Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 11/2014

01-11-2014 | Basic Science

The retinal pigment epithelium (RPE) induces FasL and reduces iNOS and Cox2 in primary monocytes

Authors: Christin Hettich, Sebastian Wilker, Rolf Mentlein, Ralph Lucius, Johann Roider, Alexa Klettner

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 11/2014

Login to get access

Abstract

Purpose

Retinal pigment epithelium (RPE) cells may alter the phenotype of monocytes by soluble factors that may be influenced by stimulation of the RPE. Since RPE cells carry the toll-like receptor-3 (TLR3) that detects and reacts to viral infection through binding of dsRNA we investigated the effects of RPE cells with or without TLR3 stimulation on blood-derived monocytes with respect to regulation of pro-/anti-inflammatory cytokines, anti-angiogenic factors and migratory properties.

Methods

Primary RPE cells were prepared from porcine eyes; monocytes were prepared from porcine blood. TLR3 activation was induced by polyinosinic:polycytidylic acid (Poly I:C). RPE cells were stimulated with Poly I:C in different concentrations for 24 hours and a cell culture supernatant was applied to the monocytes. Expression of CD14 and Fas ligand (FasL) was determined via flow cytometry. The expression of IL-6, IL-1ß, TNFα, Cox2, iNOS and IL-10 was determined via quantitative RT-PCR. Migration was determined using Boyden chamber experiments.

Results

The supernatant of RPE cells, irrespective of TLR3 activation, induced FasL expression in the monocytes. Expression of iNOS and Cox2 was reduced by RPE cells and the reduction of Cox2 but not if iNOS was lost under TLR3 activation. No induction of IL-6, IL-1ß, IL-10 or TNFα by the RPE was seen. TLR3-activated RPE cells induced monocyte migration.

