Skip to main content
Top
Published in: Molecular and Cellular Pediatrics 1/2018

Open Access 01-12-2018 | Review

The potential of antisense oligonucleotide therapies for inherited childhood lung diseases

Authors: Kelly M. Martinovich, Nicole C. Shaw, Anthony Kicic, André Schultz, Sue Fletcher, Steve D. Wilton, Stephen M. Stick

Published in: Molecular and Cellular Pediatrics | Issue 1/2018

Login to get access

Abstract

Antisense oligonucleotides are an emerging therapeutic option to treat diseases with known genetic origin. In the age of personalised medicines, antisense oligonucleotides can sometimes be designed to target and bypass or overcome a patient’s genetic mutation, in particular those lesions that compromise normal pre-mRNA processing. Antisense oligonucleotides can alter gene expression through a variety of mechanisms as determined by the chemistry and antisense oligomer design. Through targeting the pre-mRNA, antisense oligonucleotides can alter splicing and induce a specific spliceoform or disrupt the reading frame, target an RNA transcript for degradation through RNaseH activation, block ribosome initiation of protein translation or disrupt miRNA function. The recent accelerated approval of eteplirsen (renamed Exondys 51™) by the Food and Drug Administration, for the treatment of Duchenne muscular dystrophy, and nusinersen, for the treatment of spinal muscular atrophy, herald a new and exciting era in splice-switching antisense oligonucleotide applications to treat inherited diseases. This review considers the potential of antisense oligonucleotides to treat inherited lung diseases of childhood with a focus on cystic fibrosis and disorders of surfactant protein metabolism.
Literature
1.
go back to reference Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther. 25(5): p. 1069–1075 Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther. 25(5): p. 1069–1075
4.
5.
go back to reference Chan JH, Lim S, Wong WS (2006) Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33(5–6):533–540CrossRefPubMed Chan JH, Lim S, Wong WS (2006) Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33(5–6):533–540CrossRefPubMed
6.
go back to reference Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotech 35(3):238–248CrossRef Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotech 35(3):238–248CrossRef
7.
go back to reference Evers MM, Toonen LJ, van Roon-Mom WM (2015) Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 87:90–103CrossRefPubMed Evers MM, Toonen LJ, van Roon-Mom WM (2015) Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 87:90–103CrossRefPubMed
8.
go back to reference McGarry ME et al (2017) In vivo and in vitro ivacaftor response in cystic fibrosis patients with residual CFTR function: N-of-1 studies. Pediatr Pulmonol 52(4):472–479CrossRefPubMedPubMedCentral McGarry ME et al (2017) In vivo and in vitro ivacaftor response in cystic fibrosis patients with residual CFTR function: N-of-1 studies. Pediatr Pulmonol 52(4):472–479CrossRefPubMedPubMedCentral
10.
go back to reference Williamson SF et al (2017) A Bayesian adaptive design for clinical trials in rare diseases. Comput Statist Data Anal 113(Supplement C):136–153CrossRef Williamson SF et al (2017) A Bayesian adaptive design for clinical trials in rare diseases. Comput Statist Data Anal 113(Supplement C):136–153CrossRef
11.
go back to reference Schmidli H, Neuenschwander B, Friede T (2017) Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials. Comput Stat Data Anal 113(Supplement C):100–110CrossRef Schmidli H, Neuenschwander B, Friede T (2017) Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials. Comput Stat Data Anal 113(Supplement C):100–110CrossRef
12.
go back to reference Crooke ST (2013) RNA directed therapeutics: mechanisms and status. Drug Discov Today Therapeutic Strateg 10(3):e109–e117CrossRef Crooke ST (2013) RNA directed therapeutics: mechanisms and status. Drug Discov Today Therapeutic Strateg 10(3):e109–e117CrossRef
13.
go back to reference Crooke ST et al (2016) Integrated safety assessment of 2′-O-methoxyethyl chimeric antisense oligonucleotides in nonhuman primates and healthy human volunteers. Mol Ther 24(10):1771–1782CrossRefPubMedPubMedCentral Crooke ST et al (2016) Integrated safety assessment of 2′-O-methoxyethyl chimeric antisense oligonucleotides in nonhuman primates and healthy human volunteers. Mol Ther 24(10):1771–1782CrossRefPubMedPubMedCentral
14.
