Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2009

Open Access 01-03-2009

Magnetic resonance imaging methodology

Authors: Ewald Moser, Andreas Stadlbauer, Christian Windischberger, Harald H. Quick, Mark E. Ladd

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2009

Login to get access

Abstract

Introduction

Magnetic resonance (MR) methods are non-invasive techniques to provide detailed, multi-parametric information on human anatomy, function and metabolism. Sensitivity, specificity, spatial and temporal resolution may, however, vary depending on hardware (e.g., field strength, gradient strength and speed) and software (optimised measurement protocols and parameters for the various techniques). Furthermore, multi-modality imaging may enhance specificity to better characterise complex disease patterns.

Objective

Positron emission tomography (PET) is an interesting, largely complementary modality, which might be combined with MR. Despite obvious advantages, combining these rather different physical methods may also pose challenging problems. At this early stage, it seems that PET quality may be preserved in the magnetic field and, if an adequate detector material is used for the PET, MR sensitivity should not be significantly degraded. Again, this may vary for the different MR techniques, whereby functional and metabolic MR is more susceptible than standard anatomical imaging.

Discussion

Here we provide a short introduction to MR basics and MR techniques, also discussing advantages, artefacts and problems when MR hardware and PET detectors are combined. In addition to references for more detailed descriptions of MR fundamentals and applications, we provide an early outlook on this novel and exciting multi-modality approach to PET/MR.
Literature
1.
go back to reference Ruehm SG, Goyen M, Barkhausen J, Kroger K, Bosk S, Ladd ME, et al. Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 2001;357:1086–91.PubMedCrossRef Ruehm SG, Goyen M, Barkhausen J, Kroger K, Bosk S, Ladd ME, et al. Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 2001;357:1086–91.PubMedCrossRef
2.
go back to reference Lauenstein TC, Goehde SC, Herborn CU, Treder W, Ruehm SG, Debatin JF, et al. Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR 2002;179:445–9.PubMed Lauenstein TC, Goehde SC, Herborn CU, Treder W, Ruehm SG, Debatin JF, et al. Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR 2002;179:445–9.PubMed
3.
go back to reference Lauenstein TC, Goehde SC, Herborn CU, Goyen M, Oberhoff C, Debatin JF, et al. Whole-body MR imaging: evaluation of patients for metastases. Radiology 2004;233:139–48.PubMedCrossRef Lauenstein TC, Goehde SC, Herborn CU, Goyen M, Oberhoff C, Debatin JF, et al. Whole-body MR imaging: evaluation of patients for metastases. Radiology 2004;233:139–48.PubMedCrossRef
4.
go back to reference Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 2003;290:3199–206.PubMedCrossRef Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 2003;290:3199–206.PubMedCrossRef
5.
go back to reference Larkman DJ, Nunes RG. Parallel magnetic resonance imaging. Physics in medicine and biology 2007;52:R15–55.PubMedCrossRef Larkman DJ, Nunes RG. Parallel magnetic resonance imaging. Physics in medicine and biology 2007;52:R15–55.PubMedCrossRef
6.
go back to reference Schaefer DJ, Bourland JD, Nyenhuis JA. Review of patient safety in time-varying gradient fields. J Magn Reson Imaging 2000;12:20–9.PubMedCrossRef Schaefer DJ, Bourland JD, Nyenhuis JA. Review of patient safety in time-varying gradient fields. J Magn Reson Imaging 2000;12:20–9.PubMedCrossRef
7.
go back to reference Gruber S, Mlynarik V, Moser E. High-resolution 3D proton spectroscopic imaging of the human brain at 3 T: SNR issues and application for anatomy-matched voxel sizes. Magn Reson Med 2003;49:299–306.PubMedCrossRef Gruber S, Mlynarik V, Moser E. High-resolution 3D proton spectroscopic imaging of the human brain at 3 T: SNR issues and application for anatomy-matched voxel sizes. Magn Reson Med 2003;49:299–306.PubMedCrossRef
