We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Current progress on aptamer-targeted oligonucleotide therapeutics

    Justin P Dassie

    Department of Internal Medicine, University of Iowa, 375 Newton Rd, 5202 MERF, Iowa City, IA 52242, USA

    &
    Paloma H Giangrande

    * Author for correspondence

    Department of Radiation Oncology, University of Iowa, 375 Newton Rd, 5202 MERF, Iowa City, IA 52242, USA.

    Published Online:https://doi.org/10.4155/tde.13.118

    Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411(6836),494–498 (2001).
    • Kole R, Krainer AR, Altman S. RNA therapeutics. beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug. Discov.11(2),125–140 (2012).
    • Juliano RL, Ming X, Nakagawa O. Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconjug. Chem.23(2),147–157 (2012).
    • Juliano R, Alam MR, Dixit V, Kang H. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res.36(12),4158–4171 (2008).
    • Coelho T, Adams D, Silva A et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med.369(9),819–829 (2013).
    • Janssen HL, Reesink HW, Lawitz EJ et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med.368(18),1685–1694 (2013).
    • Barros SA, Gollob JA. Safety profile of RNAi nanomedicines. Adv. Drug Deliv. Rev.64(15),1730–1737 (2012).
    • Sehgal A, Vaishnaw A, Fitzgerald K. Liver as a target for oligonucleotide therapeutics. J. Hepatol. doi:10.1016/j.jhep.2013.05.045 (2013) (Epub ahead of print).
    • Gavrilov K, Saltzman WM. Therapeutic siRNA. principles, challenges, and strategies. Yale J. Biol. Med.85(2),187–200 (2012).
    • 10  Ramsey JM, Hibbitts A, Barlow J, Kelly C, Sivadas N, Cryan SA. ‘Smart’ non-viral delivery systems for targeted delivery of RNAi to the lungs. Ther. Deliv.4(1),59–76 (2013).
    • 11  Zhou J, Rossi JJ. Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides21(1),1–10 (2011).
    • 12  Zhou J, Bobbin ML, Burnett JC, Rossi JJ. Current progress of RNA aptamer-based therapeutics. Front. Genet.3,234 (2012).
    • 13  Zhou J, Rossi JJ. Aptamer-targeted cell-specific RNA interference. Silence1(1),4 (2010).
    • 14  Thiel KW, Giangrande PH. Intracellular delivery of RNA-based therapeutics using aptamers. Ther. Deliv.1(6),849–861 (2010).
    • 15  Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature344(6265),467–468 (1990).
    • 16  Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment. RNA ligands to bacteriophage T4 DNA polymerase. Science249(4968),505–510 (1990).▪▪ First study to coin the term systematic evolution of ligands by exponential.
    • 17  Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature346(6287),818–822 (1990).▪▪ This study and the one by Tuerk and Gold (1990) provided the first demonstration of an in vitro selection methodology (systematic evolution of ligands by exponential) for identifying RNA aptamers with affinity and specificity for a given target.
    • 18  Stoltenburg R, Reinemann C, Strehlitz B. SELEX – a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng.24(4),381–403 (2007).
    • 19  Mosing RK, Bowser MT. Microfluidic selection and applications of aptamers. J. Sep. Sci.30(10),1420–1426 (2007).
    • 20  Thiel KW, Hernandez LI, Dassie JP et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res.40(13),6319–6337 (2012).
    • 21  Thiel WH, Bair T, Peek AS et al. Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection. PLoS ONE7(9),e43836 (2012).
    • 22  Cerchia L, Duconge F, Pestourie C et al. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol.3(4),e123 (2005).
    • 23  Blank M, Weinschenk T, Priemer M, Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem.276(19),16464–16468 (2001).
    • 24  Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L. A tenascin-C aptamer identified by tumor cell SELEX. Systematic evolution of ligands by exponential enrichment. Proc. Natl Acad. Sci. USA100(26),15416–15421 (2003).
    • 25  Shamah SM, Healy JM, Cload ST. Complex Target SELEX. Acc. Chem Res.41(1),130–138 (2008).
    • 26  Sefah K, Tang ZW, Shangguan DH et al. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia23(2),235–244 (2009).
