, et al. The prevalence of alpha-1 antitrypsin deficiency among patients found to have airflow obstruction. COPD. 2012;9(4):352–8.PubMed
37.
go back to reference Kim WJ, Wood AM, Barker AF, Brantly ML, Campbell EJ, Eden E, et al. Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. Respir Res. 2012;13:16.PubMedCentralCrossRefPubMed Kim WJ, Wood AM, Barker AF, Brantly ML, Campbell EJ, Eden E, et al. Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. Respir Res. 2012;13:16.PubMedCentralCrossRefPubMed
38.
go back to reference Ghio AJ, Soukup JM, Richards JH, Fischer BM, Voynow JA, Schmechel DE. Deficiency of alpha-1-antitrypsin influences systemic iron homeostasis. Int J Chron Obstruct Pulmon Dis. 2013;8:45–51.PubMedCentralCrossRefPubMed Ghio AJ, Soukup JM, Richards JH, Fischer BM, Voynow JA, Schmechel DE. Deficiency of alpha-1-antitrypsin influences systemic iron homeostasis. Int J Chron Obstruct Pulmon Dis. 2013;8:45–51.PubMedCentralCrossRefPubMed
39.
go back to reference Fischer BM, Domowicz DA, Zheng S, Carter JL, McElvaney NG, Taggart C, et al. Neutrophil elastase increases airway epithelial nonheme iron levels. Clin Transl Sci. 2009;2(5):333–9.PubMedCentralCrossRefPubMed Fischer BM, Domowicz DA, Zheng S, Carter JL, McElvaney NG, Taggart C, et al. Neutrophil elastase increases airway epithelial nonheme iron levels. Clin Transl Sci. 2009;2(5):333–9.PubMedCentralCrossRefPubMed
40.
go back to reference Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40(5):616–22.PubMedCentralCrossRefPubMed Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40(5):616–22.PubMedCentralCrossRefPubMed
41.
go back to reference Spitz MR, Amos CI, Dong Q, Lin J, Wu X. The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst. 2008;100(21):1552–6.PubMedCentralCrossRefPubMed Spitz MR, Amos CI, Dong Q, Lin J, Wu X. The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst. 2008;100(21):1552–6.PubMedCentralCrossRefPubMed
42.
go back to reference Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452(7187):633–7.CrossRefPubMed Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452(7187):633–7.CrossRefPubMed
43.
go back to reference Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452(7187):638–42.PubMedCentralCrossRefPubMed Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452(7187):638–42.PubMedCentralCrossRefPubMed
44.
go back to reference Maffettone C, Chen G, Drozdov I, Ouzounis C, Pantapoulos K. Tumorigenic properties of iron regulatory protein 2 (IRP2) mediated by its specific 73-amino acids insert. PLoS One. 2010;5(4):e10163.PubMedCentralCrossRefPubMed Maffettone C, Chen G, Drozdov I, Ouzounis C, Pantapoulos K. Tumorigenic properties of iron regulatory protein 2 (IRP2) mediated by its specific 73-amino acids insert. PLoS One. 2010;5(4):e10163.PubMedCentralCrossRefPubMed
45.
go back to reference Lui GY, Obeidy P, Ford SJ, Tselepis C, Sharp DM, Jansson PJ, et al. The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action. Mol Pharmacol. 2013;83(1):179–90.CrossRefPubMed Lui GY, Obeidy P, Ford SJ, Tselepis C, Sharp DM, Jansson PJ, et al. The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action. Mol Pharmacol. 2013;83(1):179–90.CrossRefPubMed
46.
47.
48.
go back to reference De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A. 2000;97(3):1252–7.PubMedCentralCrossRefPubMed De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A. 2000;97(3):1252–7.PubMedCentralCrossRefPubMed
49.
go back to reference Gangaidzo IT, Moyo VM, Myundura E, Aggrey G, Murphree NL, Khumalo H, et al. Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis. 2001;184(7):936–9.CrossRefPubMed Gangaidzo IT, Moyo VM, Myundura E, Aggrey G, Murphree NL, Khumalo H, et al. Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis. 2001;184(7):936–9.CrossRefPubMed
50.
go back to reference Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, et al. Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc. 2011;133(7):2076–9.PubMedCentralCrossRefPubMed Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, et al. Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc. 2011;133(7):2076–9.PubMedCentralCrossRefPubMed
51.
go back to reference Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP, McMath LM, et al. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A. 2011;108(12):5051–6.PubMedCentralCrossRefPubMed Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP, McMath LM, et al. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A. 2011;108(12):5051–6.PubMedCentralCrossRefPubMed
52.
