Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2009

Open Access 01-12-2009 | Research article

The neuroprotective properties of palmitoylethanolamine against oxidative stress in a neuronal cell line

Authors: R Scott Duncan, Kent D Chapman, Peter Koulen

Published in: Molecular Neurodegeneration | Issue 1/2009

Login to get access

Abstract

Background

N-acylethanolamines (NAEs) are lipids upregulated in response to cell and tissue injury and are involved in cytoprotection. Arachidonylethanolamide (AEA) is a well characterized NAE that is an endogenous ligand at cannabinoid and vanilloid receptors, but it exists in small quantities relative to other NAE types. The abundance of other NAE species, such as palmitoylethanolamine (PEA), together with their largely unknown function and receptors, has prompted us to examine the neuroprotective properties and mechanism of action of PEA. We hypothesized that PEA protects HT22 cells from oxidative stress and activates neuroprotective kinase signaling pathways.

Results

Indeed PEA protected HT22 cells from oxidative stress in part by mediating an increase in phosphorylated Akt (pAkt) and ERK1/2 immunoreactivity as well as pAkt nuclear translocation. These changes take place within a time frame consistent with neuroprotection. Furthermore, we determined that changes in pAkt immunoreactivity elicited by PEA were not mediated by activation of cannabinoid receptor type 2 (CB2), thus indicating a novel mechanism of action. These results establish a role for PEA as a neuroprotectant against oxidative stress, which occurs in a variety of neurodegenerative diseases.

