Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2009

Open Access 01-03-2009

The potential of PET/MR for brain imaging

Author: Wolf-Dieter Heiss

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2009

Login to get access

Abstract

Introduction

The completion of an integrated PET/MR prototype system for brain imaging is the latest step in the evolution of positron emission tomography. Early images with this new imaging system demonstrate that high-resolution multiparametric studies can be combined without significant loss of performance of either imaging modality.

Objective

This new technology will make fusion of morphological and biological information much easier, yield real-time assessment of complementary variables and will provide dynamic information for kinetic modelling. Simultaneous acquisition of various metabolic and functional parameters may open new insights into the organization of the brain and its changes in disease.

Discussion

A new field may open up for molecular and cellular imaging, where new targets – e.g. angiogenesis, gene transfer, function and migration of transplanted cells – can be imaged in the morphological context and within a functional environment. This application might have a special impact on the translation of treatment concepts from experimental models into clinical application. If the added value of the hybrid system for diagnosis and treatment monitoring is established, a cost-effective PET/MR combination might attain wider clinical application.
Literature
1.
go back to reference Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975;114:89–98.PubMed Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975;114:89–98.PubMed
2.
go back to reference Cho ZH, Chan JK, Eriksson L. Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci 1976;23:613–22.CrossRef Cho ZH, Chan JK, Eriksson L. Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci 1976;23:613–22.CrossRef
3.
go back to reference Phelps ME, Hoffman EJ, Huang SC, Kuhl DE. ECAT: a new computerized tomographic imaging system for positron-emitting radiopharmaceuticals. J Nucl Med 1978;19:635–47.PubMed Phelps ME, Hoffman EJ, Huang SC, Kuhl DE. ECAT: a new computerized tomographic imaging system for positron-emitting radiopharmaceuticals. J Nucl Med 1978;19:635–47.PubMed
4.
go back to reference Heiss WD, Vyska K, Kloster G, Traupe H, Freundlieb C, Hoeck A, et al. Demonstration of decreased functional activity of visual cortex by [11C]methylglucose and positron emission tomography. Neuroradiology 1982;23:45–7.PubMedCrossRef Heiss WD, Vyska K, Kloster G, Traupe H, Freundlieb C, Hoeck A, et al. Demonstration of decreased functional activity of visual cortex by [11C]methylglucose and positron emission tomography. Neuroradiology 1982;23:45–7.PubMedCrossRef
5.
go back to reference Eriksson L, Bohm C, Kesselberg M, Blomqvist G, Litton J, Widen L, et al. A four ring positron camera system for emission tomography of the brain. IEEE Trans Nucl Sci 1982;29:539–43.CrossRef Eriksson L, Bohm C, Kesselberg M, Blomqvist G, Litton J, Widen L, et al. A four ring positron camera system for emission tomography of the brain. IEEE Trans Nucl Sci 1982;29:539–43.CrossRef
6.
go back to reference Heiss WD, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K. Regional kinetic constants and CMR glu in normal human volunteers determined by dynamic positron emission tomography of [18 F]-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 1984;4:212–23.PubMed Heiss WD, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K. Regional kinetic constants and CMR glu in normal human volunteers determined by dynamic positron emission tomography of [18 F]-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 1984;4:212–23.PubMed
7.
go back to reference Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss WD. Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 1992;16:804–13.PubMedCrossRef Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss WD. Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 1992;16:804–13.PubMedCrossRef
8.
