Skip to main content
Top
Published in: Molecular Pain 1/2015

Open Access 01-12-2015 | Research

The opioid peptide dynorphin A induces leukocyte responses via integrin Mac-1 (αMβ2, CD11b/CD18)

Authors: Nataly P. Podolnikova, Julie A. Brothwell, Tatiana P. Ugarova

Published in: Molecular Pain | Issue 1/2015

Login to get access

Abstract

Background

Opioid peptides, including dynorphin A, besides their analgesic action in the nervous system, exert a broad spectrum of effects on cells of the immune system, including leukocyte migration, degranulation and cytokine production. The mechanisms whereby opioid peptides induce leukocyte responses are poorly understood. The integrin Mac-1 (αMβ2, CD11b/CD18) is a multiligand receptor which mediates numerous reactions of neutrophils and monocyte/macrophages during the immune-inflammatory response. Our recent elucidation of the ligand recognition specificity of Mac-1 suggested that dynorphin A and dynorphin B contain Mac-1 recognition motifs and can potentially interact with this receptor.

Results

In this study, we have synthesized the peptide library spanning the sequence of dynorphin AB, containing dynorphin A and B, and showed that the peptides bound recombinant αMI-domain, the ligand binding region of Mac-1. In addition, immobilized dynorphins A and B supported adhesion of the Mac-1-expressing cells. In binding to dynorphins A and B, Mac-1 cooperated with cell surface proteoglycans since both anti-Mac-1 function-blocking reagents and heparin were required to block adhesion. Further focusing on dynorphin A, we showed that its interaction with the αMI-domain was activation independent as both the α7 helix-truncated (active conformation) and helix-extended (nonactive conformation) αMI-domains efficiently bound dynorphin A. Dynorphin A induced a potent migratory response of Mac-1-expressing, but not Mac-1-deficient leukocytes, and enhanced Mac-1-mediated phagocytosis of latex beads by murine IC-21 macrophages.

