Skip to main content
Top
Published in: Molecular Pain 1/2015

Open Access 01-12-2015 | Research

KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia

Authors: Alaa A Abd-Elsayed, Ryo Ikeda, Zhanfeng Jia, Jennifer Ling, Xiaozhuo Zuo, Min Li, Jianguo G Gu

Published in: Molecular Pain | Issue 1/2015

Login to get access

Abstract

Background

Hyperexcitability of nociceptive afferent fibers is an underlying mechanism of neuropathic pain and ion channels involved in neuronal excitability are potentially therapeutic targets. KCNQ channels, a subfamily of voltage-gated K+ channels mediating M-currents, play a key role in neuronal excitability. It is unknown whether KCNQ channels are involved in the excitability of nociceptive cold-sensing trigeminal afferent fibers and if so, whether they are therapeutic targets for orofacial cold hyperalgesia, an intractable trigeminal neuropathic pain.

Methods

Patch-clamp recording technique was used to study M-currents and neuronal excitability of cold-sensing trigeminal ganglion neurons. Orofacial operant behavioral assessment was performed in animals with trigeminal neuropathic pain induced by oxaliplatin or by infraorbital nerve chronic constrictive injury.

Results

We showed that KCNQ channels were expressed on and mediated M-currents in rat nociceptive cold-sensing trigeminal ganglion (TG) neurons. The channels were involved in setting both resting membrane potentials and rheobase for firing action potentials in these cold-sensing TG neurons. Inhibition of KCNQ channels by linopirdine significantly decreased resting membrane potentials and the rheobase of these TG neurons. Linopirdine directly induced orofacial cold hyperalgesia when the KCNQ inhibitor was subcutaneously injected into rat orofacial regions. On the other hand, retigabine, a KCNQ channel potentiator, suppressed the excitability of nociceptive cold-sensing TG neurons. We further determined whether KCNQ channel could be a therapeutic target for orofacial cold hyperalgesia. Orofacial cold hyperalgesia was induced in rats either by the administration of oxaliplatin or by infraorbital nerve chronic constrictive injury. Using the orofacial operant test, we showed that retigabine dose-dependently alleviated orofacial cold hyperalgesia in both animal models.

Conclusion

Taken together, these findings indicate that KCNQ channel plays a significant role in controlling cold sensitivity and is a therapeutic target for alleviating trigeminal neuropathic pain that manifests orofacial cold hyperalgesia.
Literature
1.
go back to reference Benoliel R, Kahn J, Eliav E. Peripheral painful traumatic trigeminal neuropathies. Oral Dis. 2012;18:317–32.PubMedCrossRef Benoliel R, Kahn J, Eliav E. Peripheral painful traumatic trigeminal neuropathies. Oral Dis. 2012;18:317–32.PubMedCrossRef
2.
go back to reference Zakrzewska JM. Differential diagnosis of facial pain and guidelines for management. Br J Anaesth. 2013;111:95–104.PubMedCrossRef Zakrzewska JM. Differential diagnosis of facial pain and guidelines for management. Br J Anaesth. 2013;111:95–104.PubMedCrossRef
3.
go back to reference Zakrzewska JM, McMillan R. Trigeminal neuralgia: the diagnosis and management of this excruciating and poorly understood facial pain. Postgrad Med J. 2011;87:410–6.PubMedCrossRef Zakrzewska JM, McMillan R. Trigeminal neuralgia: the diagnosis and management of this excruciating and poorly understood facial pain. Postgrad Med J. 2011;87:410–6.PubMedCrossRef
4.
go back to reference Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9:807–19.PubMedCrossRef Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9:807–19.PubMedCrossRef
5.
go back to reference McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416:52–8.PubMedCrossRef McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416:52–8.PubMedCrossRef
6.
go back to reference Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, et al. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108:705–15.PubMedCrossRef Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, et al. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108:705–15.PubMedCrossRef
7.
go back to reference Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD. Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci. 2007;27:14147–57.PubMedCentralPubMedCrossRef Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD. Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci. 2007;27:14147–57.PubMedCentralPubMedCrossRef
8.
go back to reference Xing H, Ling J, Chen M, Gu JG. Chemical and cold sensitivity of two distinct populations of TRPM8-expressing somatosensory neurons. J Neurophysiol. 2006;95:1221–30.PubMedCrossRef Xing H, Ling J, Chen M, Gu JG. Chemical and cold sensitivity of two distinct populations of TRPM8-expressing somatosensory neurons. J Neurophysiol. 2006;95:1221–30.PubMedCrossRef
9.
go back to reference Sarria I, Ling J, Xu GY, Gu JG. Sensory discrimination between innocuous and noxious cold by TRPM8-expressing DRG neurons of rats. Mol Pain. 2012;8:79.PubMedCentralPubMedCrossRef Sarria I, Ling J, Xu GY, Gu JG. Sensory discrimination between innocuous and noxious cold by TRPM8-expressing DRG neurons of rats. Mol Pain. 2012;8:79.PubMedCentralPubMedCrossRef
10.
go back to reference Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, et al. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature. 2007;447:855–8.PubMedCrossRef Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, et al. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature. 2007;447:855–8.PubMedCrossRef
11.
go back to reference Reid G, Babes A, Pluteanu F. A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol. 2002;545:595–614.PubMedCentralPubMedCrossRef Reid G, Babes A, Pluteanu F. A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol. 2002;545:595–614.PubMedCentralPubMedCrossRef
13.
go back to reference Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci. 2003;23:7227–36.PubMed Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci. 2003;23:7227–36.PubMed
14.
go back to reference Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain. 2011;152:742–54.PubMedCentralPubMedCrossRef Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain. 2011;152:742–54.PubMedCentralPubMedCrossRef
15.
go back to reference Zheng Q, Fang D, Liu M, Cai J, Wan Y, Han JS, et al. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model. Pain. 2013;154:434–48.PubMedCrossRef Zheng Q, Fang D, Liu M, Cai J, Wan Y, Han JS, et al. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model. Pain. 2013;154:434–48.PubMedCrossRef
16.
go back to reference Linley JE, Ooi L, Pettinger L, Kirton H, Boyle JP, Peers C, et al. Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proc Natl Acad Sci USA. 2012;109:E1578–86.PubMedCentralPubMedCrossRef Linley JE, Ooi L, Pettinger L, Kirton H, Boyle JP, Peers C, et al. Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proc Natl Acad Sci USA. 2012;109:E1578–86.PubMedCentralPubMedCrossRef
17.
go back to reference Duan KZ, Xu Q, Zhang XM, Zhao ZQ, Mei YA, Zhang YQ. Targeting A-type K(+) channels in primary sensory neurons for bone cancer pain in a rat model. Pain. 2012;153:562–74.PubMedCrossRef Duan KZ, Xu Q, Zhang XM, Zhao ZQ, Mei YA, Zhang YQ. Targeting A-type K(+) channels in primary sensory neurons for bone cancer pain in a rat model. Pain. 2012;153:562–74.PubMedCrossRef
18.
go back to reference Xiong Q, Gao Z, Wang W, Li M. Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds. Trends Pharmacol Sci. 2008;29:99–107.PubMedCrossRef Xiong Q, Gao Z, Wang W, Li M. Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds. Trends Pharmacol Sci. 2008;29:99–107.PubMedCrossRef
19.
go back to reference Splinter MY. Ezogabine (retigabine) and its role in the treatment of partial-onset seizures: a review. Clin Ther. 2012;34(1845–1856):e1841. Splinter MY. Ezogabine (retigabine) and its role in the treatment of partial-onset seizures: a review. Clin Ther. 2012;34(1845–1856):e1841.
20.
go back to reference Tsuzuki K, Xing H, Ling J, Gu JG. Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission. J Neurosci. 2004;24:762–71.PubMedCrossRef Tsuzuki K, Xing H, Ling J, Gu JG. Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission. J Neurosci. 2004;24:762–71.PubMedCrossRef
21.
22.
go back to reference Cha M, Kohan KJ, Zuo X, Ling JX, Gu JG. Assessment of chronic trigeminal neuropathic pain by the orofacial operant test in rats. Behav Brain Res. 2012;234:82–90.PubMedCentralPubMedCrossRef Cha M, Kohan KJ, Zuo X, Ling JX, Gu JG. Assessment of chronic trigeminal neuropathic pain by the orofacial operant test in rats. Behav Brain Res. 2012;234:82–90.PubMedCentralPubMedCrossRef
23.
go back to reference Zuo X, Ling JX, Xu GY, Gu JG. Operant behavioral responses to orofacial cold stimuli in rats with chronic constrictive trigeminal nerve injury: effects of menthol and capsazepine. Mol Pain. 2013;9:28.PubMedCentralPubMedCrossRef Zuo X, Ling JX, Xu GY, Gu JG. Operant behavioral responses to orofacial cold stimuli in rats with chronic constrictive trigeminal nerve injury: effects of menthol and capsazepine. Mol Pain. 2013;9:28.PubMedCentralPubMedCrossRef
24.
go back to reference Ling B, Coudore-Civiale MA, Balayssac D, Eschalier A, Coudore F, Authier N. Behavioral and immunohistological assessment of painful neuropathy induced by a single oxaliplatin injection in the rat. Toxicology. 2007;234:176–84.PubMedCrossRef Ling B, Coudore-Civiale MA, Balayssac D, Eschalier A, Coudore F, Authier N. Behavioral and immunohistological assessment of painful neuropathy induced by a single oxaliplatin injection in the rat. Toxicology. 2007;234:176–84.PubMedCrossRef
25.
go back to reference Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest. 2005;115:2393–401.PubMedCentralPubMedCrossRef Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest. 2005;115:2393–401.PubMedCentralPubMedCrossRef
26.
go back to reference Xing H, Chen M, Ling J, Tan W, Gu JG. TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci. 2007;27:13680–90.PubMedCrossRef Xing H, Chen M, Ling J, Tan W, Gu JG. TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci. 2007;27:13680–90.PubMedCrossRef
27.
go back to reference Descoeur J, Pereira V, Pizzoccaro A, Francois A, Ling B, Maffre V, et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol Med. 2011;3:266–78.PubMedCentralPubMedCrossRef Descoeur J, Pereira V, Pizzoccaro A, Francois A, Ling B, Maffre V, et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol Med. 2011;3:266–78.PubMedCentralPubMedCrossRef
28.
29.
go back to reference Neubert JK, Widmer CG, Malphurs W, Rossi HL, Vierck CJ Jr, Caudle RM. Use of a novel thermal operant behavioral assay for characterization of orofacial pain sensitivity. Pain. 2005;116:386–95.PubMedCrossRef Neubert JK, Widmer CG, Malphurs W, Rossi HL, Vierck CJ Jr, Caudle RM. Use of a novel thermal operant behavioral assay for characterization of orofacial pain sensitivity. Pain. 2005;116:386–95.PubMedCrossRef
Metadata
Title
KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia
Authors
Alaa A Abd-Elsayed
Ryo Ikeda
Zhanfeng Jia
Jennifer Ling
Xiaozhuo Zuo
Min Li
Jianguo G Gu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2015
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/s12990-015-0048-8

Other articles of this Issue 1/2015

Molecular Pain 1/2015 Go to the issue