go back to reference Burdick AD et al (2014) Sequence motifs associated with hepatotoxicity of locked nucleic acid—modified antisense oligonucleotides. Nucleic Acids Res 42(8):4882–4891CrossRefPubMedPubMedCentral Burdick AD et al (2014) Sequence motifs associated with hepatotoxicity of locked nucleic acid—modified antisense oligonucleotides. Nucleic Acids Res 42(8):4882–4891CrossRefPubMedPubMedCentral
15.
go back to reference Shen X, Corey DR (2017) Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. [Epub ahead of print] Shen X, Corey DR (2017) Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. [Epub ahead of print]
16.
go back to reference Jarver P, O'Donovan L, Gait MJ (2014) A chemical view of oligonucleotides for exon skipping and related drug applications. Nucleic Acid Ther 24(1):37–47CrossRefPubMedPubMedCentral Jarver P, O'Donovan L, Gait MJ (2014) A chemical view of oligonucleotides for exon skipping and related drug applications. Nucleic Acid Ther 24(1):37–47CrossRefPubMedPubMedCentral
17.
go back to reference Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293CrossRefPubMed Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293CrossRefPubMed
18.
go back to reference Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1(5):347–355PubMed Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1(5):347–355PubMed
19.
go back to reference Agrawal S et al (1995) Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet 28(1):7–16CrossRefPubMed Agrawal S et al (1995) Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet 28(1):7–16CrossRefPubMed
20.
go back to reference Kole R, Vacek M, Williams T (2004) Modification of alternative splicing by antisense therapeutics. Oligonucleotides 14(1):65–74CrossRefPubMed Kole R, Vacek M, Williams T (2004) Modification of alternative splicing by antisense therapeutics. Oligonucleotides 14(1):65–74CrossRefPubMed
22.
go back to reference Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A 75(1):285–288CrossRefPubMedPubMedCentral Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A 75(1):285–288CrossRefPubMedPubMedCentral
24.
go back to reference Roehr B (1998) Fomivirsen approved for CMV retinitis. J Int Assoc Physicians AIDS Care 4(10):14–6 Roehr B (1998) Fomivirsen approved for CMV retinitis. J Int Assoc Physicians AIDS Care 4(10):14–6
26.
go back to reference Ng EWM et al (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132CrossRefPubMed Ng EWM et al (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132CrossRefPubMed
27.
go back to reference Wong E, Goldberg T (2014) Mipomersen (Kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. Pharm Ther 39(2):119–122 Wong E, Goldberg T (2014) Mipomersen (Kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. Pharm Ther 39(2):119–122
28.
go back to reference Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A 90(18):8673–8677CrossRefPubMedPubMedCentral Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A 90(18):8673–8677CrossRefPubMedPubMedCentral
29.
go back to reference Lacerra G et al (2000) Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci U S A 97(17):9591–9596CrossRefPubMedPubMedCentral Lacerra G et al (2000) Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci U S A 97(17):9591–9596CrossRefPubMedPubMedCentral
30.
go back to reference Kipshidze NN et al (2002) Intramural coronary delivery of advanced antisense oligonucleotides reduces neointimal formation in the porcine stent restenosis model. J Am Coll Cardiol 39(10):1686–1691CrossRefPubMed Kipshidze NN et al (2002) Intramural coronary delivery of advanced antisense oligonucleotides reduces neointimal formation in the porcine stent restenosis model. J Am Coll Cardiol 39(10):1686–1691CrossRefPubMed
32.
go back to reference Castanotto D, Stein CA (2014) Antisense oligonucleotides in cancer. Curr Opin Oncol 26(6):584–589CrossRefPubMed Castanotto D, Stein CA (2014) Antisense oligonucleotides in cancer. Curr Opin Oncol 26(6):584–589CrossRefPubMed
33.
go back to reference Riboldi G et al (2014) Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases. Mol Neurobiol 50(3):721–732CrossRefPubMed Riboldi G et al (2014) Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases. Mol Neurobiol 50(3):721–732CrossRefPubMed
34.
go back to reference Aronin N, DiFiglia M (2014) Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Mov Disord 29(11):1455–1461CrossRefPubMed Aronin N, DiFiglia M (2014) Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Mov Disord 29(11):1455–1461CrossRefPubMed
36.
