Skip to main content
Top
Published in: The Ultrasound Journal 1/2017

Open Access 01-12-2017 | Original article

The relationship between single and two-dimensional indices of left ventricular size using hemodynamic transesophageal echocardiography in trauma and burn patients

Authors: Duraid Younan, T. Mark Beasley, David C. Pigott, C. Blayke Gibson, John P. Gullett, Jeffrey Richey, Jean-Francois Pittet, Ahmed Zaky

Published in: The Ultrasound Journal | Issue 1/2017

Login to get access

Abstract

Background

Conventional echocardiographic technique for assessment of volume status and cardiac contractility utilizes left ventricular end-diastolic area (LVEDA) and fractional area of change (FAC), respectively. Our goal was to find a technically reliable yet faster technique to evaluate volume status and contractility by measuring left ventricular end-diastolic diameter (LVEDD) and fractional shortening (FS) in a cohort of mechanically ventilated trauma and burn patients using hemodynamic transesophageal echocardiographic (hTEE) monitoring.

Methods

Retrospective chart review performed at trauma/burn intensive care unit (TBICU). Data on 88 mechanically ventilated surgical intensive care patients cared for between July 2013 and July 2015 were reviewed. Initial measurements of LVEDA, left ventricular end-systolic area (LVESA) and FAC were collected. Post-processing left ventricular end-systolic (LVESD) and end-diastolic diameters (LVEDD) were measured and fractional shortening (FS) was calculated. Two orthogonal measurements of LV diameter were obtained in transverse (Tr) and posteroanterior (PA) orientation.

Results

There was a significant correlation between transverse and posteroanterior left ventricular diameter measurements in both systole and diastole. In systole, r = 0.92, p < 0.01 for LVESD-Tr (mean 23.47 mm, SD ± 6.77) and LVESD-PA (mean 24.84 mm, SD = 8.23). In diastole, r = 0.80, p < 0.01 for LVEDD-Tr (mean 37.60 mm, SD ± 6.45), and LVEDD-PA diameters (mean 42.24 mm, SD ± 7.97). Left ventricular area (LVEDA) also significantly correlated with left ventricular diameter LVEDD-Tr (r = 0.84, p < 0.01) and LVEDD-PA (r = 0.90, p < 0.01). Both transverse and PA measurements of fractional shortening were significantly (p < 0.0001) and similarly correlated with systolic function as measured by FAC. Bland–Altman analyses also indicated that the assessment of fractional shortening using left ventricular posteroanterior diameter measurement shows agreement with FAC.

