Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 11/2014

01-11-2014 | Neurophthalmology

Early axonal damage detection by ganglion cell complex analysis with optical coherence tomography in nonarteritic anterior ischaemic optic neuropathy

Authors: Begoña Arana Larrea, Marta Galdos Iztueta, Lorea Martinez Indart, Nerea Martinez Alday

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 11/2014

Login to get access

Abstract

Purpose

To investigate the ability of ganglion cell complex (GCC) analysis by optical coherence tomography (OCT) to detect early axonal damage in nonarteritic anterior ischaemic optic neuropathy (NAION), and to assess the relationship of GCC measurements with visual field defects and function parameters.

Methods

Twenty-two patients with NAION participated in this retrospective case-series study. Patients underwent spectral-domain OCT measurement of retinal nerve fibre layer (RNFL) and GCC average and minimum thicknesses, best-corrected visual acuity, Ishihara test and Humphrey visual field (SITA Standard 24–2). These measurements were recorded in the acute (2–6 weeks after the ischaemic episode) and chronic (≥6 months later) phases. Spearman’s coefficients were used to assess the relationship between GCC thickness and visual field defects.

Results

In the acute phase, none of the patients showed atrophy of the optic disc, while early damage was observed in the GCC average and minimum thickness in 54.54 % and 77.27 % of patients. At 6 months, the rate of patients with RNFL below normal limits increased to 90 % in the RNFL, and 92.85 % and 100 % in the GCC average and minimum GCC respectively. Spearman’s coefficients indicated significant relationships of GCC in the acute phase with visual field index and mean deviation in both acute and chronic phases. A significant correlation was also found with location of the defects.