    • 27  Shangguan D, Meng L, Cao ZC et al. Identification of liver cancer-specific aptamers using whole live cells. Anal. Chem.80(3),721–728 (2008).
    • 28  Guo K-T, Paul A, Schichor C, Ziemer G, Wendel HP. CELL-SELEX. Novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci.9(4),668–678 (2008).
    • 29  Morris KN, Jensen KB, Julin CM, Weil M, Gold L. High affinity ligands from in vitro selection: complex targets. Proc. Natl Acad. Sci. USA95(6),2902–2907 (1998).
    • 30  Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat. Rev. Drug. Discov.9(7),537–550 (2010).
    • 31  Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur. J. Pharm. Sci.48(1–2),259–271 (2013).
    • 32  Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell63(3),601–608 (1990).
    • 33  Lee JH, Yigit MV, Mazumdar D, Lu Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug Deliv. Rev.62(6),592–605 (2010).
    • 34  Dassie JP, Liu XY, Thomas GS et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotechnol.27(9),839–849 (2009).▪▪ Optimization of the first-generation prostate-specific membrane antigen aptamer-siRNA chimera achieved systemic delivery in an in vivo model of prostate cancer.
    • 35  Pastor F, Kolonias D, Giangrande PH, Gilboa E. Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature465(7295),227–230 (2010).▪▪ This groundbreaking tumor immunotherapy study used aptamers to deliver siRNAs against components of the nonsense-mediated mRNA decay pathway, which generated novel antigens on the surface of PSMA+ and tumor cells and resulted in an immune response to the tumor.
    • 36  Wheeler LA, Trifonova R, Vrbanac V et al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J. Clin. Invest.121(6),2401–2412 (2011).
    • 37  Wheeler LA, Vrbanac V, Trifonova R et al. Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol. Ther.21(7),1378–1389 (2013).
    • 38  Zhou J, Neff CP, Swiderski P et al. Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol. Ther.21(1),192–200 (2013).
    • 39  Neff CP, Zhou J, Remling L et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci. Transl. Med.3(66),66ra6 (2011).
    • 40  Ni X, Zhang Y, Ribas J et al. Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J. Clin. Invest.121(6),2383–2390 (2011).
    • 41  Burnett JC, Rossi JJ. RNA-based therapeutics. current progress and future prospects. Chem. Biol.19(1),60–71 (2012).
    • 42  Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides18(4),305–319 (2008).
    • 43  Rettig GR, Behlke MA. Progress toward in vivo use of siRNAs-II. Mol. Ther.20(3),483–512 (2012).
    • 44  Ge Q, Dallas A, Ilves H, Shorenstein J, Behlke MA, Johnston BH. Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs. RNA16(1),118–130 (2010).
    • 45  Kolkenbeck K, Zundel G. The significance of the 2´ OH group and the influence of cations on the secondary structure of the RNA backbone. Biophys. Struct. Mech.1(3),203–219 (1975).
    • 46  Campbell MA, Wengel J. Locked vs. unlocked nucleic acids (LNA vs. UNA). contrasting structures work towards common therapeutic goals. Chem. Soc. Rev.40(12),5680–5689 (2011).
    • 47  Henry S, Stecker K, Brooks D, Monteith D, Conklin B, Bennett CF. Chemically modified oligonucleotides exhibit decreased immune stimulation in mice. J. Pharmacol. Exp. Ther.292(2),468–479 (2000).
    • 48  Peacock H, Fucini RV, Jayalath P et al. Nucleobase and ribose modifications control immunostimulation by a microRNA-122-mimetic RNA. J. Am. Chem. Soc.133(24),9200–9203 (2011).
    • 49  Keefe AD, Cload ST. SELEX with modified nucleotides. Curr. Opin. Chem. Biol.12(4),448–456 (2008).
    • 50  Reese CB. Oligo- and poly-nucleotides. 50 years of chemical synthesis. Org. Biomol. Chem.3(21),3851–3868 (2005).
    • 51  Rockey WM, Hernandez FJ, Huang SY et al. Rational truncation of an RNA aptamer to prostate-specific membrane antigen using computational structural modeling. Nucleic Acid Ther.21(5),299–314 (2011).
    • 52  Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides19(3),209–222 (2009).