Conclusions

Together, the results identify dynorphins A and B as novel ligands for Mac-1 and suggest a role for the Dynorphin A-Mac-1 interactions in the induction of nonopiod receptor-dependent effects in leukocytes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie JM, Hall ED. Pathobiology of dynorphins in trauma and disease. Front Biosci. 2005;10:216–35.PubMedCentralPubMedCrossRef Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie JM, Hall ED. Pathobiology of dynorphins in trauma and disease. Front Biosci. 2005;10:216–35.PubMedCentralPubMedCrossRef
2.
go back to reference Machelska H, Stein C. Leukocyte-derived opioid peptides and inhibition of pain. J Neuroimune Pharmacol. 2006;1:90–7.CrossRef Machelska H, Stein C. Leukocyte-derived opioid peptides and inhibition of pain. J Neuroimune Pharmacol. 2006;1:90–7.CrossRef
3.
go back to reference Hua S, Cabot PJ. Mechanisms of peripheral immune-cell-mediated analgesia in inflammation: clinical and therapeutic implications. Trends Pharmacol Sci. 2010;31:427–33.PubMedCrossRef Hua S, Cabot PJ. Mechanisms of peripheral immune-cell-mediated analgesia in inflammation: clinical and therapeutic implications. Trends Pharmacol Sci. 2010;31:427–33.PubMedCrossRef
4.
go back to reference Stein C, Machelska H. Modulation of peripheral sensory neurons by the immune system: implications for pain therapy. Pharmacol Rev. 2011;63:860–81.PubMedCrossRef Stein C, Machelska H. Modulation of peripheral sensory neurons by the immune system: implications for pain therapy. Pharmacol Rev. 2011;63:860–81.PubMedCrossRef
5.
go back to reference Apte RN, Durum SK, Oppenheim JJ. Opioids modulate Interleukin-1 production and secretion by bone-marrow macrophages. Immunol Lett. 1990;24:141–8.PubMedCrossRef Apte RN, Durum SK, Oppenheim JJ. Opioids modulate Interleukin-1 production and secretion by bone-marrow macrophages. Immunol Lett. 1990;24:141–8.PubMedCrossRef
6.
go back to reference Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992;149:2736–41.PubMed Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992;149:2736–41.PubMed
7.
go back to reference Ichinose M, Asai M, Sawada M. Enhancement of phagocytosis by dynorphin A in mouse peritoneal macrophages. J Neuroimmunol. 1995;60:37–43.PubMedCrossRef Ichinose M, Asai M, Sawada M. Enhancement of phagocytosis by dynorphin A in mouse peritoneal macrophages. J Neuroimmunol. 1995;60:37–43.PubMedCrossRef
8.
go back to reference Sharp BM, Keane WF, Suh HJ, Gekker G, Tsukayama D, Peterson PK. Opioid peptides rapidly stimulate superoxide production by human polumorphonuclear leukocytes and macrophages. Endocrinology. 1985;117:793–5.PubMedCrossRef Sharp BM, Keane WF, Suh HJ, Gekker G, Tsukayama D, Peterson PK. Opioid peptides rapidly stimulate superoxide production by human polumorphonuclear leukocytes and macrophages. Endocrinology. 1985;117:793–5.PubMedCrossRef
9.
go back to reference Tosk JM, Grim JR, Kinback KM, Sale EJ, Bozzerri LP, Will AD. Modulation of chemiluminescence in a murine macrophage cell line by neuroendocrine hormones. Int J Immunopharmacol. 1993;15:615–20.PubMedCrossRef Tosk JM, Grim JR, Kinback KM, Sale EJ, Bozzerri LP, Will AD. Modulation of chemiluminescence in a murine macrophage cell line by neuroendocrine hormones. Int J Immunopharmacol. 1993;15:615–20.PubMedCrossRef
10.
go back to reference Gabrilovac J, Balog T, Andreis A. Dynorphin-A (1–17) decreases nitric oxide release and cytotoxicity induced with lipopolysaccharide plus interferon-γ in human macrophage cell line J774. Biomed Pharmacol. 2003;57:351–8.CrossRef Gabrilovac J, Balog T, Andreis A. Dynorphin-A (1–17) decreases nitric oxide release and cytotoxicity induced with lipopolysaccharide plus interferon-γ in human macrophage cell line J774. Biomed Pharmacol. 2003;57:351–8.CrossRef
11.
go back to reference Sugiyama K, Furuta H. Histamine release induced by dinorphin-(1–13) from rat mast cells. Japan J Pharmacology. 1984;35:247–52.CrossRef Sugiyama K, Furuta H. Histamine release induced by dinorphin-(1–13) from rat mast cells. Japan J Pharmacology. 1984;35:247–52.CrossRef
12.
go back to reference Shanahan F, Bienenstock J, Befus AD. The influence of endorphins on peritoneal and mucosal mast cell secretion. J Allergy Clin Immunol. 1984;74:499–504.PubMedCrossRef Shanahan F, Bienenstock J, Befus AD. The influence of endorphins on peritoneal and mucosal mast cell secretion. J Allergy Clin Immunol. 1984;74:499–504.PubMedCrossRef
13.
go back to reference Casale TB, Bowman S, Kaliner M. Induction of human cutaneous mast cell degranulation by opiates and endogenous opioid peptides: evidence for opiate and nonopiate receptor participation. J Allergy Clin Immunol. 1984;73:775–81.PubMedCrossRef Casale TB, Bowman S, Kaliner M. Induction of human cutaneous mast cell degranulation by opiates and endogenous opioid peptides: evidence for opiate and nonopiate receptor participation. J Allergy Clin Immunol. 1984;73:775–81.PubMedCrossRef
14.
go back to reference Ruff MR, Wahl SM, Mergenhagen S, Pert C. Opiate-receptor mediated chemotaxix of human monocytes. Neuropeptides. 1985;5:363–6.PubMedCrossRef Ruff MR, Wahl SM, Mergenhagen S, Pert C. Opiate-receptor mediated chemotaxix of human monocytes. Neuropeptides. 1985;5:363–6.PubMedCrossRef
15.
go back to reference Marcoli M, Ricevuti G, Mazzone A, Bekkering M, Lecchini S, Frigo GM. Opioid-induced modification of granulocyte function. Int J Immunopharmacol. 1988;10:425–33.PubMedCrossRef Marcoli M, Ricevuti G, Mazzone A, Bekkering M, Lecchini S, Frigo GM. Opioid-induced modification of granulocyte function. Int J Immunopharmacol. 1988;10:425–33.PubMedCrossRef
16.
go back to reference Kishimoto TK, Baldwin ET, Anderson DC. The role of β2 Integrin in inflammation. In: Gallin JI, Snyderman R, editors. Inflammation: basic principles and clinical correlates. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 537–69. Kishimoto TK, Baldwin ET, Anderson DC. The role of β2 Integrin in inflammation. In: Gallin JI, Snyderman R, editors. Inflammation: basic principles and clinical correlates. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 537–69.
17.
go back to reference Podolnikova NP, Podolnikov A, Lishko VK, Haas TA, Ugarova TP. Ligand recognition specificity of integrin αMβ2 (Mac-1, CD11b/CD18) and its functional consequences. Biochemistry. 2015;54:1408–20.PubMedCrossRef Podolnikova NP, Podolnikov A, Lishko VK, Haas TA, Ugarova TP. Ligand recognition specificity of integrin αMβ2 (Mac-1, CD11b/CD18) and its functional consequences. Biochemistry. 2015;54:1408–20.PubMedCrossRef
18.
go back to reference Lishko VK, Podolnikova NP, Yakubenko VP, Yakovlev S, Medved L, Yadav SP, et al. Multiple binding sites in fibrinogen for integrin Alpha M Beta 2 (Mac-1). J Biol Chem. 2004;279:44897–906.PubMedCrossRef Lishko VK, Podolnikova NP, Yakubenko VP, Yakovlev S, Medved L, Yadav SP, et al. Multiple binding sites in fibrinogen for integrin Alpha M Beta 2 (Mac-1). J Biol Chem. 2004;279:44897–906.PubMedCrossRef
19.
go back to reference Xiong J-P, Li R, Essafi M, Stehle T, Arnaout MA. An isoleucine-based allosteric switch controls affinity and shape shifting in integrin CD11b A-domain. J Biol Chem. 2000;275:38762–7.PubMedCrossRef Xiong J-P, Li R, Essafi M, Stehle T, Arnaout MA. An isoleucine-based allosteric switch controls affinity and shape shifting in integrin CD11b A-domain. J Biol Chem. 2000;275:38762–7.PubMedCrossRef
20.
go back to reference Yakubenko VP, Lishko VK, Lam SCT, Ugarova TP. A molecular basis for integrin αMβ2 ligand binding promiscuity. J Biol Chem. 2002;277:48635–42.PubMedCrossRef Yakubenko VP, Lishko VK, Lam SCT, Ugarova TP. A molecular basis for integrin αMβ2 ligand binding promiscuity. J Biol Chem. 2002;277:48635–42.PubMedCrossRef
21.
go back to reference Schober JM, Chen N, Grzeszkiewicz T, Emeson EE, Ugarova TP, Ye RD, et al. Identification of integrin αMβ2 as an adhesion receptor on peripheral blood monocytes for Cyr61 and connective tissue growth factor, immediate-early gene products expressed in atherosclerotic lesions. Blood. 2002;99:4457–65.PubMedCrossRef Schober JM, Chen N, Grzeszkiewicz T, Emeson EE, Ugarova TP, Ye RD, et al. Identification of integrin αMβ2 as an adhesion receptor on peripheral blood monocytes for Cyr61 and connective tissue growth factor, immediate-early gene products expressed in atherosclerotic lesions. Blood. 2002;99:4457–65.PubMedCrossRef
22.
go back to reference Schober JM, Lau LF, Ugarova TP, Lam SC. Identification of a novel integrin αMβ2 binding site in CCN1 (CYR61), a matricellular protein expressed in healing wounds and atherosclerotic lesions. J Biol Chem. 2003;278:25808–15.PubMedCrossRef Schober JM, Lau LF, Ugarova TP, Lam SC. Identification of a novel integrin αMβ2 binding site in CCN1 (CYR61), a matricellular protein expressed in healing wounds and atherosclerotic lesions. J Biol Chem. 2003;278:25808–15.PubMedCrossRef
23.
go back to reference Ugarova TP, Solovjov DA, Zhang L, Loukinov DI, Yee VC, Medved LV, et al. Identification of a novel recognition sequence for integrin αMβ2 within the gamma-chain of fibrinogen. J Biol Chem. 1998;273:22519–27.PubMedCrossRef Ugarova TP, Solovjov DA, Zhang L, Loukinov DI, Yee VC, Medved LV, et al. Identification of a novel recognition sequence for integrin αMβ2 within the gamma-chain of fibrinogen. J Biol Chem. 1998;273:22519–27.PubMedCrossRef
24.
go back to reference Marinova Z, Vukojevic V, Surcheva S, Yakovleva T, Cebers G, et al. Translocation of dynorphin neuropeptides across the plasma membrane. J Biol Chem. 2005;280:26360–70.PubMedCrossRef Marinova Z, Vukojevic V, Surcheva S, Yakovleva T, Cebers G, et al. Translocation of dynorphin neuropeptides across the plasma membrane. J Biol Chem. 2005;280:26360–70.PubMedCrossRef
25.
go back to reference Machelska H, Schopohl JK, Mousa SA, Labuz D, Schäfer M, Stein C. Different mechanisms of intrinsic pain inhibition in early and late inflammation. J Neurosurg. 2003;141:30–9. Machelska H, Schopohl JK, Mousa SA, Labuz D, Schäfer M, Stein C. Different mechanisms of intrinsic pain inhibition in early and late inflammation. J Neurosurg. 2003;141:30–9.
26.
go back to reference Kapitzke D, Vetter I, Cabot PJ. Endogenous opioid analgesia in peripheral tissues and the clinical implications for pain control. Ther Clin Risk Manag. 2005;1:279–97.PubMedCentralPubMed Kapitzke D, Vetter I, Cabot PJ. Endogenous opioid analgesia in peripheral tissues and the clinical implications for pain control. Ther Clin Risk Manag. 2005;1:279–97.PubMedCentralPubMed
27.
go back to reference Forsyth CB, Solovjov DA, Ugarova TP, Plow EF. Integrin αMβ2-mediated cell migration to fibrinogen and its recognition peptides. J Exp Med. 2001;193:1123–33.PubMedCentralPubMedCrossRef Forsyth CB, Solovjov DA, Ugarova TP, Plow EF. Integrin αMβ2-mediated cell migration to fibrinogen and its recognition peptides. J Exp Med. 2001;193:1123–33.PubMedCentralPubMedCrossRef
28.
go back to reference Lishko VK, Yakubenko VP, Ugarova TP. The interplay between Integrins αMβ2 and α5β1 during cell migration to fibronectin. Exp Cell Res. 2003;283:116–26.PubMedCrossRef Lishko VK, Yakubenko VP, Ugarova TP. The interplay between Integrins αMβ2 and α5β1 during cell migration to fibronectin. Exp Cell Res. 2003;283:116–26.PubMedCrossRef
29.
go back to reference Bidlack J. Detection and function of opioid receptors on cells from the immune system. Clin Diagn Lab Immunol. 2014;7:719–23. Bidlack J. Detection and function of opioid receptors on cells from the immune system. Clin Diagn Lab Immunol. 2014;7:719–23.
30.