Conclusion

RPE cells induce an upregulation of FasL and a downregulation of iNOS and Cox2 without upregulating inflammatory cytokines, possibly inducing an anti-angiogenic phenotype in the monocytes. This phenotype is still upheld after challenging RPE cells with dsRNA, mimicking a viral infection.
Literature
1.
go back to reference Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3586–3592PubMedCrossRef Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3586–3592PubMedCrossRef
2.
go back to reference Apte RS, Richter J, Herndon J, Ferguson TA (2006) Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PLoS Med 3:e310 Apte RS, Richter J, Herndon J, Ferguson TA (2006) Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PLoS Med 3:e310
3.
go back to reference Ferguson TA, Griffith TS (2006) A vision of cell death: Fas ligand and immune privilege 10 years later. Immunol Rev 213:228–238PubMedCrossRef Ferguson TA, Griffith TS (2006) A vision of cell death: Fas ligand and immune privilege 10 years later. Immunol Rev 213:228–238PubMedCrossRef
4.
go back to reference Kelly J, Ali Khan A, Yin J, Ferguson TA, Apte RS (2007) Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 117:3421–3426PubMedCentralPubMedCrossRef Kelly J, Ali Khan A, Yin J, Ferguson TA, Apte RS (2007) Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 117:3421–3426PubMedCentralPubMedCrossRef
5.
7.
go back to reference Zamiri P, Masli S, Kitaichi N, Taylor AW, Streilein JW (2005) Thrombospondin plays a vital role in the immune privilege of the eye. Invest Ophthalmol Vis Sci 46:908–919PubMedCrossRef Zamiri P, Masli S, Kitaichi N, Taylor AW, Streilein JW (2005) Thrombospondin plays a vital role in the immune privilege of the eye. Invest Ophthalmol Vis Sci 46:908–919PubMedCrossRef
8.
go back to reference Sugita S, Futagami Y, Smith SB, Naggar H, Mochizuki M (2006) Retinal and ciliary body pigment epithelium suppress activation of T lymphocytes via transforming growth factor beta. Exp Eye Res 83:1459–1471PubMedCrossRef Sugita S, Futagami Y, Smith SB, Naggar H, Mochizuki M (2006) Retinal and ciliary body pigment epithelium suppress activation of T lymphocytes via transforming growth factor beta. Exp Eye Res 83:1459–1471PubMedCrossRef
9.
go back to reference Vega JL, Saban D, Carrier Y, Masli S, Weiner HL (2010) Retinal pigment epithelial cells induce foxp3(+) regulatory T cells via membrane-bound TGF-ß. Ocul Immunol Inflamm 18:459–469PubMedCrossRef Vega JL, Saban D, Carrier Y, Masli S, Weiner HL (2010) Retinal pigment epithelial cells induce foxp3(+) regulatory T cells via membrane-bound TGF-ß. Ocul Immunol Inflamm 18:459–469PubMedCrossRef
10.
go back to reference Gregerson DS, Heuss ND, Lew KL, McPherson SW, Ferrington DA (2007) Interaction of retinal pigmented epithelial cells and CD4 T cells leads to T-cellanergy. Invest Ophthalmol Vis Sci 48:4654–4663 Gregerson DS, Heuss ND, Lew KL, McPherson SW, Ferrington DA (2007) Interaction of retinal pigmented epithelial cells and CD4 T cells leads to T-cellanergy. Invest Ophthalmol Vis Sci 48:4654–4663
11.
go back to reference Ferguson TA, Apte RS (2008) Angiogenesis in eye disease: immunity gained or immunity lost? Semin Immunopathol 30:111–119PubMedCrossRef Ferguson TA, Apte RS (2008) Angiogenesis in eye disease: immunity gained or immunity lost? Semin Immunopathol 30:111–119PubMedCrossRef
12.
go back to reference Jørgensen A, Wiencke AK, la Cour M, Kaestel CG, Madsen HO, Hamann S, Lui GM, Scherfig E, Prause JU, Svejgaard A, Odum N, Nissen MH, Röpke C (1998) Human retinal pigment epithelial cell-induced apoptosis in activated T cells. Invest Ophthalmol Vis Sci 39:1590–1599PubMed Jørgensen A, Wiencke AK, la Cour M, Kaestel CG, Madsen HO, Hamann S, Lui GM, Scherfig E, Prause JU, Svejgaard A, Odum N, Nissen MH, Röpke C (1998) Human retinal pigment epithelial cell-induced apoptosis in activated T cells. Invest Ophthalmol Vis Sci 39:1590–1599PubMed