Conclusions

Left ventricular diameter measurements are a reliable and technically feasible alternative to left ventricular area measurements in the assessment of cardiac filling and systolic function.
Literature
1.
go back to reference Chiang Y, Hosseinian L, Rhee A, Itagaki S, Cavallaro P, Chikwe J (2015) Questionable benefit of the pulmonary artery catheter after cardiac surgery in high-risk patients. J Cardiothorac Vasc Anesth 29:76–81CrossRefPubMed Chiang Y, Hosseinian L, Rhee A, Itagaki S, Cavallaro P, Chikwe J (2015) Questionable benefit of the pulmonary artery catheter after cardiac surgery in high-risk patients. J Cardiothorac Vasc Anesth 29:76–81CrossRefPubMed
2.
go back to reference Tenaa B, Gomar C, Roux C, Fontanals J, Jimenez MJ, Rovira I et al (2008) Serious mechanical complications associated with pulmonary artery catheters in cardiovascular and thoracic surgery. Rev Esp Anestesiol Reanim 55:487–492CrossRefPubMed Tenaa B, Gomar C, Roux C, Fontanals J, Jimenez MJ, Rovira I et al (2008) Serious mechanical complications associated with pulmonary artery catheters in cardiovascular and thoracic surgery. Rev Esp Anestesiol Reanim 55:487–492CrossRefPubMed
3.
go back to reference Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178CrossRefPubMed Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178CrossRefPubMed
4.
go back to reference Wiesenack C, Fiegl C, Keyser A, Prasser C, Keyl C (2005) Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients. Eur J Anaesthesiol 22:658–665CrossRefPubMed Wiesenack C, Fiegl C, Keyser A, Prasser C, Keyl C (2005) Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients. Eur J Anaesthesiol 22:658–665CrossRefPubMed
5.
go back to reference Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398CrossRefPubMed Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398CrossRefPubMed
6.
go back to reference Rozycki GS, Ochsner MG, Jaffin JH, Champion HR (1993) Prospective evaluation of surgeons’ use of ultrasound in the evaluation of trauma patients. J Trauma 34:516–526 (discussion 526–517) CrossRefPubMed Rozycki GS, Ochsner MG, Jaffin JH, Champion HR (1993) Prospective evaluation of surgeons’ use of ultrasound in the evaluation of trauma patients. J Trauma 34:516–526 (discussion 526–517) CrossRefPubMed
7.
go back to reference Gunst M, Sperry J, Ghaemmaghami V, O’keeffe T, Friese R, Frankel H (2008) Bedside echocardiographic assessment for trauma/critical care: the BEAT exam. J Am Coll Surg 207:e1–e3CrossRefPubMed Gunst M, Sperry J, Ghaemmaghami V, O’keeffe T, Friese R, Frankel H (2008) Bedside echocardiographic assessment for trauma/critical care: the BEAT exam. J Am Coll Surg 207:e1–e3CrossRefPubMed
8.
go back to reference Sarosiek K, Kang CY, Johnson CM, Pitcher H, Hirose H, Cavarocchi NC (2014) Perioperative use of the imacor hemodynamic transesophageal echocardiography probe in cardiac surgery patients: initial experience. ASAIO J 60(5):553–558CrossRefPubMed Sarosiek K, Kang CY, Johnson CM, Pitcher H, Hirose H, Cavarocchi NC (2014) Perioperative use of the imacor hemodynamic transesophageal echocardiography probe in cardiac surgery patients: initial experience. ASAIO J 60(5):553–558CrossRefPubMed
9.
go back to reference Fletcher N, Geisen M, Meeran H, Spray D, Cecconi M (2015) Initial clinical experience with a miniaturized transesophageal echocardiography probe in a cardiac intensive care unit. J Cardiothorac Vasc Anesth 29(3):582–587CrossRefPubMed Fletcher N, Geisen M, Meeran H, Spray D, Cecconi M (2015) Initial clinical experience with a miniaturized transesophageal echocardiography probe in a cardiac intensive care unit. J Cardiothorac Vasc Anesth 29(3):582–587CrossRefPubMed
10.
go back to reference Treskatsch S, Balzer F, Knebel F et al (2015) Feasibility and influence of hTEE monitoring on postoperative management in cardiac surgery patients. Int J Cardiovasc Imaging 31(7):1327–1335CrossRefPubMed Treskatsch S, Balzer F, Knebel F et al (2015) Feasibility and influence of hTEE monitoring on postoperative management in cardiac surgery patients. Int J Cardiovasc Imaging 31(7):1327–1335CrossRefPubMed
11.
go back to reference Cavarocchi NC, Pitcher HT, Yang Q et al (2013) Weaning of extracorporeal membrane oxygenation using continuous hemodynamic transesophageal echocardiography. J Thorac Cardiovasc Surg 146(6):1474–1479CrossRefPubMed Cavarocchi NC, Pitcher HT, Yang Q et al (2013) Weaning of extracorporeal membrane oxygenation using continuous hemodynamic transesophageal echocardiography. J Thorac Cardiovasc Surg 146(6):1474–1479CrossRefPubMed
12.
go back to reference Haglund NA, Maltais S, Bick JS et al (2014) Hemodynamic transesophageal echocardiography after left ventricular assist device implantation. J Cardiothorac Vasc Anesth 28(5):1184–1190CrossRefPubMed Haglund NA, Maltais S, Bick JS et al (2014) Hemodynamic transesophageal echocardiography after left ventricular assist device implantation. J Cardiothorac Vasc Anesth 28(5):1184–1190CrossRefPubMed
13.
go back to reference Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth 95:746–755CrossRefPubMed Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth 95:746–755CrossRefPubMed
14.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542CrossRefPubMed
15.
go back to reference Inoue T, Ogawa T, Iwabuchi Y, Otsuka K, Nitta K (2012) Left ventricular end-diastolic diameter is an independent predictor of mortality in hemodialysis patients. Ther Apheresis Dial 16:134–141CrossRef Inoue T, Ogawa T, Iwabuchi Y, Otsuka K, Nitta K (2012) Left ventricular end-diastolic diameter is an independent predictor of mortality in hemodialysis patients. Ther Apheresis Dial 16:134–141CrossRef
16.
go back to reference Indovina A (2000) Evaluation of heart dysfunction using non-invasive methods. A comparison between left ventricular end diastolic volume measured using blood pool gated radioisotope angiography and left ventricular transverse end diastolic diameter measured using two dimensional echocardiography. Minerva Cardioangiol 48:149–154PubMed Indovina A (2000) Evaluation of heart dysfunction using non-invasive methods. A comparison between left ventricular end diastolic volume measured using blood pool gated radioisotope angiography and left ventricular transverse end diastolic diameter measured using two dimensional echocardiography. Minerva Cardioangiol 48:149–154PubMed
17.
go back to reference Zou C, Wu X, Zhou Q, Zhang Y, Lyu R, Zhang J (2014) Frequency and predictors of recovery of normal left ventricular ejection fraction and end-diastolic diameter in patients with dilated cardiomyopathy. Zhonghua xin xue guan bing za zhi 42:851–855PubMed Zou C, Wu X, Zhou Q, Zhang Y, Lyu R, Zhang J (2014) Frequency and predictors of recovery of normal left ventricular ejection fraction and end-diastolic diameter in patients with dilated cardiomyopathy. Zhonghua xin xue guan bing za zhi 42:851–855PubMed
Metadata
Title
The relationship between single and two-dimensional indices of left ventricular size using hemodynamic transesophageal echocardiography in trauma and burn patients
Authors
Duraid Younan
T. Mark Beasley
David C. Pigott
C. Blayke Gibson
John P. Gullett
Jeffrey Richey
Jean-Francois Pittet
Ahmed Zaky
Publication date
01-12-2017
Publisher
Springer Milan
Published in
The Ultrasound Journal / Issue 1/2017
Electronic ISSN: 2524-8987
DOI
https://doi.org/10.1186/s13089-017-0074-z

Other articles of this Issue 1/2017

The Ultrasound Journal 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.