go back to reference Kinane TB, et al (2017) Long-term pulmonary function in Duchenne muscular dystrophy: comparison of eteplirsen-treated patients to natural history. J Neuromuscul Dis. [Epub ahead of print] Kinane TB, et al (2017) Long-term pulmonary function in Duchenne muscular dystrophy: comparison of eteplirsen-treated patients to natural history. J Neuromuscul Dis. [Epub ahead of print]
37.
go back to reference Sarepta Therapeutics, I., (2017) Sarepta Therapeutics announces positive results in its study evaluating gene expression, dystrophin production, and dystrophin localization in patients with Duchenne muscular dystrophy (DMD) amenable to skipping exon 53 treated with golodirsen (SRP-4053), I. Estepan, Editor.: http://investorrelations.sarepta.com Sarepta Therapeutics, I., (2017) Sarepta Therapeutics announces positive results in its study evaluating gene expression, dystrophin production, and dystrophin localization in patients with Duchenne muscular dystrophy (DMD) amenable to skipping exon 53 treated with golodirsen (SRP-4053), I. Estepan, Editor.: http://​investorrelation​s.​sarepta.​com
38.
go back to reference Yokota T et al (2007) Potential of oligonucleotide-mediated exon-skipping therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther 7(6):831–842CrossRefPubMed Yokota T et al (2007) Potential of oligonucleotide-mediated exon-skipping therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther 7(6):831–842CrossRefPubMed
40.
go back to reference Miskew Nichols B et al (2016) Multi-exon skipping using cocktail antisense oligonucleotides in the canine X-linked muscular dystrophy. J Vis Exp 111:53776 Miskew Nichols B et al (2016) Multi-exon skipping using cocktail antisense oligonucleotides in the canine X-linked muscular dystrophy. J Vis Exp 111:53776
41.
go back to reference Wilton SD et al (2007) Antisense oligonucleotide-induced exon skipping across the human dystrophin gene transcript. Mol Ther 15(7):1288–1296CrossRefPubMed Wilton SD et al (2007) Antisense oligonucleotide-induced exon skipping across the human dystrophin gene transcript. Mol Ther 15(7):1288–1296CrossRefPubMed
42.
go back to reference Béroud C et al (2007) Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 28(2):196–202CrossRefPubMed Béroud C et al (2007) Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 28(2):196–202CrossRefPubMed
43.
go back to reference Lefebvre S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165CrossRefPubMed Lefebvre S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165CrossRefPubMed
44.
go back to reference Lorson CL et al (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci 96(11):6307–6311CrossRefPubMedPubMedCentral Lorson CL et al (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci 96(11):6307–6311CrossRefPubMedPubMedCentral
45.
go back to reference Singh NK et al (2006) Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26(4):1333–1346CrossRefPubMedPubMedCentral Singh NK et al (2006) Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26(4):1333–1346CrossRefPubMedPubMedCentral
46.
go back to reference Finkel RS et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388(10063):3017–3026CrossRefPubMed Finkel RS et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388(10063):3017–3026CrossRefPubMed
47.
go back to reference Paton DM (2017) Nusinersen: antisense oligonucleotide to increase SMN protein production in spinal muscular atrophy. Drugs Today (Barc) 53(6):327–337CrossRef Paton DM (2017) Nusinersen: antisense oligonucleotide to increase SMN protein production in spinal muscular atrophy. Drugs Today (Barc) 53(6):327–337CrossRef
49.
go back to reference Kreindler JL (2010) Cystic fibrosis: exploiting its genetic basis in the hunt for new therapies. Pharmacol Ther 125(2):219–229CrossRefPubMed Kreindler JL (2010) Cystic fibrosis: exploiting its genetic basis in the hunt for new therapies. Pharmacol Ther 125(2):219–229CrossRefPubMed
50.
go back to reference Rommens DJM (2011) CFTR Mutation Database. Hospital for Sick Children Rommens DJM (2011) CFTR Mutation Database. Hospital for Sick Children
51.
go back to reference Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73(7):1251–1254CrossRefPubMed Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73(7):1251–1254CrossRefPubMed
53.
54.
55.
go back to reference Beumer W et al (2015) WS01.2 QR-010, an RNA therapy, restores CFTR function using in vitro and in vivo models of ΔF508 CFTR. J Cyst Fibros 14:S1CrossRef Beumer W et al (2015) WS01.2 QR-010, an RNA therapy, restores CFTR function using in vitro and in vivo models of ΔF508 CFTR. J Cyst Fibros 14:S1CrossRef
56.
go back to reference Zamecnik PC et al (2004) Reversal of cystic fibrosis phenotype in a cultured Delta508 cystic fibrosis transmembrane conductance regulator cell line by oligonucleotide insertion. Proc Natl Acad Sci U S A 101(21):8150–8155CrossRefPubMedPubMedCentral Zamecnik PC et al (2004) Reversal of cystic fibrosis phenotype in a cultured Delta508 cystic fibrosis transmembrane conductance regulator cell line by oligonucleotide insertion. Proc Natl Acad Sci U S A 101(21):8150–8155CrossRefPubMedPubMedCentral
57.
go back to reference Massie RJ et al (2001) Intron-8 polythymidine sequence in Australasian individuals with CF mutations R117H and R117C. Eur Respir J 17(6):1195–1200CrossRefPubMed Massie RJ et al (2001) Intron-8 polythymidine sequence in Australasian individuals with CF mutations R117H and R117C. Eur Respir J 17(6):1195–1200CrossRefPubMed
58.
go back to reference Radpour R et al (2007) Molecular study of (TG)m(T)n polymorphisms in Iranian males with congenital bilateral absence of the vas deferens. J Androl 28(4):541–547CrossRefPubMed Radpour R et al (2007) Molecular study of (TG)m(T)n polymorphisms in Iranian males with congenital bilateral absence of the vas deferens. J Androl 28(4):541–547CrossRefPubMed
59.
go back to reference Chu CS et al (1991) Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrane conductance regulator gene mRNA transcripts in normal bronchial epithelium. EMBO J 10(6):1355–1363PubMedPubMedCentral Chu CS et al (1991) Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrane conductance regulator gene mRNA transcripts in normal bronchial epithelium. EMBO J 10(6):1355–1363PubMedPubMedCentral
60.
go back to reference Igreja S et al (2016) Correction of a cystic fibrosis splicing mutation by antisense oligonucleotides. Hum Mutat 37(2):209–215CrossRefPubMed Igreja S et al (2016) Correction of a cystic fibrosis splicing mutation by antisense oligonucleotides. Hum Mutat 37(2):209–215CrossRefPubMed
61.
go back to reference Quint A et al (2005) Mutation spectrum in Jewish cystic fibrosis patients in Israel: implication to carrier screening. Am J Med Genet A 136(3):246–248CrossRefPubMed Quint A et al (2005) Mutation spectrum in Jewish cystic fibrosis patients in Israel: implication to carrier screening. Am J Med Genet A 136(3):246–248CrossRefPubMed
62.
go back to reference Friedman KJ et al (1999) Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J Biol Chem 274(51):36193–36199CrossRefPubMed Friedman KJ et al (1999) Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J Biol Chem 274(51):36193–36199CrossRefPubMed
63.
go back to reference Highsmith WE et al (1994) A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med 331(15):974–980CrossRefPubMed Highsmith WE et al (1994) A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med 331(15):974–980CrossRefPubMed
64.
go back to reference Griese M (1999) Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J 13(6):1455–1476CrossRefPubMed Griese M (1999) Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J 13(6):1455–1476CrossRefPubMed
67.
go back to reference Gupta A, Zheng SL (2017) Genetic disorders of surfactant protein dysfunction: when to consider and how to investigate. Arch Dis Child 102(1):84–90CrossRefPubMed Gupta A, Zheng SL (2017) Genetic disorders of surfactant protein dysfunction: when to consider and how to investigate. Arch Dis Child 102(1):84–90CrossRefPubMed
69.
go back to reference Faro A, Hamvas A (2008) Lung transplantation for inherited disorders of surfactant metabolism. NeoReviews 9(10):e468–e476CrossRef Faro A, Hamvas A (2008) Lung transplantation for inherited disorders of surfactant metabolism. NeoReviews 9(10):e468–e476CrossRef
70.