13.
go back to reference Huemer HP, Larcher C, Kirchebner W, Klingenschmid J, Göttinger W, Irschick EU (1996) Susceptibility of human retinal epithelial cells to different viruses. Graefes Arch Clin Exp Ophthalmol 234:177–185PubMedCrossRef Huemer HP, Larcher C, Kirchebner W, Klingenschmid J, Göttinger W, Irschick EU (1996) Susceptibility of human retinal epithelial cells to different viruses. Graefes Arch Clin Exp Ophthalmol 234:177–185PubMedCrossRef
14.
go back to reference Kaarniranta K, Salminen A (2009) Age-relatedmacular degeneration: activation of innate immunity system via pattern recognition receptors. J Mol Med 87:117–123 Kaarniranta K, Salminen A (2009) Age-relatedmacular degeneration: activation of innate immunity system via pattern recognition receptors. J Mol Med 87:117–123
15.
go back to reference Bian ZM, Elner SG, Yoshida A, Elner VM (2003) Human RPE-monocyte co-culture induces chemokine gene expression through activation of MAPK and NIK cascade. Exp Eye Res 76:573–583PubMedCrossRef Bian ZM, Elner SG, Yoshida A, Elner VM (2003) Human RPE-monocyte co-culture induces chemokine gene expression through activation of MAPK and NIK cascade. Exp Eye Res 76:573–583PubMedCrossRef
16.
go back to reference Elner VM, Strieter RM, Elner SG, Baggiolini M, Lindley I, Kunkel SL (1990) Neutrophil chemotactic factor (IL-8) gene expression by cytokine-treated retinal pigment epithelial cells. Am J Pathol 136:745–750PubMedCentralPubMed Elner VM, Strieter RM, Elner SG, Baggiolini M, Lindley I, Kunkel SL (1990) Neutrophil chemotactic factor (IL-8) gene expression by cytokine-treated retinal pigment epithelial cells. Am J Pathol 136:745–750PubMedCentralPubMed
17.
go back to reference Elner SG, Yoshida A, Bian ZM, Kindezelskii AL, Petty HR, Elner VM (2003) Human RPE cell apoptosis induced by activated monocytes is mediated by caspase-3 activation. Trans Am Ophthalmol Soc 101:77–92PubMedCentralPubMed Elner SG, Yoshida A, Bian ZM, Kindezelskii AL, Petty HR, Elner VM (2003) Human RPE cell apoptosis induced by activated monocytes is mediated by caspase-3 activation. Trans Am Ophthalmol Soc 101:77–92PubMedCentralPubMed
18.
go back to reference Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH (2010) Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94:918–925PubMedCrossRef Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH (2010) Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94:918–925PubMedCrossRef
19.
go back to reference Jerdan JA, Pepose JS, Michels RG, Hayashi H, de Bustros S, Sebag M, Glaser BM (1989) Proliferative vitreoretinopathy membranes. An immunohistochemical study. Ophthalmology 96:801–810PubMedCrossRef Jerdan JA, Pepose JS, Michels RG, Hayashi H, de Bustros S, Sebag M, Glaser BM (1989) Proliferative vitreoretinopathy membranes. An immunohistochemical study. Ophthalmology 96:801–810PubMedCrossRef
20.
go back to reference Yang P, de Vos AF, Kijlstra A (1997) Macrophages and MHC class II positive cells in the choroid during endotoxin induced uveitis. Br J Ophthalmol 81:396–401PubMedCentralPubMedCrossRef Yang P, de Vos AF, Kijlstra A (1997) Macrophages and MHC class II positive cells in the choroid during endotoxin induced uveitis. Br J Ophthalmol 81:396–401PubMedCentralPubMedCrossRef
21.
go back to reference Lau CH, Taylor AW (2009) The immune privileged retina mediates an alternative activation of J774A.1 cells. Ocul Immunol Inflamm 17:380–389PubMedCrossRef Lau CH, Taylor AW (2009) The immune privileged retina mediates an alternative activation of J774A.1 cells. Ocul Immunol Inflamm 17:380–389PubMedCrossRef
22.
