Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Research

The molecular mechanism of MiR-26a-5p regulates autophagy and activates NLRP3 inflammasome to mediate cardiomyocyte hypertrophy

Authors: Li-qun Tang, Wei Wang, Qi-feng Tang, Ling-ling Wang

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Objective

Many studies have found that miR-26a-5p plays an essential role in the progression of pathological cardiac hypertrophy, however, there is still no evidence on whether miR-26a-5p is related to the activation of autophagy and NLRP3 inflammasome. And the mechanism of miR-26a-5p and NLRP3 inflammasome aggravating pathological cardiac hypertrophy remain unclear.

Methods

Cardiomyocytes were treated with 200µM PE to induce cardiac hypertrophy and intervened with 10mM NLRP3 inhibitor INF39. In addition, we also used the MiR-26a-5p mimic and inhibitor to transfect PE-induced cardiac hypertrophy. RT-qPCR and western blotting were used to detect the expressions of miR-26a-5p, NLRP3, ASC and Caspase-1 in each group, and we used α-SMA immunofluorescence to detect the change of cardiomyocyte area. The expression levels of autophagy proteins LC3, beclin-1 and p62 were detected by western blotting. Finally, we induced the SD rat cardiac hypertrophy model through aortic constriction (TAC) surgery. In the experimental group, rats were intervened with MiR-26a-5p mimic, MiR-26a-5p inhibitor, autophagy inhibitor 3-MA, and autophagy activator Rapamycin.

Results

In cell experiments, we observed that the expression of miR-26a-5p was associated with cardiomyocyte hypertrophy and increased surface area. Furthermore, miR-26a-5p facilitated autophagy and activated the NLRP3 inflammasome pathway, which caused changes in the expression of genes and proteins including LC3, beclin-1, p62, ACS, NLRP3, and Caspase-1. We discovered similar outcomes in the TAC rat model, where miR-26a-5p expression corresponded with cardiomyocyte enlargement and fibrosis in the cardiac interstitial and perivascular regions. In conclusion, miR-26a-5p has the potential to regulate autophagy and activate the NLRP3 inflammasome, contributing to the development of cardiomyocyte hypertrophy.