go back to reference Hamvas A (2010) Evaluation and management of inherited disorders of surfactant metabolism. Chin Med J 123(20):2943–2947PubMed Hamvas A (2010) Evaluation and management of inherited disorders of surfactant metabolism. Chin Med J 123(20):2943–2947PubMed
71.
go back to reference Williamson M, Wallis C (2014) Ten-year follow up of hydroxychloroquine treatment for ABCA3 deficiency. Pediatr Pulmonol 49(3):299–301CrossRefPubMed Williamson M, Wallis C (2014) Ten-year follow up of hydroxychloroquine treatment for ABCA3 deficiency. Pediatr Pulmonol 49(3):299–301CrossRefPubMed
72.
73.
go back to reference de Benedictis FM, Bush A (2012) Corticosteroids in respiratory diseases in children. Am J Respir Crit Care Med 185(1):12–23CrossRefPubMed de Benedictis FM, Bush A (2012) Corticosteroids in respiratory diseases in children. Am J Respir Crit Care Med 185(1):12–23CrossRefPubMed
74.
76.
go back to reference Nogee LM (2002) Abnormal expression of surfactant protein C and lung disease. Am J Respir Cell Mol Biol 26(6):641–644CrossRefPubMed Nogee LM (2002) Abnormal expression of surfactant protein C and lung disease. Am J Respir Cell Mol Biol 26(6):641–644CrossRefPubMed
77.
go back to reference Wang W-J et al (2002) Biosynthesis of surfactant protein C (SP-C): sorting of SP-C proprotein involves homomeric association via a signal anchor domain. J Biol Chem 277(22):19929–19937CrossRefPubMed Wang W-J et al (2002) Biosynthesis of surfactant protein C (SP-C): sorting of SP-C proprotein involves homomeric association via a signal anchor domain. J Biol Chem 277(22):19929–19937CrossRefPubMed
78.
go back to reference Mulugeta S et al (2005) A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol 32(6):521–530CrossRefPubMedPubMedCentral Mulugeta S et al (2005) A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol 32(6):521–530CrossRefPubMedPubMedCentral
79.
go back to reference Geary RS et al (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51CrossRefPubMed Geary RS et al (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51CrossRefPubMed
80.
go back to reference Moschos SA et al (2011) Uptake, efficacy, and systemic distribution of naked, inhaled short interfering RNA (siRNA) and locked nucleic acid (LNA) antisense. Mol Ther 19(12):2163–2168CrossRefPubMedPubMedCentral Moschos SA et al (2011) Uptake, efficacy, and systemic distribution of naked, inhaled short interfering RNA (siRNA) and locked nucleic acid (LNA) antisense. Mol Ther 19(12):2163–2168CrossRefPubMedPubMedCentral
81.
go back to reference Moschos SA et al (2008) Targeting the lung using siRNA and antisense based oligonucleotides. Curr Pharm Des 14(34):3620–3627CrossRefPubMed Moschos SA et al (2008) Targeting the lung using siRNA and antisense based oligonucleotides. Curr Pharm Des 14(34):3620–3627CrossRefPubMed
82.
go back to reference Moschos SA, Usher L, Lindsay MA (2017) Clinical potential of oligonucleotide-based therapeutics in the respiratory system. Pharmacol Ther 169:83–103CrossRefPubMed Moschos SA, Usher L, Lindsay MA (2017) Clinical potential of oligonucleotide-based therapeutics in the respiratory system. Pharmacol Ther 169:83–103CrossRefPubMed
83.
go back to reference Fey RA et al (2014) Local and systemic tolerability of a 2′O-methoxyethyl antisense oligonucleotide targeting interleukin-4 receptor-alpha delivery by inhalation in mouse and monkey. Inhal Toxicol 26(8):452–463CrossRefPubMed Fey RA et al (2014) Local and systemic tolerability of a 2′O-methoxyethyl antisense oligonucleotide targeting interleukin-4 receptor-alpha delivery by inhalation in mouse and monkey. Inhal Toxicol 26(8):452–463CrossRefPubMed
84.