go back to reference Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T (2002) Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signalling. Biochem Biophys Res Commun 293:1364–1369 Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T (2002) Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signalling. Biochem Biophys Res Commun 293:1364–1369
23.
go back to reference Doyle SE, O’Connell R, Vaidya SA, Chow EK, Yee K, Cheng G (2003) Toll-likereceptor 3 mediates a more potent antiviral response that Toll-likereceptor 4. J Immunol 170:3565–3571 Doyle SE, O’Connell R, Vaidya SA, Chow EK, Yee K, Cheng G (2003) Toll-likereceptor 3 mediates a more potent antiviral response that Toll-likereceptor 4. J Immunol 170:3565–3571
24.
go back to reference Kleinman ME, Kaneko H, Cho WG, Dridi S, Fowler BJ, Blandford AD, Albuquerque RJ, Hirano Y, Terasaki H, Kondo M, Fujita T, Ambati BK, Tarallo V, Gelfand BD, Bogdanovich S, Baffi JZ, Ambati J (2012) Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol Ther 20:101–108 Kleinman ME, Kaneko H, Cho WG, Dridi S, Fowler BJ, Blandford AD, Albuquerque RJ, Hirano Y, Terasaki H, Kondo M, Fujita T, Ambati BK, Tarallo V, Gelfand BD, Bogdanovich S, Baffi JZ, Ambati J (2012) Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol Ther 20:101–108
25.
go back to reference McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA (2009) Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci 50:4982–4991PubMedCrossRef McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA (2009) Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci 50:4982–4991PubMedCrossRef
26.
go back to reference Yang Z, Stratton C, Francis PJ, Kleinman ME, Tan PL, Gibbs D, Tong Z, Chen H, Constantine R, Yang X, Zeng J, Davey L, Ma X, Hau VS, Wang C, Harmon J, Buehler J, Pearson E, Patel S, Kaminoh Y, Watkins S, Luo L, Zabriskie NA, Bernstein PS, Cho W, Schwager A, Hinton DR, Klein ML, Hamon SC, Simmons E, Yu B, Campochiaro B, Sunness JS, Campochiaro P, Jorde L, Parmigiani G, Zack DJ, Katsanis N, Ambati J, Zhang K (2008) Toll-likereceptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359:1456–1463 Yang Z, Stratton C, Francis PJ, Kleinman ME, Tan PL, Gibbs D, Tong Z, Chen H, Constantine R, Yang X, Zeng J, Davey L, Ma X, Hau VS, Wang C, Harmon J, Buehler J, Pearson E, Patel S, Kaminoh Y, Watkins S, Luo L, Zabriskie NA, Bernstein PS, Cho W, Schwager A, Hinton DR, Klein ML, Hamon SC, Simmons E, Yu B, Campochiaro B, Sunness JS, Campochiaro P, Jorde L, Parmigiani G, Zack DJ, Katsanis N, Ambati J, Zhang K (2008) Toll-likereceptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359:1456–1463
27.
go back to reference Cho Y, Wang JJ, Chew E, Ferris FL, Mitchell P, Chan CC, Tuo J (2009) Toll-like receptor polymorphisms and age-related macular degeneration: replication in three case–control samples. Invest Ophthalmol Vis Sci 50:5614–5618PubMedCentralPubMedCrossRef Cho Y, Wang JJ, Chew E, Ferris FL, Mitchell P, Chan CC, Tuo J (2009) Toll-like receptor polymorphisms and age-related macular degeneration: replication in three case–control samples. Invest Ophthalmol Vis Sci 50:5614–5618PubMedCentralPubMedCrossRef
28.
go back to reference Zhou P, Fan L, Yu KD, Zhao MW, Li XX (2011) Toll-likereceptor 3 C1234T may protect against geographic atrophy through decreased dsRNA binding capacity. FASEB J 25:3489–3495 Zhou P, Fan L, Yu KD, Zhao MW, Li XX (2011) Toll-likereceptor 3 C1234T may protect against geographic atrophy through decreased dsRNA binding capacity. FASEB J 25:3489–3495
29.
go back to reference Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B (2004) Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retina pigment epithelial cells. J Neuroimmunol 153:7–15PubMedCrossRef Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B (2004) Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retina pigment epithelial cells. J Neuroimmunol 153:7–15PubMedCrossRef