    • 53  Boomer RM, Lewis SD, Healy JM, Kurz M, Wilson C, Mccauley TG. Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and inflamed tissues. Oligonucleotides15(3),183–195 (2005).
    • 54  Healy JM, Lewis SD, Kurz M et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res.21(12),2234–2246 (2004).
    • 55  Bozza M, Sheardy RD, Dilone E, Scypinski S, Galazka M. Characterization of the secondary structure and stability of an RNA aptamer that binds vascular endothelial growth factor. Biochemistry45(24),7639–7643 (2006).
    • 56  Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J. Control. Release151(3),220–228 (2011).
    • 57  Zhou J, Li H, Li S, Zaia J, Rossi JJ. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol. Ther.16(8),1481–1489 (2008).▪▪ An inhibitory aptamer was combined with a silencing siRNA to deliver a two-hit punch to HIV-infected T cells.
    • 58  Mcnamara JO, 2nd, Andrechek ER, Wang Y et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol.24(8),1005–1015 (2006).▪▪ Established aptamer-siRNA chimeras as a platform technology to specifically deliver siRNAs against prosurvival genes to prostate specific membrane antigen+ human prostate cancer tumors.
    • 59  Zhou J, Tiemann K, Chomchan P et al. Dual functional BAFF receptor aptamers inhibit ligand-induced proliferation and deliver siRNAs to NHL cells. Nucleic Acids Res.41(7),4266–4283 (2013).
    • 60  Hussain AF, Tur MK, Barth S. An aptamer-siRNA chimera silences the eukaryotic elongation factor 2 gene and induces apoptosis in cancers expressing αvβ3 integrin. Nucleic Acid Ther.23(3),203–212 (2013).
    • 61  Dai F, Zhang Y, Zhu X, Shan N, Chen Y. Anticancer role of MUC1 aptamer-miR-29b chimera in epithelial ovarian carcinoma cells through regulation of PTEN methylation. Target. Oncol.7(4),217–225 (2012).
    • 62  Thiel KW, Hernandez LI, Dassie JP et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acid Res.40(13),6319–6337 (2012).
    • 63  Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res.62(14),4029–4033 (2002).▪ Prostate-specific membrane antigen A9 and A10 aptamers characterized in this study were the initial aptamers used, in subsequent studies, to deliver siRNAs to target cells.
    • 64  Wullner U, Neef I, Eller A, Kleines M, Tur MK, Barth S. Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr. Cancer Drug Targets8(7),554–565 (2008).
    • 65  Mi J, Zhang X, Giangrande PH et al. Targeted inhibition of alphavbeta3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem. Biophys. Res. Commun.338(2),956–963 (2005).
    • 66  Chattopadhyay N, Chatterjee A. Studies on the expression of alpha(v)beta3 integrin receptors in non-malignant and malignant human cervical tumor tissues. J. Exp. Clin. Cancer Res.20(2),269–275 (2001).
    • 67  Takano S, Tsuboi K, Tomono Y, Mitsui Y, Nose T. Tissue factor, osteopontin, alphavbeta3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression. Br. J. Cancer82(12),1967–1973 (2000).
    • 68  Goel HL, Li J, Kogan S, Languino LR. Integrins in prostate cancer progression. Endocr. Relat. Cancer15(3),657–664 (2008).
    • 69  Novak AJ, Grote DM, Stenson M et al. Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma. Correlation with disease activity and patient outcome. Blood104(8),2247–2253 (2004).
    • 70  He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet.5(7),522–531 (2004).
    • 71  Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer. rationale, strategies and challenges. Nat. Rev. Drug. Discov.9(10),775–789 (2010).
    • 72  Cerchia L, Esposito CL, Camorani S et al. Targeting Axl with an high-affinity inhibitory aptamer. Mol. Ther.20(12),2291–2303 (2012).
    • 73  Karam R, Wengrod J, Gardner LB, Wilkinson MF. Regulation of nonsense-mediated mRNA decay. implications for physiology and disease. Biochim. Biophys. Acta1829(6–7),624–633 (2013).
    • 74  Nemunaitis J. Vaccines in cancer. GVAX, a GM-CSF gene vaccine. Expert Rev. Vaccines4(3),259–274 (2005).