go back to reference Karras JG et al (2007) Anti-inflammatory activity of inhaled IL-4 receptor-alpha antisense oligonucleotide in mice. Am J Respir Cell Mol Biol 36(3):276–285CrossRefPubMed Karras JG et al (2007) Anti-inflammatory activity of inhaled IL-4 receptor-alpha antisense oligonucleotide in mice. Am J Respir Cell Mol Biol 36(3):276–285CrossRefPubMed
85.
go back to reference Lach-Trifilieff E et al (2001) In vitro and in vivo inhibition of interleukin (IL)-5-mediated eosinopoiesis by murine IL-5Ralpha antisense oligonucleotide. Am J Respir Cell Mol Biol 24(2):116–122CrossRefPubMed Lach-Trifilieff E et al (2001) In vitro and in vivo inhibition of interleukin (IL)-5-mediated eosinopoiesis by murine IL-5Ralpha antisense oligonucleotide. Am J Respir Cell Mol Biol 24(2):116–122CrossRefPubMed
86.
go back to reference Duan W et al (2005) Inhaled p38alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med 171(6):571–578CrossRefPubMed Duan W et al (2005) Inhaled p38alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med 171(6):571–578CrossRefPubMed
87.
go back to reference Crosby JR et al (2007) Inhaled CD86 antisense oligonucleotide suppresses pulmonary inflammation and airway hyper-responsiveness in allergic mice. J Pharmacol Exp Ther 321(3):938–946CrossRefPubMed Crosby JR et al (2007) Inhaled CD86 antisense oligonucleotide suppresses pulmonary inflammation and airway hyper-responsiveness in allergic mice. J Pharmacol Exp Ther 321(3):938–946CrossRefPubMed
88.
89.
go back to reference Mologni L, Nielsen PE, Gambacorti-Passerini C (1999) In vitro transcriptional and translational block of the bcl-2 gene operated by peptide nucleic acid. Biochem Biophys Res Commun 264(2):537–543CrossRefPubMed Mologni L, Nielsen PE, Gambacorti-Passerini C (1999) In vitro transcriptional and translational block of the bcl-2 gene operated by peptide nucleic acid. Biochem Biophys Res Commun 264(2):537–543CrossRefPubMed
90.
go back to reference Zhao J, Feng SS (2015) Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine (Lond) 10(14):2199–2228CrossRef Zhao J, Feng SS (2015) Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine (Lond) 10(14):2199–2228CrossRef
91.
go back to reference Yang Q et al (2014) Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol Pharm 11(4):1250–1258CrossRefPubMed Yang Q et al (2014) Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol Pharm 11(4):1250–1258CrossRefPubMed
93.
go back to reference Ugarte-Uribe B, et al (2016) Lipid-modified oligonucleotide conjugates: insights into gene silencing, interaction with model membranes and cellular uptake mechanisms. Bioorg Med Chem 25(1):175–186 Ugarte-Uribe B, et al (2016) Lipid-modified oligonucleotide conjugates: insights into gene silencing, interaction with model membranes and cellular uptake mechanisms. Bioorg Med Chem 25(1):175–186
94.
go back to reference Alam MR et al (2008) Intracellular delivery of an anionic antisense oligonucleotide via receptor-mediated endocytosis. Nucleic Acids Res 36(8):2764–2776CrossRefPubMedPubMedCentral Alam MR et al (2008) Intracellular delivery of an anionic antisense oligonucleotide via receptor-mediated endocytosis. Nucleic Acids Res 36(8):2764–2776CrossRefPubMedPubMedCentral
96.
go back to reference Lu QL et al (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9(8):1009–1014CrossRefPubMed Lu QL et al (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9(8):1009–1014CrossRefPubMed
98.
go back to reference Crooke ST et al (2017) Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 35(3):230–237CrossRefPubMed Crooke ST et al (2017) Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 35(3):230–237CrossRefPubMed
Metadata
Title
The potential of antisense oligonucleotide therapies for inherited childhood lung diseases
Authors
Kelly M. Martinovich
Nicole C. Shaw
Anthony Kicic
André Schultz
Sue Fletcher
Steve D. Wilton
Stephen M. Stick
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Molecular and Cellular Pediatrics / Issue 1/2018
Electronic ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-018-0081-6

Other articles of this Issue 1/2018

Molecular and Cellular Pediatrics 1/2018 Go to the issue