30.
go back to reference Ebihara N, Chen L, Tokura T, Ushio H, Iwatsu M, Murakami A (2007) Distinct functions between toll-like receptors 3 and 9 in retinal pigment epithelial cells. Ophthalmic Res 39:155–163PubMedCrossRef Ebihara N, Chen L, Tokura T, Ushio H, Iwatsu M, Murakami A (2007) Distinct functions between toll-like receptors 3 and 9 in retinal pigment epithelial cells. Ophthalmic Res 39:155–163PubMedCrossRef
31.
go back to reference Klettner A, Koinzer S, Meyer T, Roider J (2013) Toll-like receptor 3 activation in retinal pigment epithelium cells – Mitogen-activated protein kinase pathways of cell death and vascular endothelial growth factor secretion. Acta Ophthalmol 91:e211–e218 Klettner A, Koinzer S, Meyer T, Roider J (2013) Toll-like receptor 3 activation in retinal pigment epithelium cells – Mitogen-activated protein kinase pathways of cell death and vascular endothelial growth factor secretion. Acta Ophthalmol 91:e211–e218
32.
go back to reference Klettner A, Roider J (2008) Comparison of bevacizumab, ranibizumab, and pegaptanib: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci 49:4523–4527PubMedCrossRef Klettner A, Roider J (2008) Comparison of bevacizumab, ranibizumab, and pegaptanib: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci 49:4523–4527PubMedCrossRef
33.
go back to reference Wiencke AK, Kiilgaard JF, Nicolini J, Bundgaard M, Röpke C, la Cour M (2003) Growth of cultured porcine retinal pigment epithelial cells. Acta Ophthalmol 81:170–176CrossRef Wiencke AK, Kiilgaard JF, Nicolini J, Bundgaard M, Röpke C, la Cour M (2003) Growth of cultured porcine retinal pigment epithelial cells. Acta Ophthalmol 81:170–176CrossRef
34.
go back to reference Berg C, Wilker S, Roider J, Klettner A (2013) Isolation of porcine monocyte population: a simple and efficient method. Vet Res Commun 37:239–241PubMedCrossRef Berg C, Wilker S, Roider J, Klettner A (2013) Isolation of porcine monocyte population: a simple and efficient method. Vet Res Commun 37:239–241PubMedCrossRef
35.
go back to reference Ziegler-Heitbrock HW, Appl B, Käfferlein E, Löffler T, Jahn-Henninger H, Gutensohn W, Nores JR, Mccullough K, Passlick B, Labeta MO et al (1994) The Antibody MY4 Recognizes CD14 on Porcine Monocytes and Macrophages. Scand J Immunol 40:509–514PubMedCrossRef Ziegler-Heitbrock HW, Appl B, Käfferlein E, Löffler T, Jahn-Henninger H, Gutensohn W, Nores JR, Mccullough K, Passlick B, Labeta MO et al (1994) The Antibody MY4 Recognizes CD14 on Porcine Monocytes and Macrophages. Scand J Immunol 40:509–514PubMedCrossRef
36.
go back to reference Klettner A, Baumgrass R, Zhang Y, Fischer G, Bürger E, Herdegen T, Mielke K (2001) The neuroprotective actions of FK506 binding protein ligands: neuronal survival is triggered by de novo RNA synthesis, but is independent of inhibition of JNK and Calcineurin. Brain Res Mol Brain Res 97:21–31PubMedCrossRef Klettner A, Baumgrass R, Zhang Y, Fischer G, Bürger E, Herdegen T, Mielke K (2001) The neuroprotective actions of FK506 binding protein ligands: neuronal survival is triggered by de novo RNA synthesis, but is independent of inhibition of JNK and Calcineurin. Brain Res Mol Brain Res 97:21–31PubMedCrossRef
37.
go back to reference Tang S, Lucius R, Wenck H, Gallinat S, Weise JM (2013) UV-mediated downregulation of the endocytic collagen receptor, Endo 180, contributes to accumulation of extracellular collagen fragments in photoaged skin. J Dermatol Sci 70:42–48PubMedCrossRef Tang S, Lucius R, Wenck H, Gallinat S, Weise JM (2013) UV-mediated downregulation of the endocytic collagen receptor, Endo 180, contributes to accumulation of extracellular collagen fragments in photoaged skin. J Dermatol Sci 70:42–48PubMedCrossRef
