Skip to main content
Top
Published in: Systematic Reviews 1/2022

Open Access 01-12-2022 | Protocol

The reliability of and agreement between devices used to measure eccentric hamstring strength: a systematic review protocol

Authors: Daniel Torpey, Eoghan Murray, Tom Hughes, Jamie Sergeant, Michael Callaghan

Published in: Systematic Reviews | Issue 1/2022

Login to get access

Abstract

Background

Isokinetic dynamometry (IKD) is considered as the gold standard method of eccentric hamstring strength measurement, but other devices are more portable, cost-effective, provide real-time data and are thus better suited to the mass testing required in sport.
This review aims to synthesise the evidence related to the reliability of and agreement between devices that measure eccentric hamstring strength and isokinetic dynamometers in adults.

Methods

The MEDLINE, EMBASE, PubMed, CINAHL and Sport Discus databases, alongside a search of grey and pre-print literature (from inception to 2021), are used. Forward and backward snowballing will also be used. Studies will be included if the reliability and/or agreement between devices used to quantify eccentric hamstring strength in healthy, recreationally active or amateur/elite sportspeople has been investigated. Studies will be excluded if (1) participants were injured or unwell at the time of testing and (2) concentric strength measurements or if non-hamstring muscle groups were investigated.
The COnsenus-based Standards for the selection of health Measurement INstruments (COSMIN) tool will be used to assess the quality of reporting of included studies.
If possible, data will be pooled and a meta-analysis and/or meta-regression may be performed if appropriate. We will aim to conduct a narrative synthesis using an adapted Grading of Recommendation, Assessment, Development and Evaluation (GRADE).

Discussion

This systematic review will aim to analyse the reliability of devices that measure eccentric hamstring strength, and the agreement of these devices with isokinetic dynamometers when used in an adult population. It is anticipated that the results of this review could be used to inform clinicians regarding suitable devices that can be employed to monitor eccentric hamstring strength in clinical practice.
No ethics approval is required. It is anticipated that this review will be submitted to a leading peer-reviewed journal in this field for publication consideration.