8.
go back to reference Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America 1990;87:9868–72.PubMedCrossRef Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America 1990;87:9868–72.PubMedCrossRef
9.
go back to reference Norris DG. Principles of magnetic resonance assessment of brain function. J Magn Reson Imaging 2006;23:794–807.PubMedCrossRef Norris DG. Principles of magnetic resonance assessment of brain function. J Magn Reson Imaging 2006;23:794–807.PubMedCrossRef
10.
go back to reference Beisteiner R, Lanzenberger R, Novak K, Edward V, Windischberger C, Erdler M, et al. Improvement of presurgical patient evaluation by generation of functional magnetic resonance risc maps. Neurosci Lett 2000;290:13–16.PubMedCrossRef Beisteiner R, Lanzenberger R, Novak K, Edward V, Windischberger C, Erdler M, et al. Improvement of presurgical patient evaluation by generation of functional magnetic resonance risc maps. Neurosci Lett 2000;290:13–16.PubMedCrossRef
11.
go back to reference Vlieger EJ, Majoie CB, Leenstra S, Den Heeten GJ. Functional magnetic resonance imaging for neurosurgical planning in neurooncology. Europ Radiol 2004;14:1143–53.CrossRef Vlieger EJ, Majoie CB, Leenstra S, Den Heeten GJ. Functional magnetic resonance imaging for neurosurgical planning in neurooncology. Europ Radiol 2004;14:1143–53.CrossRef
12.
go back to reference Detre JA, Alsop DC. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. European journal of radiology 1999;30:115–24.PubMedCrossRef Detre JA, Alsop DC. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. European journal of radiology 1999;30:115–24.PubMedCrossRef
13.
go back to reference Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 2006;24:3293–8.PubMedCrossRef Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 2006;24:3293–8.PubMedCrossRef
15.
go back to reference Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 2006;24:478–88.PubMedCrossRef Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 2006;24:478–88.PubMedCrossRef
16.
go back to reference Chenevert TL, Meyer CR, Moffat BA, Rehemtulla A, Mukherji SK, Gebarski SS, et al. Diffusion MRI: a new strategy for assessment of cancer therapeutic efficacy. Mol Imaging 2002;1:336–43.PubMedCrossRef Chenevert TL, Meyer CR, Moffat BA, Rehemtulla A, Mukherji SK, Gebarski SS, et al. Diffusion MRI: a new strategy for assessment of cancer therapeutic efficacy. Mol Imaging 2002;1:336–43.PubMedCrossRef
17.
go back to reference Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13:534–46.PubMedCrossRef Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13:534–46.PubMedCrossRef
18.
go back to reference Stadlbauer A, Prante O, Nimsky C, Salomonowitz E, Buchfelder M, Kuwert T, et al. Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-l-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med 2008;49:721–9.PubMedCrossRef Stadlbauer A, Prante O, Nimsky C, Salomonowitz E, Buchfelder M, Kuwert T, et al. Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-l-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med 2008;49:721–9.PubMedCrossRef
19.
go back to reference Cruz LC Jr., Sorensen AG. Diffusion tensor magnetic resonance imaging of brain tumors. Magnetic resonance imaging clinics of North America 2006;14:183–202.PubMedCrossRef Cruz LC Jr., Sorensen AG. Diffusion tensor magnetic resonance imaging of brain tumors. Magnetic resonance imaging clinics of North America 2006;14:183–202.PubMedCrossRef
20.
go back to reference Mountford C, Lean C, Malycha P, Russell P. Proton spectroscopy provides accurate pathology on biopsy and in vivo. J Magn Reson Imaging 2006;24:459–77.PubMedCrossRef Mountford C, Lean C, Malycha P, Russell P. Proton spectroscopy provides accurate pathology on biopsy and in vivo. J Magn Reson Imaging 2006;24:459–77.PubMedCrossRef
21.
22.