Conclusion

Our study found a relationship between the expression of miR-26a-5p and cardiomyocyte hypertrophy. The mechanism behind this relationship appears to involve the activation of the NLRP3 inflammasome pathway, which is caused by miR-26a-5p promoting autophagy. Targeting the expression of miR-26a-5p, as well as inhibiting the activation of autophagy and the NLRP3 inflammasome pathway, could offer additional treatments for pathological cardiac hypertrophy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shimizu I. Physiological and pathological cardiac hypertrophy [J]. J Mol Cell Cardiol. 2016;97:245–62.CrossRefPubMed Shimizu I. Physiological and pathological cardiac hypertrophy [J]. J Mol Cell Cardiol. 2016;97:245–62.CrossRefPubMed
2.
go back to reference Adzika GK, Machuki JO, SHANG W, et al. Pathological cardiac hypertrophy: the synergy of adenylyl cyclases inhibition in cardiac and immune cells during chronic catecholamine stress [J]. J Mol Med (Berl). 2019;97(7):897–907.CrossRefPubMed Adzika GK, Machuki JO, SHANG W, et al. Pathological cardiac hypertrophy: the synergy of adenylyl cyclases inhibition in cardiac and immune cells during chronic catecholamine stress [J]. J Mol Med (Berl). 2019;97(7):897–907.CrossRefPubMed
3.
go back to reference Yotti R, Seidman CE, Seidman JG. Advances in the genetic basis and Pathogenesis of Sarcomere cardiomyopathies [J]. Annu Rev Genomics Hum Genet. 2019;20:129–53.CrossRefPubMed Yotti R, Seidman CE, Seidman JG. Advances in the genetic basis and Pathogenesis of Sarcomere cardiomyopathies [J]. Annu Rev Genomics Hum Genet. 2019;20:129–53.CrossRefPubMed
4.
go back to reference Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy [J]. Nat Rev Cardiol. 2018;15(7):387–407.CrossRefPubMed Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy [J]. Nat Rev Cardiol. 2018;15(7):387–407.CrossRefPubMed
5.
go back to reference Chacar S, Hajal J, Saliba Y, et al. Long-term intake of phenolic compounds attenuates age-related cardiac remodeling [J]. Aging Cell. 2019;18(2):e12894.CrossRefPubMedPubMedCentral Chacar S, Hajal J, Saliba Y, et al. Long-term intake of phenolic compounds attenuates age-related cardiac remodeling [J]. Aging Cell. 2019;18(2):e12894.CrossRefPubMedPubMedCentral
6.
go back to reference Stewart RM, Rodriguez EC, King MC. Ablation of SUN2-containing LINC complexes drives cardiac hypertrophy without interstitial fibrosis [J]. Mol Biol Cell. 2019;30(14):1664–75.CrossRefPubMedPubMedCentral Stewart RM, Rodriguez EC, King MC. Ablation of SUN2-containing LINC complexes drives cardiac hypertrophy without interstitial fibrosis [J]. Mol Biol Cell. 2019;30(14):1664–75.CrossRefPubMedPubMedCentral
7.
go back to reference Ho MY, Wang CY. Role of Irisin in Myocardial Infarction, Heart Failure, and Cardiac hypertrophy [J]. Cells, 2021;10(8). Ho MY, Wang CY. Role of Irisin in Myocardial Infarction, Heart Failure, and Cardiac hypertrophy [J]. Cells, 2021;10(8).
8.
go back to reference Li PL, Liu H, Chen GP, et al. STEAP3 (six-Transmembrane epithelial Antigen of prostate 3) inhibits pathological cardiac hypertrophy [J]. Hypertension. 2020;76(4):1219–30.CrossRefPubMed Li PL, Liu H, Chen GP, et al. STEAP3 (six-Transmembrane epithelial Antigen of prostate 3) inhibits pathological cardiac hypertrophy [J]. Hypertension. 2020;76(4):1219–30.CrossRefPubMed
9.
go back to reference Shi S, Jiang P. Therapeutic potentials of modulating autophagy in pathological cardiac hypertrophy [J]. Biomed Pharmacother. 2022;156:113967.CrossRefPubMed Shi S, Jiang P. Therapeutic potentials of modulating autophagy in pathological cardiac hypertrophy [J]. Biomed Pharmacother. 2022;156:113967.CrossRefPubMed
10.
go back to reference Zhao D, Zhong G, Li J, et al. Targeting E3 ubiquitin ligase WWP1 prevents Cardiac Hypertrophy through destabilizing DVL2 via inhibition of K27-Linked ubiquitination [J]. Circulation. 2021;144(9):694–711.CrossRefPubMed Zhao D, Zhong G, Li J, et al. Targeting E3 ubiquitin ligase WWP1 prevents Cardiac Hypertrophy through destabilizing DVL2 via inhibition of K27-Linked ubiquitination [J]. Circulation. 2021;144(9):694–711.CrossRefPubMed
11.
go back to reference Qiu Z, He Y, Ming H, et al. Lipopolysaccharide (LPS) aggravates high glucose- and Hypoxia/Reoxygenation-Induced Injury through activating ROS-Dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res. 2019;2019:8151836.CrossRefPubMedPubMedCentral Qiu Z, He Y, Ming H, et al. Lipopolysaccharide (LPS) aggravates high glucose- and Hypoxia/Reoxygenation-Induced Injury through activating ROS-Dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res. 2019;2019:8151836.CrossRefPubMedPubMedCentral
12.
go back to reference Bai Y, Sun X. Chu Q, Caspase-1 regulate AngII-induced cardiomyocyte hypertrophy via upregulation of IL-1β [J]. Biosci Rep, 2018;38(2). Bai Y, Sun X. Chu Q, Caspase-1 regulate AngII-induced cardiomyocyte hypertrophy via upregulation of IL-1β [J]. Biosci Rep, 2018;38(2).
13.
go back to reference Sun M, Chen M, Dawood F, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state [J]. Circulation. 2007;115(11):1398–407.CrossRefPubMed Sun M, Chen M, Dawood F, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state [J]. Circulation. 2007;115(11):1398–407.CrossRefPubMed
16.