38.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR an the 2(−Delta Delta C (T)) method. Methods 25:402–408 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR an the 2(−Delta Delta C (T)) method. Methods 25:402–408
39.
go back to reference Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ (1996) Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils. J Exp Med 184:429–440PubMedCrossRef Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ (1996) Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils. J Exp Med 184:429–440PubMedCrossRef
40.
go back to reference Brown SB, Savill J (1999) Phagocytosis triggers macrophage release of Fas ligand and induces apoptosis of bystander leukocytes. J Immunol 162:480–485PubMed Brown SB, Savill J (1999) Phagocytosis triggers macrophage release of Fas ligand and induces apoptosis of bystander leukocytes. J Immunol 162:480–485PubMed
41.
go back to reference Kaplan HJ, Leibole MA, Tezel T, Ferguson TA (1999) Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med 5:292–297PubMedCrossRef Kaplan HJ, Leibole MA, Tezel T, Ferguson TA (1999) Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med 5:292–297PubMedCrossRef
42.
go back to reference Davis MH, Eubanks JP, Powers MR (2003) Increased retinal neovascularization in Fas ligand-deficient mice. Invest Ophthalmol Vis Sci 44:3202–3210CrossRef Davis MH, Eubanks JP, Powers MR (2003) Increased retinal neovascularization in Fas ligand-deficient mice. Invest Ophthalmol Vis Sci 44:3202–3210CrossRef
43.
go back to reference Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192PubMedCrossRef Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192PubMedCrossRef
44.
go back to reference Yoshida A, Elner SG, Bian ZM, Kindezelskii AL, Petty HR, Elner VM (2003) Activated monocytes induce human retinal pigment epithelial cell apoptosis through caspase-3 activation. Lab Investig 83:1117–1129PubMedCrossRef Yoshida A, Elner SG, Bian ZM, Kindezelskii AL, Petty HR, Elner VM (2003) Activated monocytes induce human retinal pigment epithelial cell apoptosis through caspase-3 activation. Lab Investig 83:1117–1129PubMedCrossRef
45.
go back to reference Esser P, Heimann K, Abts H, Fontana A, Weller M (1995) CD95 (Fas/APO-1) antibody-mediated apoptosis of human retinal pigment epithelial cells. Biochem Biophys Res Commun 213:1026–1034PubMedCrossRef Esser P, Heimann K, Abts H, Fontana A, Weller M (1995) CD95 (Fas/APO-1) antibody-mediated apoptosis of human retinal pigment epithelial cells. Biochem Biophys Res Commun 213:1026–1034PubMedCrossRef
46.
go back to reference Rosenbaum JT, O’Rourke L, Davies G, Wenger C, David L, Robertson JE (1987) Retinal pigment epithelial cells secrete substances that are chemotactic for monocytes. Curr Eye Res 6:793–800PubMedCrossRef Rosenbaum JT, O’Rourke L, Davies G, Wenger C, David L, Robertson JE (1987) Retinal pigment epithelial cells secrete substances that are chemotactic for monocytes. Curr Eye Res 6:793–800PubMedCrossRef
47.
go back to reference Yoshida A, Elner SG, Bian ZM, Kunkel SL, Lukacs NW, Elner VM (2001) Thrombin regulates chemokine induction during human retinal pigment epithelial cell/monocyte interaction. Am J Pathol 159:1171–1180PubMedCentralPubMedCrossRef Yoshida A, Elner SG, Bian ZM, Kunkel SL, Lukacs NW, Elner VM (2001) Thrombin regulates chemokine induction during human retinal pigment epithelial cell/monocyte interaction. Am J Pathol 159:1171–1180PubMedCentralPubMedCrossRef
48.
go back to reference Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM (2011) MCP-1 activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 52:6026–6034 Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM (2011) MCP-1 activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 52:6026–6034