Systematic review registration

Appendix
Available only for authorised users
Literature
1.
go back to reference Liu H, Garrett WE, Moorman CT, Yu B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: a review of the literature. J Sport Health Sci. 2012;1:92–101.CrossRef Liu H, Garrett WE, Moorman CT, Yu B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: a review of the literature. J Sport Health Sci. 2012;1:92–101.CrossRef
2.
go back to reference Gabbe BJ, Finch CF, Wajswelner H, et al. Australian football: injury profile at the community-level. J Sci Med Sport. 2002;5:149–60.2.PubMedCrossRef Gabbe BJ, Finch CF, Wajswelner H, et al. Australian football: injury profile at the community-level. J Sci Med Sport. 2002;5:149–60.2.PubMedCrossRef
3.
go back to reference Woods C, Hawkins R, Maltby S, et al. The Football Association Medical Research Programme: an audit of injuries in professional football-analysis of hamstring injuries. Brit J Sports Med. 2004;38:36–41.CrossRef Woods C, Hawkins R, Maltby S, et al. The Football Association Medical Research Programme: an audit of injuries in professional football-analysis of hamstring injuries. Brit J Sports Med. 2004;38:36–41.CrossRef
4.
go back to reference Feeley BT, Kennelly S, Barnes RP, Muller MS, Kelly BT, Rodeo SA, et al. Epidemiology of national football league training camp injuries from 1998 to 2007. Am J Sports Med. 2008;36:1597–603.PubMedCrossRef Feeley BT, Kennelly S, Barnes RP, Muller MS, Kelly BT, Rodeo SA, et al. Epidemiology of national football league training camp injuries from 1998 to 2007. Am J Sports Med. 2008;36:1597–603.PubMedCrossRef
5.
go back to reference Hagglund M, Walden M, Ekstrand J. Previous injury as a risk factor for injury in elite football: a prospective study over two consecutive seasons. Br J Sports Med. 2006;40:767–72.PubMedPubMedCentralCrossRef Hagglund M, Walden M, Ekstrand J. Previous injury as a risk factor for injury in elite football: a prospective study over two consecutive seasons. Br J Sports Med. 2006;40:767–72.PubMedPubMedCentralCrossRef
7.
go back to reference Orchard JW, Kountouris A, Sims K. Risk factors for hamstring injuries in Australian male professional cricket players. J Sport Health Sci. 2017;6:271–4.PubMedPubMedCentralCrossRef Orchard JW, Kountouris A, Sims K. Risk factors for hamstring injuries in Australian male professional cricket players. J Sport Health Sci. 2017;6:271–4.PubMedPubMedCentralCrossRef
8.
go back to reference Yu B, Queen RM, Abbey AN, Liu Y, Moorman CT, Garrett WE. Hamstring muscle kinematics and activation during overground sprinting. J Biomech. 2008;41:3121–6.PubMedCrossRef Yu B, Queen RM, Abbey AN, Liu Y, Moorman CT, Garrett WE. Hamstring muscle kinematics and activation during overground sprinting. J Biomech. 2008;41:3121–6.PubMedCrossRef
9.
go back to reference Chumanov ES, Schaches AG, Heiderscheit BC, Thelen DG. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med. 2011;46:90.PubMedCrossRef Chumanov ES, Schaches AG, Heiderscheit BC, Thelen DG. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med. 2011;46:90.PubMedCrossRef
10.
go back to reference Schache AG, Dorn TW, Blanch PD, Brown NAT, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc. 2012;44(4):647–58.PubMedCrossRef Schache AG, Dorn TW, Blanch PD, Brown NAT, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc. 2012;44(4):647–58.PubMedCrossRef
11.
go back to reference Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 2013;43:1207–15.PubMedCrossRef Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 2013;43:1207–15.PubMedCrossRef
12.
go back to reference van der Horst N, Smits D-W, Petersen J, Goedhart EA, Backx FJG. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.PubMedCrossRef van der Horst N, Smits D-W, Petersen J, Goedhart EA, Backx FJG. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.PubMedCrossRef
13.
go back to reference Petersen J, Thorborg K, Neilsen M, Budtz-Jorgensen E. Preventive effect of eccentric training on acute hamstring injuries in mens soccer: a cluster randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303.PubMedCrossRef Petersen J, Thorborg K, Neilsen M, Budtz-Jorgensen E. Preventive effect of eccentric training on acute hamstring injuries in mens soccer: a cluster randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303.PubMedCrossRef
14.
go back to reference Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13:244–50.PubMedCrossRef Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13:244–50.PubMedCrossRef
15.
go back to reference Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: systematic review and meta-analysis. Br J Sports Med. 2013;47:351–8.PubMedCrossRef Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: systematic review and meta-analysis. Br J Sports Med. 2013;47:351–8.PubMedCrossRef
16.
go back to reference Whiteley R, van Dyk N, Wangensteen A, Hansen C. Clinical implications from daily physiotherapy examination of 131 acute hamstring injuries and their association with running speed and rehabilitation progression. Br J Sports Med. 2018;52:303–10.PubMedCrossRef Whiteley R, van Dyk N, Wangensteen A, Hansen C. Clinical implications from daily physiotherapy examination of 131 acute hamstring injuries and their association with running speed and rehabilitation progression. Br J Sports Med. 2018;52:303–10.PubMedCrossRef
17.
go back to reference Martin HJ, Yule V, Syddall HE, Dennison EM, Cooper C, Aihie SA. Is hand-held dynamometry useful for the measurement of quadriceps strength in older people? A comparison with the gold standard biodex dynamometry. Gerontology. 2006;52:154–9.PubMedCrossRef Martin HJ, Yule V, Syddall HE, Dennison EM, Cooper C, Aihie SA. Is hand-held dynamometry useful for the measurement of quadriceps strength in older people? A comparison with the gold standard biodex dynamometry. Gerontology. 2006;52:154–9.PubMedCrossRef
18.
go back to reference Drouin JM, Valovich-mcleod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol. 2004;91(1):22–9.PubMedCrossRef Drouin JM, Valovich-mcleod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol. 2004;91(1):22–9.PubMedCrossRef
19.
go back to reference Meyer C, Corten K, Wesseling M, Peers K, Simon J-P, Jonkers I. Test-retest reliability of innovated strength tests for hip muscles. PLoS One. 2013;8(11):1–8.CrossRef Meyer C, Corten K, Wesseling M, Peers K, Simon J-P, Jonkers I. Test-retest reliability of innovated strength tests for hip muscles. PLoS One. 2013;8(11):1–8.CrossRef