Conclusions

The results from this study reveal that PEA protects HT22 cells from oxidative stress and alters the localization and expression levels of kinases known to be involved in neuroprotection by a novel mechanism. Overall, these results identify PEA as a neuroprotectant with potential as a possible therapeutic agent in neurodegenerative diseases involving oxidative stress.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hansen HS, Lauritzen L, Strand AM, Moesgaard B, Frandsen A: Glutamate stimulates the formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cortical neurons in culture. Biochim Biophys Acta. 1995, 1258: 303-308.CrossRefPubMed Hansen HS, Lauritzen L, Strand AM, Moesgaard B, Frandsen A: Glutamate stimulates the formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cortical neurons in culture. Biochim Biophys Acta. 1995, 1258: 303-308.CrossRefPubMed
2.
go back to reference Moesgaard B, Jaroszewski JW, Hansen HS: Accumulation of N-acyl-ethanolamine phospholipids in rat brains during post-decapitative ischemia: a 31p NMR study. J Lipid Res. 1999, 40: 515-521.PubMed Moesgaard B, Jaroszewski JW, Hansen HS: Accumulation of N-acyl-ethanolamine phospholipids in rat brains during post-decapitative ischemia: a 31p NMR study. J Lipid Res. 1999, 40: 515-521.PubMed
3.
go back to reference Skaper SD, Buriani A, Dal Toso R, Petrelli L, Romanello S, Facci L, Leon A: The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci USA. 1996, 93: 3984-3989. 10.1073/pnas.93.9.3984.PubMedCentralCrossRefPubMed Skaper SD, Buriani A, Dal Toso R, Petrelli L, Romanello S, Facci L, Leon A: The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci USA. 1996, 93: 3984-3989. 10.1073/pnas.93.9.3984.PubMedCentralCrossRefPubMed
4.
go back to reference Shen M, Thayer SA: Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol. 1998, 54: 459-462.PubMed Shen M, Thayer SA: Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol. 1998, 54: 459-462.PubMed
5.
go back to reference Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, Greenberg DA: Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci. 1999, 19: 2987-2995.PubMed Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, Greenberg DA: Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci. 1999, 19: 2987-2995.PubMed
6.
go back to reference Chen Y, Buck J: Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther. 2000, 293: 807-812.PubMed Chen Y, Buck J: Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther. 2000, 293: 807-812.PubMed
7.
go back to reference Hampson AJ, Grimaldi M: Cannabinoid receptor activation and elevated cyclic AMP reduce glutamate neurotoxicity. Eur J Neurosci. 2001, 13: 1529-1536. 10.1046/j.0953-816x.2001.01536.x.CrossRefPubMed Hampson AJ, Grimaldi M: Cannabinoid receptor activation and elevated cyclic AMP reduce glutamate neurotoxicity. Eur J Neurosci. 2001, 13: 1529-1536. 10.1046/j.0953-816x.2001.01536.x.CrossRefPubMed
8.
go back to reference Stelt van der M, Velhuis WB, Maccarrone M, Nar PR, Nicolay K, Veldink GA, DiMarzo V, Vliegenthart JF: Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol. 2002, 26: 317-346. 10.1385/MN:26:2-3:317.CrossRefPubMed Stelt van der M, Velhuis WB, Maccarrone M, Nar PR, Nicolay K, Veldink GA, DiMarzo V, Vliegenthart JF: Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol. 2002, 26: 317-346. 10.1385/MN:26:2-3:317.CrossRefPubMed
9.
go back to reference Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, Stelt van der M, Lopez-Rodriguez ML, Casanova E, Schutz G, Zieglgansberger W, Di Marzo V, Behl C, Lutz B: CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003, 302: 84-88. 10.1126/science.1088208.CrossRefPubMed Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, Stelt van der M, Lopez-Rodriguez ML, Casanova E, Schutz G, Zieglgansberger W, Di Marzo V, Behl C, Lutz B: CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003, 302: 84-88. 10.1126/science.1088208.CrossRefPubMed
10.
go back to reference Shouman B, Fontaine RH, Baud O, Schwendimann L, Keller M, Spedding M, Lelievre V, Gressens P: Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage. Br J Pharmacol. 2006, 148: 442-451. 10.1038/sj.bjp.0706755.PubMedCentralCrossRefPubMed Shouman B, Fontaine RH, Baud O, Schwendimann L, Keller M, Spedding M, Lelievre V, Gressens P: Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage. Br J Pharmacol. 2006, 148: 442-451. 10.1038/sj.bjp.0706755.PubMedCentralCrossRefPubMed
11.