Conclusions

GCC thickness measurement by OCT is capable of detecting early axonal damage in NAION eyes in the acute phase that cannot be detected by RNFL. GCC defects are significantly correlated with visual field globally and the defect location.
Literature
1.
go back to reference Hattenhauer MG, Leavitt JA, Hodge DO et al (1997) Incidence of nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 123(3):103–107PubMedCrossRef Hattenhauer MG, Leavitt JA, Hodge DO et al (1997) Incidence of nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 123(3):103–107PubMedCrossRef
2.
go back to reference Kernstock C, Friebe K, Tonagel F (2013) Applications of optical coherence tomography (OCT) in neuro-ophthalmology. Klin Monatsbl Augenheilkd 230(11):1097–1105PubMedCrossRef Kernstock C, Friebe K, Tonagel F (2013) Applications of optical coherence tomography (OCT) in neuro-ophthalmology. Klin Monatsbl Augenheilkd 230(11):1097–1105PubMedCrossRef
3.
go back to reference Maekubo T, Chuman H, Kodama Y, Nao-I N (2013) Evaluation of inner retinal thickness around the optic disc using optical coherence tomography of a rodent model of nonarteritic ischemic optic neuropathy. Jpn J Ophthalmol 57(3):327–332PubMedCrossRef Maekubo T, Chuman H, Kodama Y, Nao-I N (2013) Evaluation of inner retinal thickness around the optic disc using optical coherence tomography of a rodent model of nonarteritic ischemic optic neuropathy. Jpn J Ophthalmol 57(3):327–332PubMedCrossRef
4.
go back to reference Savini G, Carbonelli M, Barboni P (2011) Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol 22(2):115–123PubMedCrossRef Savini G, Carbonelli M, Barboni P (2011) Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol 22(2):115–123PubMedCrossRef
5.
go back to reference Contreras I, Noval S, Rebolleda G, Muñoz-Negrete FJ (2007) Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 114:2338–2344PubMedCrossRef Contreras I, Noval S, Rebolleda G, Muñoz-Negrete FJ (2007) Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 114:2338–2344PubMedCrossRef
6.
go back to reference Contreras I, Rebolleda G, Noval S, Muñoz-Negrete FJ (2007) Optic disc evaluation by optical coherence tomography in nonarteritic anterior Ischemic optic neuropathy. Invest Ophthalmol Vis Sci 48:4087–4092PubMedCrossRef Contreras I, Rebolleda G, Noval S, Muñoz-Negrete FJ (2007) Optic disc evaluation by optical coherence tomography in nonarteritic anterior Ischemic optic neuropathy. Invest Ophthalmol Vis Sci 48:4087–4092PubMedCrossRef
7.
go back to reference Deleón-Ortega J, Carroll KE, Arthur SN, Girkin CA (2007) Correlations between retinal nerve fiber layer and visual field in eyes with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 143:288–294PubMedCentralPubMedCrossRef Deleón-Ortega J, Carroll KE, Arthur SN, Girkin CA (2007) Correlations between retinal nerve fiber layer and visual field in eyes with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 143:288–294PubMedCentralPubMedCrossRef
8.
go back to reference Hood DC, Anderson S, Rouleau J et al (2008) Retinal nerve fibre structure versus visual field function in patients with ischemic optic neuropathy a test of a linear model. Ophthalmology 115:904–910PubMedCentralPubMedCrossRef Hood DC, Anderson S, Rouleau J et al (2008) Retinal nerve fibre structure versus visual field function in patients with ischemic optic neuropathy a test of a linear model. Ophthalmology 115:904–910PubMedCentralPubMedCrossRef
9.
go back to reference Bellusci C, Savini G, Carboneli M, Carelli V, Sadun AA, Barboni P (2008) Retinal nerve fiber layer thickness in nonarteritic anterior ischemic optic neuropathy: OCT characterization of the acute and resolving phases. Graefes Arch Clin Exp Ophthalmol 246:641–647PubMedCrossRef Bellusci C, Savini G, Carboneli M, Carelli V, Sadun AA, Barboni P (2008) Retinal nerve fiber layer thickness in nonarteritic anterior ischemic optic neuropathy: OCT characterization of the acute and resolving phases. Graefes Arch Clin Exp Ophthalmol 246:641–647PubMedCrossRef
10.
go back to reference Fernández-Buenaga R, Rebolleda G, Muñoz-Negrete FJ, Contreras I, Casas-Llera P (2009). Macular thickness. Ophthalmology 116(8):1587PubMedCrossRef Fernández-Buenaga R, Rebolleda G, Muñoz-Negrete FJ, Contreras I, Casas-Llera P (2009). Macular thickness. Ophthalmology 116(8):1587PubMedCrossRef
11.
go back to reference Papchenko T, Grainger BT, Savino PJ, Gamble GD, Danesh-Meyer HV (2012) Macular thickness predictive of visual field sensitivity in ischaemic optic neuropathy. Acta Ophthalmol 90:e463–e469PubMedCrossRef Papchenko T, Grainger BT, Savino PJ, Gamble GD, Danesh-Meyer HV (2012) Macular thickness predictive of visual field sensitivity in ischaemic optic neuropathy. Acta Ophthalmol 90:e463–e469PubMedCrossRef
12.
go back to reference Syc SB, Saidha S, Newsome SD, Ratchford JN, Levy M, Ford E, Crainiceanu CM, Durbin MK, Oakley JD, Meyer SA, Frohman EM, Calabresi PA (2012) Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 135(Pt 2):521–533PubMedCentralPubMedCrossRef Syc SB, Saidha S, Newsome SD, Ratchford JN, Levy M, Ford E, Crainiceanu CM, Durbin MK, Oakley JD, Meyer SA, Frohman EM, Calabresi PA (2012) Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 135(Pt 2):521–533PubMedCentralPubMedCrossRef
13.
go back to reference Renard JP, Fénolland JR, El Chehab H, Francoz M, Marill AM, Messaoudi R, Delbarre M, Maréchal M, Michel S, Giraud JM (2013) Analysis of macular ganglion cell complex (GCC) with spectral-domain optical coherence tomography (SD-OCT) in glaucoma. J Fr Ophtalmol 36(4):299–309PubMedCrossRef Renard JP, Fénolland JR, El Chehab H, Francoz M, Marill AM, Messaoudi R, Delbarre M, Maréchal M, Michel S, Giraud JM (2013) Analysis of macular ganglion cell complex (GCC) with spectral-domain optical coherence tomography (SD-OCT) in glaucoma. J Fr Ophtalmol 36(4):299–309PubMedCrossRef
14.
go back to reference Aggarwal D, Tan O, Huang D, Sadun AA (2012) Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(8):4539–4545PubMedCrossRef Aggarwal D, Tan O, Huang D, Sadun AA (2012) Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(8):4539–4545PubMedCrossRef