go back to reference Grigoriu B, Jacobs F, Beuzen F, El Khoury R, Axler O, Brivet FG, et al. Bronchoalveolar lavage cytological alveolar damage in patients with severe pneumonia. Crit Care. 2006;10(1):R2.PubMedCentralCrossRefPubMed Grigoriu B, Jacobs F, Beuzen F, El Khoury R, Axler O, Brivet FG, et al. Bronchoalveolar lavage cytological alveolar damage in patients with severe pneumonia. Crit Care. 2006;10(1):R2.PubMedCentralCrossRefPubMed
53.
go back to reference Mason WJ, Skaar EP. Assessing the contribution of heme-iron acquisition to Staphylococcus aureus pneumonia using computed tomography. PLoS One. 2009;4(8):e6668.PubMedCentralCrossRefPubMed Mason WJ, Skaar EP. Assessing the contribution of heme-iron acquisition to Staphylococcus aureus pneumonia using computed tomography. PLoS One. 2009;4(8):e6668.PubMedCentralCrossRefPubMed
54.
go back to reference Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. MBio, 2012. 3(6). doi:10.1128/mBio.00224-11. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. MBio, 2012. 3(6). doi:10.​1128/​mBio.​00224-11.
55.
go back to reference Ong CL, Potter AJ, Trappetti C, Walker MJ, Jennings MP, Paton JC, et al. Interplay between manganese and iron in pneumococcal pathogenesis: role of the orphan response regulator RitR. Infect Immun. 2013;81(2):421–9.PubMedCentralCrossRefPubMed Ong CL, Potter AJ, Trappetti C, Walker MJ, Jennings MP, Paton JC, et al. Interplay between manganese and iron in pneumococcal pathogenesis: role of the orphan response regulator RitR. Infect Immun. 2013;81(2):421–9.PubMedCentralCrossRefPubMed
56.
57.
go back to reference Alacantara J, Yu RH, Schryvers AB. The region of human transferring involved in binding to bacterial transferring receptors is localized in the C-lobe. Mol Microbiol. 1993;8:1135–43.CrossRef Alacantara J, Yu RH, Schryvers AB. The region of human transferring involved in binding to bacterial transferring receptors is localized in the C-lobe. Mol Microbiol. 1993;8:1135–43.CrossRef
58.
go back to reference Larson JA, Howie HL, So M. Neisseria meningitides accelerates ferritin degradation in host epithelial cells to yield an essential iron source. Mol Microbiol. 2004;53:807–20.CrossRefPubMed Larson JA, Howie HL, So M. Neisseria meningitides accelerates ferritin degradation in host epithelial cells to yield an essential iron source. Mol Microbiol. 2004;53:807–20.CrossRefPubMed
60.
go back to reference Ge R, Sun X. Iron acquisition and regulation systems in Streptococcus species. Metallomics. 2014;6(5):996–1003.CrossRefPubMed Ge R, Sun X. Iron acquisition and regulation systems in Streptococcus species. Metallomics. 2014;6(5):996–1003.CrossRefPubMed
61.
go back to reference Reid DW, Anderson GJ, Lamont IL. Role of lung iron in determining the bacterial and host struggle in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2009;297(5):L795–802.CrossRefPubMed Reid DW, Anderson GJ, Lamont IL. Role of lung iron in determining the bacterial and host struggle in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2009;297(5):L795–802.CrossRefPubMed
62.
go back to reference Vasil ML, Ochsner UA. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol. 1999;34(3):399–413.CrossRefPubMed Vasil ML, Ochsner UA. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol. 1999;34(3):399–413.CrossRefPubMed
63.
go back to reference Chen X, Stewart PS. Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol. 2002;59(6):718–20.CrossRefPubMed Chen X, Stewart PS. Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol. 2002;59(6):718–20.CrossRefPubMed
64.
go back to reference Britigan BE, Hayek MB, Doebbeling BN, Fick RB Jnr. Transferrin and lactoferrin undergo proteolytic cleavage in the Pseudomonas aeruginosa-infected lungs of patients with cystic fibrosis. Infect Immun. 1993;61(12):5049–55. Britigan BE, Hayek MB, Doebbeling BN, Fick RB Jnr. Transferrin and lactoferrin undergo proteolytic cleavage in the Pseudomonas aeruginosa-infected lungs of patients with cystic fibrosis. Infect Immun. 1993;61(12):5049–55.