go back to reference Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, et al. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994;18:110–8.PubMedCrossRef Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, et al. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994;18:110–8.PubMedCrossRef
9.
go back to reference Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: Performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 2002;49:104–10.CrossRef Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: Performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 2002;49:104–10.CrossRef
10.
go back to reference de Jong HWAM, van Velden FHP, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 2007;52:1505–26.PubMedCrossRef de Jong HWAM, van Velden FHP, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 2007;52:1505–26.PubMedCrossRef
11.
go back to reference Pietrzyk U, Herholz K, Schuster A, von Stockhausen HM, Lucht H, Heiss WD. Clinical applications of registration and fusion of multimodality brain images from PET, SPECT, CT, and MRI. Eur J Radiol 1996;21:174–82.PubMedCrossRef Pietrzyk U, Herholz K, Schuster A, von Stockhausen HM, Lucht H, Heiss WD. Clinical applications of registration and fusion of multimodality brain images from PET, SPECT, CT, and MRI. Eur J Radiol 1996;21:174–82.PubMedCrossRef
12.
go back to reference Cizek J, Herholz K, Vollmar S, Schrader R, Klein J, Heiss WD. Fast and robust registration of PET and MR images of human brain. Neuroimage 2004;22:434–42.PubMedCrossRef Cizek J, Herholz K, Vollmar S, Schrader R, Klein J, Heiss WD. Fast and robust registration of PET and MR images of human brain. Neuroimage 2004;22:434–42.PubMedCrossRef
13.
go back to reference Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.PubMed Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.PubMed
14.
go back to reference Cho ZH, Son YD, Kim HK, Kim KN, Oh SH, Han JY, et al. A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain. Proteomics 2008;8:1302–23.PubMedCrossRef Cho ZH, Son YD, Kim HK, Kim KN, Oh SH, Han JY, et al. A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain. Proteomics 2008;8:1302–23.PubMedCrossRef
15.
go back to reference Schmand M, Burbar Z, Corbeil JL, Zhang N, Michael C, Byars L, et al. BrainPET: First human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 2007;48(Suppl 2):45P. Schmand M, Burbar Z, Corbeil JL, Zhang N, Michael C, Byars L, et al. BrainPET: First human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 2007;48(Suppl 2):45P.
16.
go back to reference Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008;248:1028–35.PubMedCrossRef Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008;248:1028–35.PubMedCrossRef
17.
go back to reference Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008;14:459–65.PubMedCrossRef Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008;14:459–65.PubMedCrossRef
18.
go back to reference Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA 2008;105:3705–10.PubMedCrossRef Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA 2008;105:3705–10.PubMedCrossRef
19.
go back to reference Jacobs AH, Kracht LW, Gossmann A, Ruger MA, Thomas AV, Thiel A, et al. Imaging in neurooncology. NeuroRx. 2005;2:333–47.PubMedCrossRef Jacobs AH, Kracht LW, Gossmann A, Ruger MA, Thomas AV, Thiel A, et al. Imaging in neurooncology. NeuroRx. 2005;2:333–47.PubMedCrossRef
21.
go back to reference Thiel A, Habedank B, Herholz K, Kessler J, Winhuisen L, Haupt WF, et al. From the left to the right: how the brain compensates progressive loss of language function. Brain Lang 2006;98:57–65.PubMedCrossRef Thiel A, Habedank B, Herholz K, Kessler J, Winhuisen L, Haupt WF, et al. From the left to the right: how the brain compensates progressive loss of language function. Brain Lang 2006;98:57–65.PubMedCrossRef
23.
go back to reference Koepp MJ, Woermann FG. Imaging structure and function in refractory focal epilepsy. Lancet Neurol 2005;4:42–53.PubMedCrossRef Koepp MJ, Woermann FG. Imaging structure and function in refractory focal epilepsy. Lancet Neurol 2005;4:42–53.PubMedCrossRef
24.