go back to reference Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R: Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992, 258: 1946-1949. 10.1126/science.1470919.CrossRefPubMed Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R: Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992, 258: 1946-1949. 10.1126/science.1470919.CrossRefPubMed
12.
go back to reference Bidaut-Russell M, Devane WA, Howlett AC: Cannabinoid receptors and modulation of cyclic AMP accumulation in the rat brain. J Neurochem. 1990, 55: 21-26. 10.1111/j.1471-4159.1990.tb08815.x.CrossRefPubMed Bidaut-Russell M, Devane WA, Howlett AC: Cannabinoid receptors and modulation of cyclic AMP accumulation in the rat brain. J Neurochem. 1990, 55: 21-26. 10.1111/j.1471-4159.1990.tb08815.x.CrossRefPubMed
13.
go back to reference Vogel Z, Barg J, Levy R, Saya D, Heldman E, Mechoulam R: Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase. J Neurochem. 1993, 61: 352-355. 10.1111/j.1471-4159.1993.tb03576.x.CrossRefPubMed Vogel Z, Barg J, Levy R, Saya D, Heldman E, Mechoulam R: Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase. J Neurochem. 1993, 61: 352-355. 10.1111/j.1471-4159.1993.tb03576.x.CrossRefPubMed
14.
go back to reference Wartmann M, Campbell D, Subramaninan A, Burstein SH, Davis RJ: The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide. FEBS Lett. 1995, 359: 133-136. 10.1016/0014-5793(95)00027-7.CrossRefPubMed Wartmann M, Campbell D, Subramaninan A, Burstein SH, Davis RJ: The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide. FEBS Lett. 1995, 359: 133-136. 10.1016/0014-5793(95)00027-7.CrossRefPubMed
15.
go back to reference Bouaboula M, Poinot-Chazel C, Marchand J, Canat X, Bourrie B, Rinaldi-Carmona M, Calandra B, Le Fur G, Casellas P: Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur J Biochem. 1996, 237: 704-711. 10.1111/j.1432-1033.1996.0704p.x.CrossRefPubMed Bouaboula M, Poinot-Chazel C, Marchand J, Canat X, Bourrie B, Rinaldi-Carmona M, Calandra B, Le Fur G, Casellas P: Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur J Biochem. 1996, 237: 704-711. 10.1111/j.1432-1033.1996.0704p.x.CrossRefPubMed
16.
go back to reference Gomez del Pulgar T, Velasco G, Guzman M: The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J. 2000, 347: 369-373. 10.1042/0264-6021:3470369.PubMedCentralCrossRefPubMed Gomez del Pulgar T, Velasco G, Guzman M: The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J. 2000, 347: 369-373. 10.1042/0264-6021:3470369.PubMedCentralCrossRefPubMed
17.
go back to reference Brunet A, Datta SR, Greenberg ME: Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001, 11: 297-305. 10.1016/S0959-4388(00)00211-7.CrossRefPubMed Brunet A, Datta SR, Greenberg ME: Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001, 11: 297-305. 10.1016/S0959-4388(00)00211-7.CrossRefPubMed
18.
go back to reference Zhuang SY, Bridges D, Grigorenko E, McCloud S, Boon A, Hampson RE, Deadwyler SA: Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology. 2005, 48: 1086-1096. 10.1016/j.neuropharm.2005.01.005.CrossRefPubMed Zhuang SY, Bridges D, Grigorenko E, McCloud S, Boon A, Hampson RE, Deadwyler SA: Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology. 2005, 48: 1086-1096. 10.1016/j.neuropharm.2005.01.005.CrossRefPubMed
19.
go back to reference Schmid PC, Kuwae T, Krebsbach RJ, Schmid HH: Anandamide and other N-acylethanolamines in mouse peritoneal macrophages. Chem Phys Lipids. 1997, 87: 103-110. 10.1016/S0009-3084(97)00032-7.CrossRefPubMed Schmid PC, Kuwae T, Krebsbach RJ, Schmid HH: Anandamide and other N-acylethanolamines in mouse peritoneal macrophages. Chem Phys Lipids. 1997, 87: 103-110. 10.1016/S0009-3084(97)00032-7.CrossRefPubMed
20.
go back to reference Kuwae T, Shiota Y, Schmid PC, Krebsbach R, Schmid HH: Biosynthesis and turnover of anandamide and other N-acylethanolamines in peritoneal macrophages. FEBS Lett. 1999, 459: 123-127. 10.1016/S0014-5793(99)01226-0.CrossRefPubMed Kuwae T, Shiota Y, Schmid PC, Krebsbach R, Schmid HH: Biosynthesis and turnover of anandamide and other N-acylethanolamines in peritoneal macrophages. FEBS Lett. 1999, 459: 123-127. 10.1016/S0014-5793(99)01226-0.CrossRefPubMed
21.
go back to reference Berdyshev EV, Schmid PC, Krebsbach RJ, Hillard CJ, Hunag C, Chen N, Dong Z, Schmid HH: Cannabinoid-receptor-independent cell signalling by N-acylethanolamines. Biochem J. 2001, 360: 67-75. 10.1042/0264-6021:3600067.PubMedCentralCrossRefPubMed Berdyshev EV, Schmid PC, Krebsbach RJ, Hillard CJ, Hunag C, Chen N, Dong Z, Schmid HH: Cannabinoid-receptor-independent cell signalling by N-acylethanolamines. Biochem J. 2001, 360: 67-75. 10.1042/0264-6021:3600067.PubMedCentralCrossRefPubMed
22.
go back to reference Merkel O, Schmid PC, Paltauf F, Schmid HH: Presence and potential signaling function of N-acylethanolamines and their phospholipid precursors in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2005, 1734: 215-219.CrossRefPubMed Merkel O, Schmid PC, Paltauf F, Schmid HH: Presence and potential signaling function of N-acylethanolamines and their phospholipid precursors in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2005, 1734: 215-219.CrossRefPubMed
23.
go back to reference Duncan RS, Hwang SY, Koulen P: Differential inositol 1,4,5-trisphosphate receptor signaling in a neuronal cell line. Int J Biochem Cell Biol. 2007, 39: 1852-1862. 10.1016/j.biocel.2007.05.003.CrossRefPubMed Duncan RS, Hwang SY, Koulen P: Differential inositol 1,4,5-trisphosphate receptor signaling in a neuronal cell line. Int J Biochem Cell Biol. 2007, 39: 1852-1862. 10.1016/j.biocel.2007.05.003.CrossRefPubMed
24.
go back to reference Koulen P, Madry C, Duncan RS, Hwang JY, Nixon E, McClung N, Gregg EV, Singh M: Progesterone potentiates IP(3)-mediated calcium signaling through Akt/PKB. Cell Physiol Biochem. 2008, 21: 161-172. 10.1159/000113758.CrossRefPubMed Koulen P, Madry C, Duncan RS, Hwang JY, Nixon E, McClung N, Gregg EV, Singh M: Progesterone potentiates IP(3)-mediated calcium signaling through Akt/PKB. Cell Physiol Biochem. 2008, 21: 161-172. 10.1159/000113758.CrossRefPubMed
25.
go back to reference Hwang J, Duncan RS, Madry C, Singh M, Koulen P: Progesterone potentiates calcium release through IP3 receptors by an Akt-mediated mechanism in hippocampal neurons. Cell Calcium. 2009, 45: 233-242. 10.1016/j.ceca.2008.10.006.PubMedCentralCrossRefPubMed Hwang J, Duncan RS, Madry C, Singh M, Koulen P: Progesterone potentiates calcium release through IP3 receptors by an Akt-mediated mechanism in hippocampal neurons. Cell Calcium. 2009, 45: 233-242. 10.1016/j.ceca.2008.10.006.PubMedCentralCrossRefPubMed
26.
go back to reference Bouaboula M, Poinot-Chazel C, Bourrie B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas P: Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J. 1995, 312: 637-641.PubMedCentralCrossRefPubMed Bouaboula M, Poinot-Chazel C, Bourrie B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas P: Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J. 1995, 312: 637-641.PubMedCentralCrossRefPubMed
27.
go back to reference Rueda D, Galve-Roperh I, Haro A, Guzman M: The CB(1) cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol Pharmacol. 2000, 8: 814-820. Rueda D, Galve-Roperh I, Haro A, Guzman M: The CB(1) cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol Pharmacol. 2000, 8: 814-820.
28.
go back to reference Derkinderen P, Ledent C, Parmentier M, Girault JA: Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J Neurochem. 2001, 77: 957-960. 10.1046/j.1471-4159.2001.00333.x.CrossRefPubMed Derkinderen P, Ledent C, Parmentier M, Girault JA: Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J Neurochem. 2001, 77: 957-960. 10.1046/j.1471-4159.2001.00333.x.CrossRefPubMed
29.
go back to reference Derkinderen P, Valient E, Toutant M, Corvol JC, Enslen H, Ledent C, Trzaskos J, Caboche J, Girault JA: Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci. 2003, 23: 2371-2382.PubMed Derkinderen P, Valient E, Toutant M, Corvol JC, Enslen H, Ledent C, Trzaskos J, Caboche J, Girault JA: Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci. 2003, 23: 2371-2382.PubMed
30.
go back to reference Sanchez MG, Ruiz-Llorente L, Sanchez AM, Diaz-Laviada I: Activation of phosphoinositide 3-kinase/PKB pathway by CB(1) and CB(2) cannabinoid receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cell Signal. 2003, 15: 851-859. 10.1016/S0898-6568(03)00036-6.CrossRefPubMed Sanchez MG, Ruiz-Llorente L, Sanchez AM, Diaz-Laviada I: Activation of phosphoinositide 3-kinase/PKB pathway by CB(1) and CB(2) cannabinoid receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cell Signal. 2003, 15: 851-859. 10.1016/S0898-6568(03)00036-6.CrossRefPubMed
31.
go back to reference Fayard E, Tintignac LA, Baudry A, Hemmings BA: Protein kinase B/Akt at a glance. J Cell Sci. 2005, 118: 5675-5678. 10.1242/jcs.02724.CrossRefPubMed Fayard E, Tintignac LA, Baudry A, Hemmings BA: Protein kinase B/Akt at a glance. J Cell Sci. 2005, 118: 5675-5678. 10.1242/jcs.02724.CrossRefPubMed
33.
go back to reference Nilsen J, Chen S, Brinton RD: Dual action of estrogen on glutamate-induced calcium signaling: mechanisms requiring interaction between estrogen receptors and src/mitogen activated protein kinase pathway. Brain Res. 2002, 930: 216-234. 10.1016/S0006-8993(02)02254-0.CrossRefPubMed Nilsen J, Chen S, Brinton RD: Dual action of estrogen on glutamate-induced calcium signaling: mechanisms requiring interaction between estrogen receptors and src/mitogen activated protein kinase pathway. Brain Res. 2002, 930: 216-234. 10.1016/S0006-8993(02)02254-0.CrossRefPubMed
34.
go back to reference Luo Y, DeFranco DB: Opposing roles for ERK1/2 in neuronal oxidative toxicity: distinct mechanisms of ERK1/2 action at early versus late phases of oxidative stress. J Biol Chem. 2006, 281: 16436-16442. 10.1074/jbc.M512430200.CrossRefPubMed Luo Y, DeFranco DB: Opposing roles for ERK1/2 in neuronal oxidative toxicity: distinct mechanisms of ERK1/2 action at early versus late phases of oxidative stress. J Biol Chem. 2006, 281: 16436-16442. 10.1074/jbc.M512430200.CrossRefPubMed
35.
go back to reference Singh M: Progesterone-induced neuroprotection. Endocrine. 2006, 29: 271-274. 10.1385/ENDO:29:2:271.CrossRefPubMed Singh M: Progesterone-induced neuroprotection. Endocrine. 2006, 29: 271-274. 10.1385/ENDO:29:2:271.CrossRefPubMed
36.
go back to reference Zhang L, Jope RS: Oxidative stress differentially modulates phosphorylation of ERK, p38 and CREB induced by NGF or EGF in PC12 cells. Neurobiol Aging. 1999, 20: 271-278. 10.1016/S0197-4580(99)00049-4.CrossRefPubMed Zhang L, Jope RS: Oxidative stress differentially modulates phosphorylation of ERK, p38 and CREB induced by NGF or EGF in PC12 cells. Neurobiol Aging. 1999, 20: 271-278. 10.1016/S0197-4580(99)00049-4.CrossRefPubMed
37.
go back to reference Romashkova JA, Makarov SS: NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999, 401: 86-90. 10.1038/43474.CrossRefPubMed Romashkova JA, Makarov SS: NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999, 401: 86-90. 10.1038/43474.CrossRefPubMed
38.
go back to reference Du K, Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 1998, 273: 32377-9. 10.1074/jbc.273.49.32377.CrossRefPubMed Du K, Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 1998, 273: 32377-9. 10.1074/jbc.273.49.32377.CrossRefPubMed
39.
go back to reference Ross RA, Brockie HC, Pertwee RG: Inhibition of nitric oxide production in RAW264.7 macrophages by cannabinoids and palmitoylethanolamide. Eur J Pharmacol. 2000, 401: 121-130. 10.1016/S0014-2999(00)00437-4.CrossRefPubMed Ross RA, Brockie HC, Pertwee RG: Inhibition of nitric oxide production in RAW264.7 macrophages by cannabinoids and palmitoylethanolamide. Eur J Pharmacol. 2000, 401: 121-130. 10.1016/S0014-2999(00)00437-4.CrossRefPubMed
40.
go back to reference Lambert DM, Di Marzo V: The palmitoylethanolamide and oleamide enigmas: are these two fatty acid amides cannabimimetic?. Curr Med Chem. 1999, 6: 757-773.PubMed Lambert DM, Di Marzo V: The palmitoylethanolamide and oleamide enigmas: are these two fatty acid amides cannabimimetic?. Curr Med Chem. 1999, 6: 757-773.PubMed
41.
go back to reference Sugiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T, Suhara Y, Takayama H, Waku : Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem. 2000, 275: 605-612. 10.1074/jbc.275.1.605.CrossRefPubMed Sugiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T, Suhara Y, Takayama H, Waku : Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem. 2000, 275: 605-612. 10.1074/jbc.275.1.605.CrossRefPubMed
42.
go back to reference Ross RA, Brockie HC, Stevenson LA, Murphy VL, Templeton F, Makriyannis A, Pertwee RG: Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L75 L759656, and AM630. Br J Pharmacol. 9633, 126: 665-72. 10.1038/sj.bjp.0702351.CrossRef Ross RA, Brockie HC, Stevenson LA, Murphy VL, Templeton F, Makriyannis A, Pertwee RG: Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L75 L759656, and AM630. Br J Pharmacol. 9633, 126: 665-72. 10.1038/sj.bjp.0702351.CrossRef
Metadata
Title
The neuroprotective properties of palmitoylethanolamine against oxidative stress in a neuronal cell line
Authors
R Scott Duncan
Kent D Chapman
Peter Koulen
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2009
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-4-50

Other articles of this Issue 1/2009

Molecular Neurodegeneration 1/2009 Go to the issue