go back to reference Sharp BM. Multiple opioid receptors on immune cells modulate intracellular signaling. Brain Behav Immun. 2006;20:9–14.PubMedCrossRef Sharp BM. Multiple opioid receptors on immune cells modulate intracellular signaling. Brain Behav Immun. 2006;20:9–14.PubMedCrossRef
31.
go back to reference Gabrilovac J, Cupic B, Zapletal E, Brozovic A. IFN-γ up-regulates Kappa Opioid Receptors (KOR) on mutibe macrophage cell line J774. J Neuroimmunol. 2012;245:56–65.PubMedCrossRef Gabrilovac J, Cupic B, Zapletal E, Brozovic A. IFN-γ up-regulates Kappa Opioid Receptors (KOR) on mutibe macrophage cell line J774. J Neuroimmunol. 2012;245:56–65.PubMedCrossRef
32.
go back to reference Mansour A, Hoversten MT, Taylor LP, Watson SJ, Akil H. The Cloned Mu, Delta and Kappa receptors and their endogenous ligands: evidence for two opioid peptide recognition cores. Brain Res. 1995;700:89–98.PubMedCrossRef Mansour A, Hoversten MT, Taylor LP, Watson SJ, Akil H. The Cloned Mu, Delta and Kappa receptors and their endogenous ligands: evidence for two opioid peptide recognition cores. Brain Res. 1995;700:89–98.PubMedCrossRef
33.
go back to reference Ehlers MR. CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect. 2000;2:289–94.PubMedCrossRef Ehlers MR. CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect. 2000;2:289–94.PubMedCrossRef
34.
go back to reference Rozenkranz AR, Coxon A, Maurer M, Gurish MF, Austen KF, Friend DS, et al. Impaired mast cell development and innate immunity in Mac-1(CD11b/CD18, CR-3)-deficient mice. J Immunol. 1998;161:6463–7. Rozenkranz AR, Coxon A, Maurer M, Gurish MF, Austen KF, Friend DS, et al. Impaired mast cell development and innate immunity in Mac-1(CD11b/CD18, CR-3)-deficient mice. J Immunol. 1998;161:6463–7.
35.
36.
go back to reference Williams JH, Thompson JP, McDonald J, Barnes TA, Cote T, Rowbotham DJLDG. Human peripheral blood mononuclear cells expreress Nociceptin/Orphanin FQ, but Not Μ, Δ, or κ Opioid receptors. Anesth Analg. 2007;105:998–1005.PubMedCrossRef Williams JH, Thompson JP, McDonald J, Barnes TA, Cote T, Rowbotham DJLDG. Human peripheral blood mononuclear cells expreress Nociceptin/Orphanin FQ, but Not Μ, Δ, or κ Opioid receptors. Anesth Analg. 2007;105:998–1005.PubMedCrossRef
37.
go back to reference Chuang TK, Killam Jr KF, Chuang LF, Kung HF, Sheng WS, Chao CC, et al. Mu Opioid receptor gene expression in immune cells. Biochem Biophys Res Commun. 1995;216:922–30.PubMedCrossRef Chuang TK, Killam Jr KF, Chuang LF, Kung HF, Sheng WS, Chao CC, et al. Mu Opioid receptor gene expression in immune cells. Biochem Biophys Res Commun. 1995;216:922–30.PubMedCrossRef
38.
go back to reference Busch-Dienstfertig M, Stein C. Opioid receptors and opioid peptide-producing leukocytes in inflammatory pain - Bisuc and therapeutic aspects. Brain Behav Immun. 2010;24:683–94.PubMedCrossRef Busch-Dienstfertig M, Stein C. Opioid receptors and opioid peptide-producing leukocytes in inflammatory pain - Bisuc and therapeutic aspects. Brain Behav Immun. 2010;24:683–94.PubMedCrossRef
39.
go back to reference Rittner H, Labuz D, Richter JF, Brack A, Schafer M, Stein C, et al. CXCR1/2 ligands induce P38 MAPK-dependent translocation and release of opioid peptides from promary granules in Vitro and in Vivo. Brain Behav Immun. 2007;21:1021–32.PubMedCrossRef Rittner H, Labuz D, Richter JF, Brack A, Schafer M, Stein C, et al. CXCR1/2 ligands induce P38 MAPK-dependent translocation and release of opioid peptides from promary granules in Vitro and in Vivo. Brain Behav Immun. 2007;21:1021–32.PubMedCrossRef
40.
go back to reference Labuz D, Schmidt Y, Schreiter A, Rittner HL, Mousa SA, Machelska H. Immune cell-derived opioids protect against neurophathic pain in mice. J Clin In vestig. 2009;119:278–86. Labuz D, Schmidt Y, Schreiter A, Rittner HL, Mousa SA, Machelska H. Immune cell-derived opioids protect against neurophathic pain in mice. J Clin In vestig. 2009;119:278–86.
41.
go back to reference Cai T-Q, Wright SD. Human leukocyte elastase is an endogenous ligand for the Integrin CRR3 (CD11b/CD18, Mac-1, αMβ2) and modulates polymorphonuclear leukocyte adhesion. J Exp Med. 1996;184:1213–23.PubMedCrossRef Cai T-Q, Wright SD. Human leukocyte elastase is an endogenous ligand for the Integrin CRR3 (CD11b/CD18, Mac-1, αMβ2) and modulates polymorphonuclear leukocyte adhesion. J Exp Med. 1996;184:1213–23.PubMedCrossRef
42.
go back to reference Johansson MW, Patarroyo M, Oberg F, Siegbahn A, Nilsson K. Myeloperoxidase mediates cell adhesion via the αMβ2 Integrin (Mac-1, CD11b/CD18). J Cell Sci. 1997;110:1133–9.PubMed Johansson MW, Patarroyo M, Oberg F, Siegbahn A, Nilsson K. Myeloperoxidase mediates cell adhesion via the αMβ2 Integrin (Mac-1, CD11b/CD18). J Cell Sci. 1997;110:1133–9.PubMed
43.
go back to reference Pereira HA. CAP37, a neutrophil-derived multifunctional inflammatory mediator. J Leukoc Biol. 1995;57:805–12.PubMed Pereira HA. CAP37, a neutrophil-derived multifunctional inflammatory mediator. J Leukoc Biol. 1995;57:805–12.PubMed
44.
go back to reference Chertov O, Ueda H, Xu LL, Tani K, Murphy JM, Wang JM, et al. Identification of human neutrophil-derived Cathepsin G and Azuricidin/CAP37 as a chemoattractants for mononuclear cells and neutrophils. J Exp Med. 1997;186:739–47.PubMedCentralPubMedCrossRef Chertov O, Ueda H, Xu LL, Tani K, Murphy JM, Wang JM, et al. Identification of human neutrophil-derived Cathepsin G and Azuricidin/CAP37 as a chemoattractants for mononuclear cells and neutrophils. J Exp Med. 1997;186:739–47.PubMedCentralPubMedCrossRef
45.
go back to reference Mookherjee N, Hancock REW. Cationic host defense peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007;64:922–33.PubMedCrossRef Mookherjee N, Hancock REW. Cationic host defense peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007;64:922–33.PubMedCrossRef
46.
go back to reference Janardhan KS, Sandhu SK, Singh B. Neutrophil depletion inhibits early and late Monocyte/Macrophage increase in lung inflammation. Front Biosci. 2006;11:1569–76.PubMedCrossRef Janardhan KS, Sandhu SK, Singh B. Neutrophil depletion inhibits early and late Monocyte/Macrophage increase in lung inflammation. Front Biosci. 2006;11:1569–76.PubMedCrossRef
47.
go back to reference Soehnlein O, Zemecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herward H, et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood. 2008;112:1461–71.PubMedCentralPubMedCrossRef Soehnlein O, Zemecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herward H, et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood. 2008;112:1461–71.PubMedCentralPubMedCrossRef
48.
go back to reference Eriksson EE, Soehnlein O, Kenne E, Rotzius P, Eriksson EE, Lindbom L. Neutrophil secretion products regulate anti-bacterial activity in monocytes and macrophages. Clin Exp Immunol. 2007;151:139–45.PubMedCrossRef Eriksson EE, Soehnlein O, Kenne E, Rotzius P, Eriksson EE, Lindbom L. Neutrophil secretion products regulate anti-bacterial activity in monocytes and macrophages. Clin Exp Immunol. 2007;151:139–45.PubMedCrossRef
49.
go back to reference Soehnlein O, Kai-Larse YFR, Sorensen OE, Kenne E, Scharffetter-Kochanek K, Eriksson EE, et al. Neutrophil primary granule proteins HBP and HNP1-2 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest. 2008;118:3491–502.PubMedCentralPubMedCrossRef Soehnlein O, Kai-Larse YFR, Sorensen OE, Kenne E, Scharffetter-Kochanek K, Eriksson EE, et al. Neutrophil primary granule proteins HBP and HNP1-2 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest. 2008;118:3491–502.PubMedCentralPubMedCrossRef
50.
go back to reference Coxon A, Rieu P, Barkalow FJ, Askari S, Sharpe AH, Von Andrian UH, et al. A novel role for the Beta 2 Integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity. 1996;5:653–66.PubMedCrossRef Coxon A, Rieu P, Barkalow FJ, Askari S, Sharpe AH, Von Andrian UH, et al. A novel role for the Beta 2 Integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity. 1996;5:653–66.PubMedCrossRef