go back to reference Eggers C, Szelies B, Bauer B, Wienhard K, Schroder H, Herholz K, et al. Imaging of acetylcholine esterase activity in brainstem nuclei involved in regulation of sleep and wakefulness. Eur J Neurol 2007;14:690–3.PubMedCrossRef Eggers C, Szelies B, Bauer B, Wienhard K, Schroder H, Herholz K, et al. Imaging of acetylcholine esterase activity in brainstem nuclei involved in regulation of sleep and wakefulness. Eur J Neurol 2007;14:690–3.PubMedCrossRef
25.
go back to reference Heiss WD. Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 2000;20:1276–93.PubMedCrossRef Heiss WD. Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 2000;20:1276–93.PubMedCrossRef
26.
go back to reference Heiss WD, Sobesky J, Hesselmann V. Identifying thresholds for penumbra and irreversible tissue damage. Stroke 2004;5:2671–4.PubMedCrossRef Heiss WD, Sobesky J, Hesselmann V. Identifying thresholds for penumbra and irreversible tissue damage. Stroke 2004;5:2671–4.PubMedCrossRef
27.
go back to reference Lanfermann H, Kugel H, Heindel W, Herholz K, Heiss WD, Lackner K. Metabolic changes in acute and subacute cerebral infarctions: findings at proton MR spectroscopic imaging. Radiology 1995;196:203–10.PubMed Lanfermann H, Kugel H, Heindel W, Herholz K, Heiss WD, Lackner K. Metabolic changes in acute and subacute cerebral infarctions: findings at proton MR spectroscopic imaging. Radiology 1995;196:203–10.PubMed
28.
go back to reference Herholz K, Heindel W, Luyten PR, denHollander JA, Pietrzyk U, Voges J, et al. In vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann Neurol 1992;31:319–27.PubMedCrossRef Herholz K, Heindel W, Luyten PR, denHollander JA, Pietrzyk U, Voges J, et al. In vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann Neurol 1992;31:319–27.PubMedCrossRef
29.
go back to reference Mielke R, Schopphoff HH, Kugel H, Pietrzyk U, Heindel W, Kessler J, et al. Relation between 1H MR spectroscopic imaging and regional cerebral glucose metabolism in Alzheimer’s disease. Int J Neurosci 2001;107:233–45.PubMedCrossRef Mielke R, Schopphoff HH, Kugel H, Pietrzyk U, Heindel W, Kessler J, et al. Relation between 1H MR spectroscopic imaging and regional cerebral glucose metabolism in Alzheimer’s disease. Int J Neurosci 2001;107:233–45.PubMedCrossRef
30.
go back to reference Duncan DB, Herholz K, Kugel H, Roth B, Ruitenbeek W, Heindel W, et al. Positron emission tomography and magnetic resonance spectroscopy of cerebral glycolysis in children with congenital lactic acidosis. Ann Neurol 1995;37:351–8.PubMedCrossRef Duncan DB, Herholz K, Kugel H, Roth B, Ruitenbeek W, Heindel W, et al. Positron emission tomography and magnetic resonance spectroscopy of cerebral glycolysis in children with congenital lactic acidosis. Ann Neurol 1995;37:351–8.PubMedCrossRef
31.
go back to reference Buxton RB, Uludag K, Dubowitz DJ, Liu TT. Modeling the hemodynamic response to brain activation. Neuroimage 2004;23(Suppl 1):S220–33.PubMedCrossRef Buxton RB, Uludag K, Dubowitz DJ, Liu TT. Modeling the hemodynamic response to brain activation. Neuroimage 2004;23(Suppl 1):S220–33.PubMedCrossRef
32.
go back to reference Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 1986;83:1140–44.PubMedCrossRef Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 1986;83:1140–44.PubMedCrossRef
33.
go back to reference Piccini P, Brooks DJ. New developments of brain imaging for Parkinson’s disease and related disorders. Mov Disord 2006;21:2035–41.PubMedCrossRef Piccini P, Brooks DJ. New developments of brain imaging for Parkinson’s disease and related disorders. Mov Disord 2006;21:2035–41.PubMedCrossRef
34.
go back to reference Rhodes RA, Murthy NV, Dresner MA, Selvaraj S, Stavrakakis N, Babar S, et al. Human 5-HT transporter availability predicts amygdala reactivity in vivo. J Neurosci 2007;27:9233–7.PubMedCrossRef Rhodes RA, Murthy NV, Dresner MA, Selvaraj S, Stavrakakis N, Babar S, et al. Human 5-HT transporter availability predicts amygdala reactivity in vivo. J Neurosci 2007;27:9233–7.PubMedCrossRef
35.
36.
go back to reference Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography. Q J Nucl Med 2002;46:70–85.PubMed Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography. Q J Nucl Med 2002;46:70–85.PubMed