20.
go back to reference Muff G, Dufour S, Meyer A, Severac F, Favret F, Geny B, et al. Comparative assessment of knee extensor and flexor muscle strength measured using a hand-held vs. isokinetic dynamometer. J Phys Ther Sci. 2016;28:2445–51.PubMedPubMedCentralCrossRef Muff G, Dufour S, Meyer A, Severac F, Favret F, Geny B, et al. Comparative assessment of knee extensor and flexor muscle strength measured using a hand-held vs. isokinetic dynamometer. J Phys Ther Sci. 2016;28:2445–51.PubMedPubMedCentralCrossRef
21.
go back to reference Opar DA, Piatkowski T, Williams MD, Shield AJ. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2013;43(9):636–40.PubMedCrossRef Opar DA, Piatkowski T, Williams MD, Shield AJ. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2013;43(9):636–40.PubMedCrossRef
22.
go back to reference Lu Y-M, Lin J-H, Hsiao S-F, Liu M-F, Chen S-M, Lue Y-J. The relative and absolute reliability of leg muscle strength testing by a handheld dynamometer. J Strength Cond Res. 2011;25(4):1065–71.PubMedCrossRef Lu Y-M, Lin J-H, Hsiao S-F, Liu M-F, Chen S-M, Lue Y-J. The relative and absolute reliability of leg muscle strength testing by a handheld dynamometer. J Strength Cond Res. 2011;25(4):1065–71.PubMedCrossRef
23.
go back to reference Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3:472–9.PubMedCrossRef Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3:472–9.PubMedCrossRef
24.
go back to reference Chamorro C, Armijo-Olivo S, Fuentes J, de la Fuente C, Chirosa LJ. Absolute reliability and concurrent validity of hand-held dynamometry and isokinetic dynamometry in the hip, knee, and ankle joint: systematic review and meta-analysis. Open Med. 2017;12:359–75.CrossRef Chamorro C, Armijo-Olivo S, Fuentes J, de la Fuente C, Chirosa LJ. Absolute reliability and concurrent validity of hand-held dynamometry and isokinetic dynamometry in the hip, knee, and ankle joint: systematic review and meta-analysis. Open Med. 2017;12:359–75.CrossRef
25.
go back to reference Claudino JG, Cardoso Filho CA, Bittencourt NFN, Goncalves LG, Couto CR, Quintao RC, et al. Eccentric strength assessment of hamstring muscles with new technologies: a systematic review of current methods and clinical implications. Sports Med Open. 2021;7:10.PubMedPubMedCentralCrossRef Claudino JG, Cardoso Filho CA, Bittencourt NFN, Goncalves LG, Couto CR, Quintao RC, et al. Eccentric strength assessment of hamstring muscles with new technologies: a systematic review of current methods and clinical implications. Sports Med Open. 2021;7:10.PubMedPubMedCentralCrossRef
26.
go back to reference Wollin M, Purdam C, Drew MK. Reliability of externally fixed dynamometry hamstring strength testing in elite youth football players. J Sci Med Sport. 2015;19(1):93–6.PubMedCrossRef Wollin M, Purdam C, Drew MK. Reliability of externally fixed dynamometry hamstring strength testing in elite youth football players. J Sci Med Sport. 2015;19(1):93–6.PubMedCrossRef
28.
go back to reference Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the sem. J Strength Cond Res. 2005;19(11):231–40.PubMed Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the sem. J Strength Cond Res. 2005;19(11):231–40.PubMed
29.
go back to reference De Vet HCW, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59:1033–9.PubMedCrossRef De Vet HCW, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59:1033–9.PubMedCrossRef
30.
go back to reference Streiner DL, Norman GR, Cairney J. Health measurement scales: a practical guide to their development and use. 5th ed: Oxford University Press; 2008.CrossRef Streiner DL, Norman GR, Cairney J. Health measurement scales: a practical guide to their development and use. 5th ed: Oxford University Press; 2008.CrossRef
31.
go back to reference Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
32.
go back to reference Prinsen CAC, Mokkink LB, Bouter LM, Alonso J, Patrick DL, de Vet HCW, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018;27(5):1147–57.PubMedPubMedCentralCrossRef Prinsen CAC, Mokkink LB, Bouter LM, Alonso J, Patrick DL, de Vet HCW, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018;27(5):1147–57.PubMedPubMedCentralCrossRef
33.
go back to reference Mokkink LB, de Vet HCW, Prinsen CAC, Patrick DL, Alonso J, Bouter LM, et al. COSMIN Risk of bias checklist for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018;27(5):1171–9.PubMedCrossRef Mokkink LB, de Vet HCW, Prinsen CAC, Patrick DL, Alonso J, Bouter LM, et al. COSMIN Risk of bias checklist for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018;27(5):1171–9.PubMedCrossRef
34.
go back to reference Terwee CB, Prinsen CAC, Chiarotto A, Westerman MJ, Patrick DL, Alonso J, et al. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: a delphi study. Qual Life Res. 2018;27(5):1159–70.PubMedPubMedCentralCrossRef Terwee CB, Prinsen CAC, Chiarotto A, Westerman MJ, Patrick DL, Alonso J, et al. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: a delphi study. Qual Life Res. 2018;27(5):1159–70.PubMedPubMedCentralCrossRef
36.
go back to reference Harvill LM. Standard error of measurement. Educ Meas Issues Pract. 1991;10:33–41.CrossRef Harvill LM. Standard error of measurement. Educ Meas Issues Pract. 1991;10:33–41.CrossRef
37.
38.
go back to reference Guyatt GH, Oxman AD, Vist GE, Kunz R, Alonso-Coello P, Schunemann HJ. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br Med J. 2008;336(7650):924–6.CrossRef Guyatt GH, Oxman AD, Vist GE, Kunz R, Alonso-Coello P, Schunemann HJ. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br Med J. 2008;336(7650):924–6.CrossRef
39.
go back to reference Deeks JJ, Higgins JPT, Altman DG. Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2022): Cochrane; 2022. Deeks JJ, Higgins JPT, Altman DG. Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2022): Cochrane; 2022.
Metadata
Title
The reliability of and agreement between devices used to measure eccentric hamstring strength: a systematic review protocol
Authors
Daniel Torpey
Eoghan Murray
Tom Hughes
Jamie Sergeant
Michael Callaghan
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2022
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-022-02070-8

Other articles of this Issue 1/2022

Systematic Reviews 1/2022 Go to the issue