15.
go back to reference Gonul S, kokterik BE, Bakbak B, Gedik S (2013) Comparison of the ganglion cell complex and retinal nerve fibre layer measurements using Fourier domain optical coherence tomography to detect ganglion cell loss in non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 97:1045–1050PubMedCrossRef Gonul S, kokterik BE, Bakbak B, Gedik S (2013) Comparison of the ganglion cell complex and retinal nerve fibre layer measurements using Fourier domain optical coherence tomography to detect ganglion cell loss in non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 97:1045–1050PubMedCrossRef
16.
go back to reference Wang M, Hood DC, Cho JS, Ghadiali Q, De Moraes CG, Zhang X, Ritch R, Liebmann JM (2009) Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch Ophthalmol 127(7):875–881PubMedCentralPubMedCrossRef Wang M, Hood DC, Cho JS, Ghadiali Q, De Moraes CG, Zhang X, Ritch R, Liebmann JM (2009) Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch Ophthalmol 127(7):875–881PubMedCentralPubMedCrossRef
17.
go back to reference Fabritius T, Makita S, Miura M, Myllylä R, Yasuno Y (2009) Automated segmentation of the macula by optical coherence tomography. Opt Express 17(18):15659–15669PubMedCrossRef Fabritius T, Makita S, Miura M, Myllylä R, Yasuno Y (2009) Automated segmentation of the macula by optical coherence tomography. Opt Express 17(18):15659–15669PubMedCrossRef
18.
go back to reference Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300(1):5–25PubMedCrossRef Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300(1):5–25PubMedCrossRef
19.
go back to reference Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011): Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52(11):8323–8329PubMedCentralPubMedCrossRef Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011): Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52(11):8323–8329PubMedCentralPubMedCrossRef
20.
go back to reference Marzoli SB, Ciasca P, Curone M, Cammarata G, Melzi L, Criscuoli A, Bussone G, D´Amico D (2013) Quantitative analysis of optic nerve damage in idiopathic intracranial hypertension (IIH) at diagnosis. Neurol Sci 34: S143–S145PubMedCrossRef Marzoli SB, Ciasca P, Curone M, Cammarata G, Melzi L, Criscuoli A, Bussone G, D´Amico D (2013) Quantitative analysis of optic nerve damage in idiopathic intracranial hypertension (IIH) at diagnosis. Neurol Sci 34: S143–S145PubMedCrossRef
21.
go back to reference Tan O, Li G, Lu AT, Varma R, Huang D (2008) Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956PubMedCentralPubMedCrossRef Tan O, Li G, Lu AT, Varma R, Huang D (2008) Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956PubMedCentralPubMedCrossRef
22.
go back to reference Choi SS, Zawadzki RJ, Keltner JL, Wern JS (2008) Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. Invest Ophthalmol Vis Sci 49:2013–2119CrossRef Choi SS, Zawadzki RJ, Keltner JL, Wern JS (2008) Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. Invest Ophthalmol Vis Sci 49:2013–2119CrossRef
23.
go back to reference Bernstein SL, Johnson MA, Miller NR (2011) Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models. Prog Retin Eye Res 30(3):167–187PubMedCentralPubMedCrossRef Bernstein SL, Johnson MA, Miller NR (2011) Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models. Prog Retin Eye Res 30(3):167–187PubMedCentralPubMedCrossRef
24.
go back to reference Goldenberg-Cohen N, Guo Y, Margolis F, Cohen Y, Miller NR, Bernstein SL (2005) Oligodendrocyte dysfunction after induction of experimental anterior optic nerve ischemia. Invest Ophthalmol Vis Sci 46(8):2716–2275PubMedCrossRef Goldenberg-Cohen N, Guo Y, Margolis F, Cohen Y, Miller NR, Bernstein SL (2005) Oligodendrocyte dysfunction after induction of experimental anterior optic nerve ischemia. Invest Ophthalmol Vis Sci 46(8):2716–2275PubMedCrossRef
25.
go back to reference Zhang C, Guo Y, Slater BJ, Miller NR, Bernstein SL (2010) Axonal degeneration, regeneration and ganglion cell death in a rodent model of anterior ischemic optic neuropathy (rAION). Exp Eye Res 91:286–292PubMedCentralPubMedCrossRef Zhang C, Guo Y, Slater BJ, Miller NR, Bernstein SL (2010) Axonal degeneration, regeneration and ganglion cell death in a rodent model of anterior ischemic optic neuropathy (rAION). Exp Eye Res 91:286–292PubMedCentralPubMedCrossRef
26.
go back to reference Ho JK, Stanford MP, Shariati MA, Dalal R, Liao YJ (2013) Optical coherence tomography study of experimental anterior ischemic optic neuropathy and histologic confirmation. Invest Ophthalmol Vis Sci 54:5981–5988PubMedCentralPubMedCrossRef Ho JK, Stanford MP, Shariati MA, Dalal R, Liao YJ (2013) Optical coherence tomography study of experimental anterior ischemic optic neuropathy and histologic confirmation. Invest Ophthalmol Vis Sci 54:5981–5988PubMedCentralPubMedCrossRef
27.
go back to reference Kupersmith MJ, Anderson S, Durbin M, Kardon R (2013) Scanning laser polarimetry, but not optical coherence tomography predicts permanent visual field loss in acute nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 54(8):5514–5519PubMedCentralPubMedCrossRef Kupersmith MJ, Anderson S, Durbin M, Kardon R (2013) Scanning laser polarimetry, but not optical coherence tomography predicts permanent visual field loss in acute nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 54(8):5514–5519PubMedCentralPubMedCrossRef
Metadata
Title
Early axonal damage detection by ganglion cell complex analysis with optical coherence tomography in nonarteritic anterior ischaemic optic neuropathy
Authors
Begoña Arana Larrea
Marta Galdos Iztueta
Lorea Martinez Indart
Nerea Martinez Alday
Publication date
01-11-2014
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 11/2014
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-014-2697-0

Other articles of this Issue 11/2014

Graefe's Archive for Clinical and Experimental Ophthalmology 11/2014 Go to the issue