37.
go back to reference Weber WA, Czernin J, Phelps ME, Herschman HR. Technology Insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol 2008;5:44–54.PubMedCrossRef Weber WA, Czernin J, Phelps ME, Herschman HR. Technology Insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol 2008;5:44–54.PubMedCrossRef
38.
go back to reference Leontiev O, Buxton RB. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage 2007;35:175–84.PubMedCrossRef Leontiev O, Buxton RB. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage 2007;35:175–84.PubMedCrossRef
39.
go back to reference Tailor DR, Baumgardner JE, Regatte RR, Leigh JS, Reddy R. Proton MRI of metabolically produced H217O using an efficient 17O2 delivery system. Neuroimage 2004;22:611–8.PubMedCrossRef Tailor DR, Baumgardner JE, Regatte RR, Leigh JS, Reddy R. Proton MRI of metabolically produced H217O using an efficient 17O2 delivery system. Neuroimage 2004;22:611–8.PubMedCrossRef
40.
go back to reference Song AW, Harshbarger T, Li T, Kim KH, Ugurbil K, Mori S, et al. Functional activation using apparent diffusion coefficient-dependent contrast allows better spatial localization to the neuronal activity: evidence using diffusion tensor imaging and fiber tracking. Neuroimage 2003;20:955–61.PubMedCrossRef Song AW, Harshbarger T, Li T, Kim KH, Ugurbil K, Mori S, et al. Functional activation using apparent diffusion coefficient-dependent contrast allows better spatial localization to the neuronal activity: evidence using diffusion tensor imaging and fiber tracking. Neuroimage 2003;20:955–61.PubMedCrossRef
41.
go back to reference Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, et al. The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat 2003;26:293–299.PubMedCrossRef Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, et al. The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat 2003;26:293–299.PubMedCrossRef
42.
go back to reference Thiel A, Schumacher B, Wienhard K, Gairing S, Kracht LW, Wagner R, et al. Direct demonstration of transcallosal disinhibition in language networks. J Cereb Blood Flow Metab 2006;26:1122–7.PubMed Thiel A, Schumacher B, Wienhard K, Gairing S, Kracht LW, Wagner R, et al. Direct demonstration of transcallosal disinhibition in language networks. J Cereb Blood Flow Metab 2006;26:1122–7.PubMed
43.
go back to reference Hsu AR, Chen X. Advances in anatomic, functional, and molecular imaging of angiogenesis. J Nucl Med 2008;49:511–4.PubMedCrossRef Hsu AR, Chen X. Advances in anatomic, functional, and molecular imaging of angiogenesis. J Nucl Med 2008;49:511–4.PubMedCrossRef
44.
go back to reference Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001;358:727–9.PubMedCrossRef Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001;358:727–9.PubMedCrossRef
45.
go back to reference Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002;99:2344–9.PubMedCrossRef Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002;99:2344–9.PubMedCrossRef
46.
go back to reference Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 2005;128:2977–86.PubMedCrossRef Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 2005;128:2977–86.PubMedCrossRef
47.
go back to reference Hoehn M, Himmelreich U, Kruttwig K, Wiedermann D. Molecular and cellular MR imaging: potentials and challenges for neurological applications. J Magn Reson Imaging 2008;27:941–54.PubMedCrossRef Hoehn M, Himmelreich U, Kruttwig K, Wiedermann D. Molecular and cellular MR imaging: potentials and challenges for neurological applications. J Magn Reson Imaging 2008;27:941–54.PubMedCrossRef
48.
go back to reference Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke 2007;38:817–26.PubMedCrossRef Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke 2007;38:817–26.PubMedCrossRef
Metadata
Title
The potential of PET/MR for brain imaging
Author
Wolf-Dieter Heiss
Publication date
01-03-2009
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2009
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0962-3

Other articles of this Special Issue 1/2009

European Journal of Nuclear Medicine and Molecular Imaging 1/2009 Go to the issue