51.
go back to reference Lu H, Smith CW, Perrard J, Bullard D, Tang L, Entman ML, et al. LFA-1 is sufficient in mediating neutrophil emigration in Mac-1 deficient mice. J Clin Invest. 1997;99:1340–50.PubMedCentralPubMedCrossRef Lu H, Smith CW, Perrard J, Bullard D, Tang L, Entman ML, et al. LFA-1 is sufficient in mediating neutrophil emigration in Mac-1 deficient mice. J Clin Invest. 1997;99:1340–50.PubMedCentralPubMedCrossRef
52.
go back to reference Thureson-Klein AK, Klein RL. Exocytosis from neuronal large dense-cired vesicles. Int Rev Cytol. 1990;121:67–126.PubMedCrossRef Thureson-Klein AK, Klein RL. Exocytosis from neuronal large dense-cired vesicles. Int Rev Cytol. 1990;121:67–126.PubMedCrossRef
53.
go back to reference Hausmann O. Post-traumatic inflammation following spinal cord injury. Spinal Cord. 2003;41:369–78.PubMedCrossRef Hausmann O. Post-traumatic inflammation following spinal cord injury. Spinal Cord. 2003;41:369–78.PubMedCrossRef
54.
go back to reference Rittner HL, Brack A, Stein C. Pain and the immune system. British J Anaestesia. 2008;101:40–4.CrossRef Rittner HL, Brack A, Stein C. Pain and the immune system. British J Anaestesia. 2008;101:40–4.CrossRef
55.
go back to reference Sundstrom G, Dreborg S, Larhammar D. Concomitant duplication of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One. 2014;5:e10512.CrossRef Sundstrom G, Dreborg S, Larhammar D. Concomitant duplication of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One. 2014;5:e10512.CrossRef
56.
go back to reference Ugarova TP, Budzynski AZ. Interaction between complementary polymerization sites in the structural D and E domains of human fibrin. J Biol Chem. 1992;267:13687–93.PubMed Ugarova TP, Budzynski AZ. Interaction between complementary polymerization sites in the structural D and E domains of human fibrin. J Biol Chem. 1992;267:13687–93.PubMed
57.
go back to reference Yakubenko VP, Solovjov DA, Zhang L, Yee VC, Plow EF, Ugarova TP. Identification of the binding site for fibrinogen recognition peptide γ383-395 within the αΜ I-domain of Integrin αMβ2. J Biol Chem. 2001;275:13995–4003. Yakubenko VP, Solovjov DA, Zhang L, Yee VC, Plow EF, Ugarova TP. Identification of the binding site for fibrinogen recognition peptide γ383-395 within the αΜ I-domain of Integrin αMβ2. J Biol Chem. 2001;275:13995–4003.
58.
go back to reference Podolnikova NP, Gorkun OV, Loreth RM, Lord ST, Yee VC, Ugarova TP. A cluster of basic amino acid residues in the γ370-381 sequence of fibrinogen comprises a binding site for platelet Integrin αIIbβ3 (GPIIb/IIIa). Biochemistry. 2005;44:16920–30.PubMedCrossRef Podolnikova NP, Gorkun OV, Loreth RM, Lord ST, Yee VC, Ugarova TP. A cluster of basic amino acid residues in the γ370-381 sequence of fibrinogen comprises a binding site for platelet Integrin αIIbβ3 (GPIIb/IIIa). Biochemistry. 2005;44:16920–30.PubMedCrossRef
59.
go back to reference Lishko VK, Novokhatny V, Yakubenko VP, Skomorovska-Prokvolit H, Ugarova TP. Characterization of plasminogen as an adhesive ligand for Integrins αMβ2(Mac-1) and α5β1(VLA-5). Blood. 2004;104:719–26.PubMedCrossRef Lishko VK, Novokhatny V, Yakubenko VP, Skomorovska-Prokvolit H, Ugarova TP. Characterization of plasminogen as an adhesive ligand for Integrins αMβ2(Mac-1) and α5β1(VLA-5). Blood. 2004;104:719–26.PubMedCrossRef
Metadata
Title
The opioid peptide dynorphin A induces leukocyte responses via integrin Mac-1 (αMβ2, CD11b/CD18)
Authors
Nataly P. Podolnikova
Julie A. Brothwell
Tatiana P. Ugarova
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2015
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/s12990-015-0027-0

Other articles of this Issue 1/2015

Molecular Pain 1/2015 Go to the issue