go back to reference Sharma U, Mehta A, Seenu V, Jagannathan NR. Biochemical characterization of metastatic lymph nodes of breast cancer patients by in vitro 1H magnetic resonance spectroscopy: a pilot study. Magnetic resonance imaging 2004;22:697–706.PubMedCrossRef Sharma U, Mehta A, Seenu V, Jagannathan NR. Biochemical characterization of metastatic lymph nodes of breast cancer patients by in vitro 1H magnetic resonance spectroscopy: a pilot study. Magnetic resonance imaging 2004;22:697–706.PubMedCrossRef
23.
go back to reference Kurhanewicz J, Vigneron DB, Nelson SJ. Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia (New York, NY 2000;2:166–89. Kurhanewicz J, Vigneron DB, Nelson SJ. Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia (New York, NY 2000;2:166–89.
24.
go back to reference Dydak U, Weiger M, Pruessmann KP, Meier D, Boesiger P. Sensitivity-encoded spectroscopic imaging. Magn Reson Med 2001;46:713–22.PubMedCrossRef Dydak U, Weiger M, Pruessmann KP, Meier D, Boesiger P. Sensitivity-encoded spectroscopic imaging. Magn Reson Med 2001;46:713–22.PubMedCrossRef
25.
go back to reference Schmidt GP, Haug AR, Schoenberg SO, Reiser MF. Whole-body MRI and PET-CT in the management of cancer patients. Europ Radiol 2006;16:1216–25.CrossRef Schmidt GP, Haug AR, Schoenberg SO, Reiser MF. Whole-body MRI and PET-CT in the management of cancer patients. Europ Radiol 2006;16:1216–25.CrossRef
26.
go back to reference Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: John Wiley & Sons; ; 1999. Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: John Wiley & Sons; ; 1999.
27.
go back to reference Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J, Eisenhuber E. Artifacts in body MR imaging: their appearance and how to eliminate them. Europ Radiol 2007;17:1242–55.CrossRef Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J, Eisenhuber E. Artifacts in body MR imaging: their appearance and how to eliminate them. Europ Radiol 2007;17:1242–55.CrossRef
28.
go back to reference Bernstein MA, Huston J 3rd, Ward HA. Imaging artifacts at 3.0T. J Magn Reson Imaging 2006;24:735–46.PubMedCrossRef Bernstein MA, Huston J 3rd, Ward HA. Imaging artifacts at 3.0T. J Magn Reson Imaging 2006;24:735–46.PubMedCrossRef
29.
go back to reference Wang D, Strugnell W, Cowin G, Doddrell DM, Slaughter R. Geometric distortion in clinical MRI systems Part I: Evaluation using a 3D phantom. Magnetic resonance imaging 2004;22:1211–21.PubMedCrossRef Wang D, Strugnell W, Cowin G, Doddrell DM, Slaughter R. Geometric distortion in clinical MRI systems Part I: Evaluation using a 3D phantom. Magnetic resonance imaging 2004;22:1211–21.PubMedCrossRef
30.
go back to reference Gerstl F, Windischberger C, Mitterhauser M, Wadsak W, Holik A, Kletter K, et al. Multimodal imaging of human early visual cortex by combining functional and molecular measurements with fMRI and PET. NeuroImage 2008;41:204–11.PubMedCrossRef Gerstl F, Windischberger C, Mitterhauser M, Wadsak W, Holik A, Kletter K, et al. Multimodal imaging of human early visual cortex by combining functional and molecular measurements with fMRI and PET. NeuroImage 2008;41:204–11.PubMedCrossRef
31.
go back to reference Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multi-modality imaging? Seminars in nuclear medicine 2008;38:199–208.PubMedCrossRef Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multi-modality imaging? Seminars in nuclear medicine 2008;38:199–208.PubMedCrossRef
32.
go back to reference Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nature medicine 2008;14:459–65.PubMedCrossRef Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nature medicine 2008;14:459–65.PubMedCrossRef
Metadata
Title
Magnetic resonance imaging methodology
Authors
Ewald Moser
Andreas Stadlbauer
Christian Windischberger
Harald H. Quick
Mark E. Ladd
Publication date
01-03-2009
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2009
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0938-3

Other articles of this Special Issue 1/2009

European Journal of Nuclear Medicine and Molecular Imaging 1/2009 Go to the issue