    • 75  Wang CW, Chung WH, Cheng YF et al. A new nucleic acid-based agent inhibits cytotoxic T lymphocyte-mediated immune disorders. J. Allergy Clin. Immunol.132(3),713–722 (2013).
    • 76  Khati M, Schuman M, Ibrahim J, Sattentau Q, Gordon S, James W. Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2´F-RNA aptamers. J. Virol.77(23),12692–12698 (2003).
    • 77  Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol.23(2),222–226 (2005).
    • 78  Zhou J, Swiderski P, Li H et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res.37(9),3094–3109 (2009).▪ New anti-gp120 inhibitory aptamers were identified and a unique ‘sticky bridge’ strategy was introduced to non-covalently conjugate siRNAs to the gp120 aptamer.
    • 79  Davis KA, Lin Y, Abrams B, Jayasena SD. Staining of cell surface human CD4 with 2´-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acid Res.26(17),3915–3924 (1998).
    • 80  Kortylewski M, Swiderski P, Herrmann A et al.In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat. Biotechnol.27(10),925–932 (2009).
    • 81  Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc. Natl Acad. Sci. USA93(7),2879–2883 (1996).
    • 82  Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374(6522),546–549 (1995).
    • 83  Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene27(2),161–167 (2008).
    • 84  Barchet W, Wimmenauer V, Schlee M, Hartmann G. Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr Opin. Immunol.20(4),389–395 (2008).
    • 85  Verthelyi D, Wang VW, Lifson JD, Klinman DM. CpG oligodeoxynucleotides improve the response to hepatitis B immunization in healthy and SIV-infected rhesus macaques. AIDS18(7),1003–1008 (2004).
    • 86  Girvan AC, Teng Y, Casson LK et al. AGRO100 inhibits activation of nuclear factor-κB (NF-κB) by forming a complex with NF-κB essential modulator (NEMO) and nucleolin. Mol. Cancer Ther.5(7),1790–1799 (2006).
    • 87  Ireson CR, Kelland LR. Discovery and development of anticancer aptamers. Mol. Cancer Ther.5(12),2957–2962 (2006).
    • 88  Kotula JW, Pratico ED, Ming X, Nakagawa O, Juliano RL, Sullenger BA. Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. Nucleic Acid Ther.22(3),187–195 (2012).
    • 89  Hovanessian AG, Soundaramourty C, El Khoury D, Nondier I, Svab J, Krust B. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS ONE5(12),e15787 (2010).
    • 90  Kang SH, Cho MJ, Kole R. Up-regulation of luciferase gene expression with antisense oligonucleotides. implications and applications in functional assay development. Biochemistry37(18),6235–6239 (1998).
    • 91  Kole R, Vacek M, Williams T. Modification of alternative splicing by antisense therapeutics. Oligonucleotides14(1),65–74 (2004).
    • 92  Kole R, Williams T, Cohen L. RNA modulation, repair and remodeling by splice switching oligonucleotides. Acta Biochim. Pol.51(2),373–378 (2004).
    • 93  Ferreira CS, Matthews CS, Missailidis S. DNA aptamers that bind to MUC1 tumour marker. design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol.27(6),289–301 (2006).
    • 94  Constantinou PE, Danysh BP, Dharmaraj N, Carson DD. Transmembrane mucins as novel therapeutic targets. Expert Rev. Endocrinol. Metab.6(6),835–848 (2011).
    • 95  Zhu Q, Shibata T, Kabashima T, Kai M. Inhibition of HIV-1 protease expression in T cells owing to DNA aptamer-mediated specific delivery of siRNA. Eur. J. Med. Chem.56,396–399 (2012).
    • 96  Mockenhaupt M. The current understanding of Stevens-Johnson syndrome and toxic epidermal necrolysis. Expert Rev. Clin Immunol.7(6),803–813; quiz 814–815 (2011).
    • 97  Shlomchik WD. Graft-versus-host disease. Nat. Rev. Immunol.7(5),340–352 (2007).
    • 98  Chung WH, Hung SI, Yang JY et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat. Med.14(12),1343–1350 (2008).
    • 99  Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr. Med. Chem.18(27),4206–4214 (2011).
    • 100  Shi B, Abrams M. Technologies for investigating the physiological barriers to efficient lipid nanoparticle-siRNA delivery. J. Histochem. Cytochem.61(6),407–420 (2013).
    • 101  Musacchio T, Torchilin VP. siRNA delivery: from basics to therapeutic applications. Front. Biosci.18,58–79 (2013).
    • 102  Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials33(29),7138–7150 (2012).
    • 103  Ye X, Hemida M, Zhang HM, Hanson P, Ye Q, Yang D. Current advances in Phi29 pRNA biology and its application in drug delivery. Wiley Interdiscip. Rev. RNA3(4),469–481 (2012).
    • 104  Nimesh S. Recent patents in siRNA delivery employing nanoparticles as delivery vectors. Recent Pat. DNA Gene Seq.6(2),91–97 (2012).
    • 105  Higuchi Y, Kawakami S, Hashida M. Strategies for in vivo delivery of siRNAs: recent progress. BioDrugs24(3),195–205 (2010).
    • 106  Leucuta SE. Systemic and biophase bioavailability and pharmacokinetics of nanoparticulate drug delivery systems. Curr. Drug Deliv.10(2),208–240 (2013).
    • 107  Marcus ME, Leonard JN. FedExosomes: Engineering therapeutic biological nanoparticles that truly deliver. Pharmaceuticals (Basel)6(5),659–680 (2013).
    • 108  Kim E, Jung Y, Choi H et al. Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and DOXorubicin using an aptamer-conjugated polyplex. Biomaterials31(16),4592–4599 (2010).
    • 109  Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res.64(21),7668–7672 (2004).
    • 110  Zhao N, Bagaria HG, Wong MS, Zu Y. A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J. Nanobiotechnology9,2 (2011).
    • 111  Wu X, Ding B, Gao J et al. Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy. Int. J. Nanomedicine6,1747–1756 (2011).
    • 112  Wilner SE, Wengerter B, Maier K et al. An RNA alternative to human transferrin. a new tool for targeting human cells. Mol. Ther. Nucleic Acids1,e21 (2012).
    • 113  Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8(2),129–138 (2009).
    • 114  Bagalkot V, Gao X. siRNA-aptamer chimeras on nanoparticles: preserving targeting functionality for effective gene silencing. ACS Nano5(10),8131–8139 (2011).
    • 115  Kim JK, Choi KJ, Lee M, Jo MH, Kim S. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials33(1),207–217 (2012).
    • 116  Guo S, Tschammer N, Mohammed S, Guo P. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum. Gene. Ther.16(9),1097–1109 (2005).
    • 117  Kraus E, James W, Barclay AN. Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J. Immunol.160(11),5209–5212 (1998).
    • 118  Khaled A, Guo S, Li F, Guo P. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett.5(9),1797–1808 (2005).
    • 119  Zhou J, Shu Y, Guo P, Smith DD, Rossi JJ. Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods54(2),284–294 (2011).
    • 120  Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv. Drug Deliv. Rev.59(2–3),134–140 (2007).
    • 121  Huang YZ, Hernandez FJ, Gu B et al. RNA aptamer-based functional ligands of the neurotrophin receptor, TrkB. Mol Pharmacol82(4),623–635 (2012).
    • 122  Zhang S, Zhao Y, Zhi D. Non-viral vectors for the mediation of RNAi. Bioorg. Chem.40(1),10–18 (2012).
    • 123  Meade BR, Dowdy SF. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv. Drug Deliv. Rev.60(4–5),530–536 (2008).
    • 124  Tamura A, Nagasaki Y. Smart siRNA delivery systems based on polymeric nanoassemblies and nanoparticles. Nanomedicine (Lond.)5(7),1089–1102 (2010).
    • 125  Gilleron J, Querbes W, Zeigerer A et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol.31(7),638–646 (2013).
    • 126  Sahay G, Querbes W, Alabi C et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol.31(7),653–658 (2013).
    • 127  Nechaev S, Gao C, Moreira D et al. Intracellular processing of immunostimulatory CpG-siRNA. Toll-like receptor 9 facilitates siRNA dicing and endosomal escape. J. Control. Release170(3),307–315 (2013).
    • 128  Shu D, Shu Y, Haque F, Abdelmawla S, Guo P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol.6(10),658–667 (2011).
    • 201  Ellington, A. The Ellington Lab Aptamer Database. http://aptamer.icmb.utexas.edu