65.
go back to reference Hurley MN, Camara M, Smyth AR. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J. 2012;40(4):1014–23.PubMedCentralCrossRefPubMed Hurley MN, Camara M, Smyth AR. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J. 2012;40(4):1014–23.PubMedCentralCrossRefPubMed
66.
go back to reference Halwani M, Yebio B, Suntres ZE, Alipour M, Azghani AO, Omri A. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother. 2008;62(6):1291–7CrossRefPubMed Halwani M, Yebio B, Suntres ZE, Alipour M, Azghani AO, Omri A. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother. 2008;62(6):1291–7CrossRefPubMed
67.
go back to reference Moreau-Marquis S, O'Toole GA, Stanton BA. Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol. 2009;41(3):305–13.PubMedCentralCrossRefPubMed Moreau-Marquis S, O'Toole GA, Stanton BA. Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol. 2009;41(3):305–13.PubMedCentralCrossRefPubMed
68.
go back to reference Sharkey RA, Donnelly SC, Connelly KG, Robertso CE, Haslett C, Repine JE. Initial serum ferritin levels in patients with multiple trauma and the subsequent development of acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1506–9.CrossRefPubMed Sharkey RA, Donnelly SC, Connelly KG, Robertso CE, Haslett C, Repine JE. Initial serum ferritin levels in patients with multiple trauma and the subsequent development of acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1506–9.CrossRefPubMed
69.
go back to reference Ghio AJ, Carter JD, Richards JH, Richer LD, Grissom CK, Elstad MR. Iron and iron-related proteins in the lower respiratory tract of patients with acute respiratory distress syndrome. Crit Care Med. 2003;31(2):395–400.CrossRefPubMed Ghio AJ, Carter JD, Richards JH, Richer LD, Grissom CK, Elstad MR. Iron and iron-related proteins in the lower respiratory tract of patients with acute respiratory distress syndrome. Crit Care Med. 2003;31(2):395–400.CrossRefPubMed
70.
go back to reference Jenkins ZA, Hagar W, Bowlus CL, Johansson HE, Harmatz P, Vichinsky EP, et al. Iron homeostasis during transfusional iron overload in beta-thalassemia and sickle cell disease: changes in iron regulatory protein, hepcidin, and ferritin expression. Pediatr Hematol Oncol. 2007;24(4):237–43.CrossRefPubMed Jenkins ZA, Hagar W, Bowlus CL, Johansson HE, Harmatz P, Vichinsky EP, et al. Iron homeostasis during transfusional iron overload in beta-thalassemia and sickle cell disease: changes in iron regulatory protein, hepcidin, and ferritin expression. Pediatr Hematol Oncol. 2007;24(4):237–43.CrossRefPubMed
71.
go back to reference Al Faraj A, Shaik AP, Shaik AS. Effect of surface coating on the biocompatability and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology. 2015;10:1–10. Al Faraj A, Shaik AP, Shaik AS. Effect of surface coating on the biocompatability and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology. 2015;10:1–10.
72.
go back to reference Xue S, Zhang C, Yang Y, Zhang L, Cheng D, Zhang J, et al. 99mTc-Labeled iron oxide nanoparticles for dual-contrast (T1/T2) magnetic resonance and dual-modality imaging of tumor angiogenesis. J Biomed Nanotechnol. 2015;11(6):1027–37.CrossRefPubMed Xue S, Zhang C, Yang Y, Zhang L, Cheng D, Zhang J, et al. 99mTc-Labeled iron oxide nanoparticles for dual-contrast (T1/T2) magnetic resonance and dual-modality imaging of tumor angiogenesis. J Biomed Nanotechnol. 2015;11(6):1027–37.CrossRefPubMed
73.
go back to reference Hamarat Sanlier S, Yasa M, Cihnioglu AO, Abdulhayoglu M, Yilmaz H, Ak G. Development of gemcitabine-adsorbed magnetic gelatin nanoparticles for targeted drug delivery in lung cancer. Artif Cells Nanomed Biotechnol. 2015;23:1–7.CrossRef Hamarat Sanlier S, Yasa M, Cihnioglu AO, Abdulhayoglu M, Yilmaz H, Ak G. Development of gemcitabine-adsorbed magnetic gelatin nanoparticles for targeted drug delivery in lung cancer. Artif Cells Nanomed Biotechnol. 2015;23:1–7.CrossRef
Metadata
Title
The role of iron in pulmonary pathology
Authors
Heena Khiroya
Alice M. Turner
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Multidisciplinary Respiratory Medicine / Issue 1/2015
Electronic ISSN: 2049-6958
DOI
https://doi.org/10.1186/s40248-015-0031-2

Other articles of this Issue 1/2015

Multidisciplinary Respiratory Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.