49.
go back to reference Ando A, Yang A, Nambu H, Campochiaro PA (2002) Blockade of nitric-oxide synthase reduces choroidal neovascularization. Mol Pharmacol 62:539–544PubMedCrossRef Ando A, Yang A, Nambu H, Campochiaro PA (2002) Blockade of nitric-oxide synthase reduces choroidal neovascularization. Mol Pharmacol 62:539–544PubMedCrossRef
50.
go back to reference Ando A, Yang A, Mori K, Yamada H, Yamada E, Takahashi K, Saikia J, Kim M, Melia M, Fishman M, Huang P, Campochiaro PA (2002) Nitric oxide is proangiogenic in the retina and choroid. J Cell Physiol 191:116–124PubMedCrossRef Ando A, Yang A, Mori K, Yamada H, Yamada E, Takahashi K, Saikia J, Kim M, Melia M, Fishman M, Huang P, Campochiaro PA (2002) Nitric oxide is proangiogenic in the retina and choroid. J Cell Physiol 191:116–124PubMedCrossRef
51.
go back to reference Houssier M, Raoul W, Lavalette S, Keller N, Guillonneau X, Baragatti B, Jonet L, Jeanny JC, Behar-Cohen F, Coceani F, Scherman D, Lachapelle P, Ong H, Chemtob S, Sennlaub F (2008) CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents. PLoS Med 5:e39 Houssier M, Raoul W, Lavalette S, Keller N, Guillonneau X, Baragatti B, Jonet L, Jeanny JC, Behar-Cohen F, Coceani F, Scherman D, Lachapelle P, Ong H, Chemtob S, Sennlaub F (2008) CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents. PLoS Med 5:e39
52.
go back to reference Klettner A, Hamann T, Schlüter K, Lucius R, Roider J (2014) Retinal pigment epithelium cells alter the pro-inflammatory response of retinal microglia to TLR-3 stimulation. Acta Ophthalmol. doi:10.1111/aos.12472 Klettner A, Hamann T, Schlüter K, Lucius R, Roider J (2014) Retinal pigment epithelium cells alter the pro-inflammatory response of retinal microglia to TLR-3 stimulation. Acta Ophthalmol. doi:10.​1111/​aos.​12472
53.
go back to reference Lassota N (2008) Clinical and histological aspects of CNV formation: studies in an animal model. Acta Ophthalmol 86:1–24PubMedCrossRef Lassota N (2008) Clinical and histological aspects of CNV formation: studies in an animal model. Acta Ophthalmol 86:1–24PubMedCrossRef
54.
go back to reference Sanchez I, Martin R, Ussa F, Fernandez-Bueno I (2011) The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol 249:475–482 Sanchez I, Martin R, Ussa F, Fernandez-Bueno I (2011) The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol 249:475–482
55.
go back to reference Middleton S (2010) Porcine Ophthalmology. Vet Clin N Am Food Anim Pract 26:557–572CrossRef Middleton S (2010) Porcine Ophthalmology. Vet Clin N Am Food Anim Pract 26:557–572CrossRef
56.
go back to reference Butler JE, Sun J, Wertz N, Sinkora M (2006) Antibody repertoire development in swine. Dev Comp Immunol 30:199–211PubMedCrossRef Butler JE, Sun J, Wertz N, Sinkora M (2006) Antibody repertoire development in swine. Dev Comp Immunol 30:199–211PubMedCrossRef
57.
go back to reference Yang P, Chen L, Zwart R, Kijlstra A (2002) Immune cells in the porcine retina: Distribution, characterization and morphological features. Invest Ophthalmol Vis Sci 43:1488–1492PubMed Yang P, Chen L, Zwart R, Kijlstra A (2002) Immune cells in the porcine retina: Distribution, characterization and morphological features. Invest Ophthalmol Vis Sci 43:1488–1492PubMed
Metadata
Title
The retinal pigment epithelium (RPE) induces FasL and reduces iNOS and Cox2 in primary monocytes
Authors
Christin Hettich
Sebastian Wilker
Rolf Mentlein
Ralph Lucius
Johann Roider
Alexa Klettner
Publication date
01-11-2014
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 11/2014
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-014-2742-z

Other articles of this Issue 11/2014

Graefe's Archive for Clinical and Experimental Ophthalmology 11/2014 Go to the issue