go back to reference Xie Q, Shen WW, Zhong J, et al. Lipopolysaccharide/adenosine triphosphate induces IL–1β and IL-18 secretion through the NLRP3 inflammasome in RAW264.7 murine macrophage cells [J]. Int J Mol Med. 2014;34(1):341–9.CrossRefPubMed Xie Q, Shen WW, Zhong J, et al. Lipopolysaccharide/adenosine triphosphate induces IL–1β and IL-18 secretion through the NLRP3 inflammasome in RAW264.7 murine macrophage cells [J]. Int J Mol Med. 2014;34(1):341–9.CrossRefPubMed
18.
go back to reference Minutoli L, Puzzolo D, Rinaldi M et al. ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury [J]. Oxid Med Cell Longev, 2016;2016:2183026. Minutoli L, Puzzolo D, Rinaldi M et al. ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury [J]. Oxid Med Cell Longev, 2016;2016:2183026.
19.
go back to reference Zhang YZ, Sui XL, Xu YP, et al. NLRP3 inflammasome and lipid metabolism analysis based on UPLC-Q-TOF-MS in gouty Nephropathy [J]. Int J Mol Med. 2019;44(1):172–84.PubMedPubMedCentral Zhang YZ, Sui XL, Xu YP, et al. NLRP3 inflammasome and lipid metabolism analysis based on UPLC-Q-TOF-MS in gouty Nephropathy [J]. Int J Mol Med. 2019;44(1):172–84.PubMedPubMedCentral
20.
go back to reference Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition [J]. Nat Chem Biol. 2019;15(6):556–9.CrossRefPubMed Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition [J]. Nat Chem Biol. 2019;15(6):556–9.CrossRefPubMed
22.
go back to reference Han X, Sun S, Sun Y, et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson Disease [J]. Autophagy. 2019;15(11):1860–81.CrossRefPubMedPubMedCentral Han X, Sun S, Sun Y, et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson Disease [J]. Autophagy. 2019;15(11):1860–81.CrossRefPubMedPubMedCentral
23.
go back to reference Harris J, Lang T, Thomas JP W, et al. Autophagy and inflammasomes [J]. Mol Immunol. 2017;86:10–5.CrossRefPubMed Harris J, Lang T, Thomas JP W, et al. Autophagy and inflammasomes [J]. Mol Immunol. 2017;86:10–5.CrossRefPubMed
24.
go back to reference Tao Y, Wang N, Qiu T et al. The Role of Autophagy and NLRP3 Inflammasome in Liver Fibrosis [J]. Biomed Res Int, 2020;2020:7269150. Tao Y, Wang N, Qiu T et al. The Role of Autophagy and NLRP3 Inflammasome in Liver Fibrosis [J]. Biomed Res Int, 2020;2020:7269150.
26.
27.
go back to reference Liu P, Huang G, Wei T, et al. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation [J]. Biochim Biophys Acta Mol Basis Dis. 2018;1864(3):764–77.CrossRefPubMed Liu P, Huang G, Wei T, et al. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation [J]. Biochim Biophys Acta Mol Basis Dis. 2018;1864(3):764–77.CrossRefPubMed
28.
go back to reference Chang YP, Ka SM, Hsu WH, et al. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy [J]. J Cell Physiol. 2015;230(7):1567–79.CrossRefPubMed Chang YP, Ka SM, Hsu WH, et al. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy [J]. J Cell Physiol. 2015;230(7):1567–79.CrossRefPubMed
29.
go back to reference Zhou H, Feng L, Xu F, et al. Berberine inhibits palmitate-induced NLRP3 inflammasome activation by triggering autophagy in macrophages: a new mechanism linking berberine to insulin resistance improvement [J]. Biomed Pharmacother. 2017;89:864–74.CrossRefPubMed Zhou H, Feng L, Xu F, et al. Berberine inhibits palmitate-induced NLRP3 inflammasome activation by triggering autophagy in macrophages: a new mechanism linking berberine to insulin resistance improvement [J]. Biomed Pharmacother. 2017;89:864–74.CrossRefPubMed
30.
go back to reference Dupont N, Jiang S, Pilli M, et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β [J]. Embo j. 2011;30(23):4701–11.CrossRefPubMedPubMedCentral Dupont N, Jiang S, Pilli M, et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β [J]. Embo j. 2011;30(23):4701–11.CrossRefPubMedPubMedCentral
31.
go back to reference Wu M Y, LU JH. Autophagy and macrophage functions: inflammatory response and phagocytosis [J]. Cells, 2019;9(1). Wu M Y, LU JH. Autophagy and macrophage functions: inflammatory response and phagocytosis [J]. Cells, 2019;9(1).
32.
33.
go back to reference Jiang GM, Tan Y, Wang H, et al. The relationship between autophagy and the immune system and its applications for Tumor immunotherapy [J]. Mol Cancer. 2019;18(1):17.CrossRefPubMedPubMedCentral Jiang GM, Tan Y, Wang H, et al. The relationship between autophagy and the immune system and its applications for Tumor immunotherapy [J]. Mol Cancer. 2019;18(1):17.CrossRefPubMedPubMedCentral
35.
go back to reference Pfeifer P, Zietzer A, Hölscher M, et al. Transverse aortic constriction-induced Heart Failure leads to increased levels of circulating microparticles [J]. Int J Cardiol. 2022;347:54–8.CrossRefPubMed Pfeifer P, Zietzer A, Hölscher M, et al. Transverse aortic constriction-induced Heart Failure leads to increased levels of circulating microparticles [J]. Int J Cardiol. 2022;347:54–8.CrossRefPubMed
36.
go back to reference Shi H, Li H, Zhang F, et al. MiR-26a-5p alleviates cardiac hypertrophy and dysfunction via targeting ADAM17 [J]. Cell Biol Int. 2021;45(11):2357–67.CrossRefPubMed Shi H, Li H, Zhang F, et al. MiR-26a-5p alleviates cardiac hypertrophy and dysfunction via targeting ADAM17 [J]. Cell Biol Int. 2021;45(11):2357–67.CrossRefPubMed
Metadata
Title
The molecular mechanism of MiR-26a-5p regulates autophagy and activates NLRP3 inflammasome to mediate cardiomyocyte hypertrophy
Authors
Li-qun Tang
Wei Wang
Qi-feng Tang
Ling-ling Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-023-03695-w

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue