Skip to main content
Top
Published in: Respiratory Research 1/2015

Open Access 01-12-2015 | Research

The lung response to ozone is determined by age and is partially dependent on toll-Like receptor 4

Authors: Kelsa Gabehart, Kelly A. Correll, Joan E. Loader, Carl W. White, Azzeddine Dakhama

Published in: Respiratory Research | Issue 1/2015

Login to get access

Abstract

Background

Ozone pollution has adverse effects on respiratory health in children and adults. This study was carried out in the mouse model to investigate the influence of age and to define the role of toll-like receptor four (TLR4) in the lung response to ozone exposure during postnatal development.

Methods

Female mice (1 to 6 weeks of age) were exposed for 3 h to ozone (1 part per million) or filtered air. Analyses were carried out at six and 24 h after completion of exposure, to assess the effects on lung permeability, airway neutrophilia, expression of antioxidants and chemokines, and mucus production. The role of TLR4 was defined by examining TLR4 expression in the lung during development, and by investigating the response to ozone in tlr4-deficient mice.

Results

Metallothionein-1, calcitonin gene-related product, and chemokine C-X-C ligand (CXCL) five were consistent markers induced by ozone throughout development. Compared with adults, neonates expressed lower levels of pulmonary TLR4 and responded with increased mucus production, and developed an attenuated response to ozone characterized by reduced albumin leakage and neutrophil influx into the airways, and lower expression of CXCL1 and CXCL2 chemokines. Examination of the responses in tlr4-deficient mice indicated that ozone-mediated airway neutrophilia, but not albumin leakage or mucus production were dependent on TLR4.

Conclusions

Collectively, the data demonstrate that the response to ozone is determined by age and is partially dependent on TLR4 signaling. The reduced responsiveness of the neonatal lung to ozone may be due at least in part to insufficient pulmonary TLR4 expression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kinney PL, Ware JH, Spengler JD, Dockery DW, Speizer FE, Ferris Jr BG. Short-term pulmonary function change in association with ozone levels. Am Rev Respir Dis. 1989;139:56–61.CrossRefPubMed Kinney PL, Ware JH, Spengler JD, Dockery DW, Speizer FE, Ferris Jr BG. Short-term pulmonary function change in association with ozone levels. Am Rev Respir Dis. 1989;139:56–61.CrossRefPubMed
2.
go back to reference Mar TF, Koenig JQ. Relationship between visits to emergency departments for asthma and ozone exposure in greater Seattle Washington. Ann Allergy Asthma Immunol. 2009;103:474–9.CrossRefPubMed Mar TF, Koenig JQ. Relationship between visits to emergency departments for asthma and ozone exposure in greater Seattle Washington. Ann Allergy Asthma Immunol. 2009;103:474–9.CrossRefPubMed
3.
go back to reference Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, Tellez-Rojo MM, Moreno-Macias H, Reyes-Ruiz NI, et al. Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med. 2002;166:703–9.CrossRefPubMed Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, Tellez-Rojo MM, Moreno-Macias H, Reyes-Ruiz NI, et al. Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med. 2002;166:703–9.CrossRefPubMed
4.
go back to reference Strickland MJ, Darrow LA, Mulholland JA, Klein M, Flanders WD, Winquist A, et al. Implications of different approaches for characterizing ambient air pollutant concentrations within the urban airshed for time-series studies and health benefits analyses. Environ Heal. 2011;10:36.CrossRef Strickland MJ, Darrow LA, Mulholland JA, Klein M, Flanders WD, Winquist A, et al. Implications of different approaches for characterizing ambient air pollutant concentrations within the urban airshed for time-series studies and health benefits analyses. Environ Heal. 2011;10:36.CrossRef
5.
go back to reference Thurston GD, Lippmann M, Scott MB, Fine JM. Summertime haze air pollution and children with asthma. Am J Respir Crit Care Med. 1997;155:654–60.CrossRefPubMed Thurston GD, Lippmann M, Scott MB, Fine JM. Summertime haze air pollution and children with asthma. Am J Respir Crit Care Med. 1997;155:654–60.CrossRefPubMed
6.
go back to reference Weisel CP, Cody RP, Lioy PJ. Relationship between summertime ambient ozone levels and emergency department visits for asthma in central New Jersey. Environ Health Perspect. 1995;103 Suppl 2:97–102.CrossRefPubMedPubMedCentral Weisel CP, Cody RP, Lioy PJ. Relationship between summertime ambient ozone levels and emergency department visits for asthma in central New Jersey. Environ Health Perspect. 1995;103 Suppl 2:97–102.CrossRefPubMedPubMedCentral
7.
go back to reference Triche EW, Gent JF, Holford TR, Belanger K, Bracken MB, Beckett WS, et al. Low-level ozone exposure and respiratory symptoms in infants. Environ Health Perspect. 2006;114:911–6.CrossRefPubMed Triche EW, Gent JF, Holford TR, Belanger K, Bracken MB, Beckett WS, et al. Low-level ozone exposure and respiratory symptoms in infants. Environ Health Perspect. 2006;114:911–6.CrossRefPubMed
8.
go back to reference Babin SM, Burkom HS, Holtry RS, Tabernero NR, Stokes LD, Davies-Cole JO, et al. Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group. Environ Heal. 2007;6:9.CrossRef Babin SM, Burkom HS, Holtry RS, Tabernero NR, Stokes LD, Davies-Cole JO, et al. Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group. Environ Heal. 2007;6:9.CrossRef
9.
go back to reference Silverman RA, Ito K. Age-related association of fine particles and ozone with severe acute asthma in New York City. J Allergy Clin Immunol. 2010;125:367–73.CrossRefPubMed Silverman RA, Ito K. Age-related association of fine particles and ozone with severe acute asthma in New York City. J Allergy Clin Immunol. 2010;125:367–73.CrossRefPubMed
10.
go back to reference Villeneuve PJ, Chen L, Rowe BH, Coates F. Outdoor air pollution and emergency department visits for asthma among children and adults: a case-crossover study in northern Alberta Canada. Environ Heal. 2007;6:40.CrossRef Villeneuve PJ, Chen L, Rowe BH, Coates F. Outdoor air pollution and emergency department visits for asthma among children and adults: a case-crossover study in northern Alberta Canada. Environ Heal. 2007;6:40.CrossRef
11.
go back to reference Bhalla DK. Ozone-induced lung inflammation and mucosal barrier disruption: toxicology, mechanisms, and implications. J Toxicol Environ Health B Crit Rev. 1999;2:31–86.CrossRefPubMed Bhalla DK. Ozone-induced lung inflammation and mucosal barrier disruption: toxicology, mechanisms, and implications. J Toxicol Environ Health B Crit Rev. 1999;2:31–86.CrossRefPubMed
12.
go back to reference Devlin RB, McDonnell WF, Mann R, Becker S, House DE, Schreinemachers D, et al. Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. Am J Respir Cell Mol Biol. 1991;4:72–81.CrossRefPubMed Devlin RB, McDonnell WF, Mann R, Becker S, House DE, Schreinemachers D, et al. Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. Am J Respir Cell Mol Biol. 1991;4:72–81.CrossRefPubMed
13.
go back to reference Koren HS, Devlin RB, Graham DE, Mann R, McGee MP, Horstman DH, et al. Ozone-induced inflammation in the lower airways of human subjects. Am Rev Respir Dis. 1989;139:407–15.CrossRefPubMed Koren HS, Devlin RB, Graham DE, Mann R, McGee MP, Horstman DH, et al. Ozone-induced inflammation in the lower airways of human subjects. Am Rev Respir Dis. 1989;139:407–15.CrossRefPubMed
15.
go back to reference Seltzer J, Bigby BG, Stulbarg M, Holtzman MJ, Nadel JA, Ueki IF, et al. O3-induced change in bronchial reactivity to methacholine and airway inflammation in humans. J Appl Phys. 1986;60:1321–6. Seltzer J, Bigby BG, Stulbarg M, Holtzman MJ, Nadel JA, Ueki IF, et al. O3-induced change in bronchial reactivity to methacholine and airway inflammation in humans. J Appl Phys. 1986;60:1321–6.
16.
go back to reference Tepper JS, Costa DL, Lehmann JR, Weber MF, Hatch GE. Unattenuated structural and biochemical alterations in the rat lung during functional adaptation to ozone. Am Rev Respir Dis. 1989;140:493–501.CrossRefPubMed Tepper JS, Costa DL, Lehmann JR, Weber MF, Hatch GE. Unattenuated structural and biochemical alterations in the rat lung during functional adaptation to ozone. Am Rev Respir Dis. 1989;140:493–501.CrossRefPubMed
17.
go back to reference Christian DL, Chen LL, Scannell CH, Ferrando RE, Welch BS, Balmes JR. Ozone-induced inflammation is attenuated with multiday exposure. Am J Respir Crit Care Med. 1998;158:532–7.CrossRefPubMed Christian DL, Chen LL, Scannell CH, Ferrando RE, Welch BS, Balmes JR. Ozone-induced inflammation is attenuated with multiday exposure. Am J Respir Crit Care Med. 1998;158:532–7.CrossRefPubMed
18.
go back to reference Horvath SM, Gliner JA, Folinsbee LJ. Adaptation to ozone: duration of effect. Am Rev Respir Dis. 1981;123:496–9.PubMed Horvath SM, Gliner JA, Folinsbee LJ. Adaptation to ozone: duration of effect. Am Rev Respir Dis. 1981;123:496–9.PubMed
19.
go back to reference Linn WS, Medway DA, Anzar UT, Valencia LM, Spier CE, Tsao FS, et al. Persistence of adaptation to ozone in volunteers exposed repeatedly for six weeks. Am Rev Respir Dis. 1982;125:491–5.CrossRefPubMed Linn WS, Medway DA, Anzar UT, Valencia LM, Spier CE, Tsao FS, et al. Persistence of adaptation to ozone in volunteers exposed repeatedly for six weeks. Am Rev Respir Dis. 1982;125:491–5.CrossRefPubMed
20.
go back to reference van Bree L, Dormans JA, Koren HS, Devlin RB, Rombout PJ. Attenuation and recovery of pulmonary injury in rats following short-term, repeated daily exposure to ozone. Inhal Toxicol. 2002;14:883–900.CrossRefPubMed van Bree L, Dormans JA, Koren HS, Devlin RB, Rombout PJ. Attenuation and recovery of pulmonary injury in rats following short-term, repeated daily exposure to ozone. Inhal Toxicol. 2002;14:883–900.CrossRefPubMed
21.
go back to reference van der Wal WA, van Bree L, Marra M, Rombout PJ. Attenuation of acute lung injury by ozone inhalation--the effect of low level pre-exposure. Toxicol Lett. 1994;72:291–8.CrossRefPubMed van der Wal WA, van Bree L, Marra M, Rombout PJ. Attenuation of acute lung injury by ozone inhalation--the effect of low level pre-exposure. Toxicol Lett. 1994;72:291–8.CrossRefPubMed
22.
go back to reference Plopper CG, Smiley-Jewell SM, Miller LA, Fanucchi MV, Evans MJ, Buckpitt AR, et al. Asthma/allergic airways disease: does postnatal exposure to environmental toxicants promote airway pathobiology? Toxicol Pathol. 2007;35:97–110.CrossRefPubMed Plopper CG, Smiley-Jewell SM, Miller LA, Fanucchi MV, Evans MJ, Buckpitt AR, et al. Asthma/allergic airways disease: does postnatal exposure to environmental toxicants promote airway pathobiology? Toxicol Pathol. 2007;35:97–110.CrossRefPubMed
23.
go back to reference Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15:191–5.CrossRefPubMed Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15:191–5.CrossRefPubMed
24.
go back to reference Auten RL, Foster WM. Biochemical effects of ozone on asthma during postnatal development. Biochim Biophys Acta. 1810;2011:1114–9. Auten RL, Foster WM. Biochemical effects of ozone on asthma during postnatal development. Biochim Biophys Acta. 1810;2011:1114–9.
26.
go back to reference Kleeberger SR. Genetic aspects of susceptibility to air pollution. Eur Respir J Suppl. 2003;40:52–6.CrossRef Kleeberger SR. Genetic aspects of susceptibility to air pollution. Eur Respir J Suppl. 2003;40:52–6.CrossRef
28.
go back to reference Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Curr Opin Immunol. 2005;17:338–44.CrossRefPubMed Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Curr Opin Immunol. 2005;17:338–44.CrossRefPubMed
29.
go back to reference Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.CrossRefPubMed Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.CrossRefPubMed
30.
go back to reference Kaisho T, Akira S. Critical roles of Toll-like receptors in host defense. Crit Rev Immunol. 2000;20:393–405.CrossRefPubMed Kaisho T, Akira S. Critical roles of Toll-like receptors in host defense. Crit Rev Immunol. 2000;20:393–405.CrossRefPubMed
31.
go back to reference Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol. 2010;87:989–99.CrossRefPubMed Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol. 2010;87:989–99.CrossRefPubMed
32.
go back to reference Jiang D, Liang J, Li Y, Noble PW. The role of Toll-like receptors in non-infectious lung injury. Cell Res. 2006;16:693–701.CrossRefPubMed Jiang D, Liang J, Li Y, Noble PW. The role of Toll-like receptors in non-infectious lung injury. Cell Res. 2006;16:693–701.CrossRefPubMed
33.
go back to reference Mollen KP, Anand RJ, Tsung A, Prince JM, Levy RM, Billiar TR. Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock. 2006;26:430–7.CrossRefPubMed Mollen KP, Anand RJ, Tsung A, Prince JM, Levy RM, Billiar TR. Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock. 2006;26:430–7.CrossRefPubMed
34.
go back to reference Tolle LB, Standiford TJ. Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol. 2013;229:145–56.CrossRefPubMed Tolle LB, Standiford TJ. Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol. 2013;229:145–56.CrossRefPubMed
35.
go back to reference Garantziotis S, Li Z, Potts EN, Lindsey JY, Stober VP, Polosukhin VV, et al. TLR4 is necessary for hyaluronan-mediated airway hyperresponsiveness after ozone inhalation. Am J Respir Crit Care Med. 2010;181:666–75.CrossRefPubMed Garantziotis S, Li Z, Potts EN, Lindsey JY, Stober VP, Polosukhin VV, et al. TLR4 is necessary for hyaluronan-mediated airway hyperresponsiveness after ozone inhalation. Am J Respir Crit Care Med. 2010;181:666–75.CrossRefPubMed
36.
go back to reference Li Z, Potts-Kant EN, Garantziotis S, Foster WM, Hollingsworth JW. Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP. PLoS One. 2011;6:e27137.CrossRefPubMedPubMedCentral Li Z, Potts-Kant EN, Garantziotis S, Foster WM, Hollingsworth JW. Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP. PLoS One. 2011;6:e27137.CrossRefPubMedPubMedCentral
37.
go back to reference Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133:235–49.CrossRefPubMed Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133:235–49.CrossRefPubMed
38.
go back to reference Shore SA, Johnston RA, Schwartzman IN, Chism D, Krishna Murthy GG. Ozone-induced airway hyperresponsiveness is reduced in immature mice. J Appl Physiol. 2002;92:1019–28.CrossRefPubMed Shore SA, Johnston RA, Schwartzman IN, Chism D, Krishna Murthy GG. Ozone-induced airway hyperresponsiveness is reduced in immature mice. J Appl Physiol. 2002;92:1019–28.CrossRefPubMed
39.
go back to reference Vancza EM, Galdanes K, Gunnison A, Hatch G, Gordon T. Age, strain, and gender as factors for increased sensitivity of the mouse lung to inhaled ozone. Toxicol Sci. 2009;107:535–43.CrossRefPubMed Vancza EM, Galdanes K, Gunnison A, Hatch G, Gordon T. Age, strain, and gender as factors for increased sensitivity of the mouse lung to inhaled ozone. Toxicol Sci. 2009;107:535–43.CrossRefPubMed
40.
go back to reference Johnston CJ, Holm BA, Finkelstein JN. Differential proinflammatory cytokine responses of the lung to ozone and lipopolysaccharide exposure during postnatal development. Exp Lung Res. 2004;30:599–614.CrossRefPubMed Johnston CJ, Holm BA, Finkelstein JN. Differential proinflammatory cytokine responses of the lung to ozone and lipopolysaccharide exposure during postnatal development. Exp Lung Res. 2004;30:599–614.CrossRefPubMed
41.
go back to reference Harju K, Glumoff V, Hallman M. Ontogeny of Toll-like receptors TLR2 and TLR4 in mice. Pediatr Res. 2001;49:81–3.CrossRefPubMed Harju K, Glumoff V, Hallman M. Ontogeny of Toll-like receptors TLR2 and TLR4 in mice. Pediatr Res. 2001;49:81–3.CrossRefPubMed
42.
go back to reference Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–52.PubMed Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–52.PubMed
43.
go back to reference Park JW, Taube C, Joetham A, Takeda K, Kodama T, Dakhama A, et al. Complement activation is critical to airway hyperresponsiveness after acute ozone exposure. Am J Respir Crit Care Med. 2004;169:726–32.CrossRefPubMed Park JW, Taube C, Joetham A, Takeda K, Kodama T, Dakhama A, et al. Complement activation is critical to airway hyperresponsiveness after acute ozone exposure. Am J Respir Crit Care Med. 2004;169:726–32.CrossRefPubMed
44.
go back to reference Gabehart K, Correll KA, Yang J, Collins ML, Loader JE, Leach S, et al. Transcriptome profiling of the newborn mouse lung response to acute ozone exposure. Toxicol Sci. 2014;138:175–90.CrossRefPubMed Gabehart K, Correll KA, Yang J, Collins ML, Loader JE, Leach S, et al. Transcriptome profiling of the newborn mouse lung response to acute ozone exposure. Toxicol Sci. 2014;138:175–90.CrossRefPubMed
45.
go back to reference Kleeberger SR, Reddy S, Zhang LY, Jedlicka AE. Genetic susceptibility to ozone-induced lung hyperpermeability: role of toll-like receptor 4. Am J Respir Cell Mol Biol. 2000;22:620–7.CrossRefPubMed Kleeberger SR, Reddy S, Zhang LY, Jedlicka AE. Genetic susceptibility to ozone-induced lung hyperpermeability: role of toll-like receptor 4. Am J Respir Cell Mol Biol. 2000;22:620–7.CrossRefPubMed
46.
go back to reference Silverman F, Folinsbee LJ, Barnard J, Shephard RJ. Pulmonary function changes in ozone-interaction of concentration and ventilation. J Appl Physiol. 1976;41:859–64.PubMed Silverman F, Folinsbee LJ, Barnard J, Shephard RJ. Pulmonary function changes in ozone-interaction of concentration and ventilation. J Appl Physiol. 1976;41:859–64.PubMed
47.
go back to reference Mudway IS, Kelly FJ. An investigation of inhaled ozone dose and the magnitude of airway inflammation in healthy adults. Am J Respir Crit Care Med. 2004;169:1089–95.CrossRefPubMed Mudway IS, Kelly FJ. An investigation of inhaled ozone dose and the magnitude of airway inflammation in healthy adults. Am J Respir Crit Care Med. 2004;169:1089–95.CrossRefPubMed
48.
go back to reference Gerrity TR, Weaver RA, Berntsen J, House DE, O’Neil JJ. Extrathoracic and intrathoracic removal of O3 in tidal-breathing humans. J Appl Physiol. 1988;65:393–400.PubMed Gerrity TR, Weaver RA, Berntsen J, House DE, O’Neil JJ. Extrathoracic and intrathoracic removal of O3 in tidal-breathing humans. J Appl Physiol. 1988;65:393–400.PubMed
49.
go back to reference Hatch GE, Slade R, Harris LP, McDonnell WF, Devlin RB, Koren HS, et al. Ozone dose and effect in humans and rats. A comparison using oxygen-18 labeling and bronchoalveolar lavage. Am J Respir Crit Care Med. 1994;150:676–83.CrossRefPubMed Hatch GE, Slade R, Harris LP, McDonnell WF, Devlin RB, Koren HS, et al. Ozone dose and effect in humans and rats. A comparison using oxygen-18 labeling and bronchoalveolar lavage. Am J Respir Crit Care Med. 1994;150:676–83.CrossRefPubMed
50.
go back to reference Hatch GE, McKee J, Brown J, McDonnell W, Seal E, Soukup J, et al. Biomarkers of Dose and Effect of Inhaled Ozone in Resting versus Exercising Human Subjects: Comparison with Resting Rats. Biomark Insights. 2013;8:53–67.CrossRefPubMedPubMedCentral Hatch GE, McKee J, Brown J, McDonnell W, Seal E, Soukup J, et al. Biomarkers of Dose and Effect of Inhaled Ozone in Resting versus Exercising Human Subjects: Comparison with Resting Rats. Biomark Insights. 2013;8:53–67.CrossRefPubMedPubMedCentral
51.
go back to reference Elsayed NM, Mustafa MG, Postlethwait EM. Age-dependent pulmonary response of rats to ozone exposure. J Toxicol Environ Health. 1982;9:835–48.CrossRefPubMed Elsayed NM, Mustafa MG, Postlethwait EM. Age-dependent pulmonary response of rats to ozone exposure. J Toxicol Environ Health. 1982;9:835–48.CrossRefPubMed
52.
go back to reference Mustafa MG, Elsayed NM, Ospital JJ, Hacker AD. Influence of age on the biochemical response of rat lung to ozone exposure. Toxicol Ind Health. 1985;1:29–41.CrossRefPubMed Mustafa MG, Elsayed NM, Ospital JJ, Hacker AD. Influence of age on the biochemical response of rat lung to ozone exposure. Toxicol Ind Health. 1985;1:29–41.CrossRefPubMed
53.
go back to reference Mei J, Liu Y, Dai N, Favara M, Greene T, Jeyaseelan S, et al. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity. 2010;33:106–17.CrossRefPubMedPubMedCentral Mei J, Liu Y, Dai N, Favara M, Greene T, Jeyaseelan S, et al. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity. 2010;33:106–17.CrossRefPubMedPubMedCentral
54.
go back to reference Roy MG, Rahmani M, Hernandez JR, Alexander SN, Ehre C, Ho SB, et al. Mucin production during prenatal and postnatal murine lung development. Am J Respir Cell Mol Biol. 2011;44:755–60.CrossRefPubMedPubMedCentral Roy MG, Rahmani M, Hernandez JR, Alexander SN, Ehre C, Ho SB, et al. Mucin production during prenatal and postnatal murine lung development. Am J Respir Cell Mol Biol. 2011;44:755–60.CrossRefPubMedPubMedCentral
55.
go back to reference Pryor WA. How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts? Free Radic Biol Med. 1992;12:83–8.CrossRefPubMed Pryor WA. How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts? Free Radic Biol Med. 1992;12:83–8.CrossRefPubMed
56.
go back to reference Cross CE, Halliwell B, Allen A. Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet. 1984;1:1328–30.CrossRefPubMed Cross CE, Halliwell B, Allen A. Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet. 1984;1:1328–30.CrossRefPubMed
57.
go back to reference Ogasawara Y, Namai T, Yoshino F, Lee MC, Ishii K. Sialic acid is an essential moiety of mucin as a hydroxyl radical scavenger. FEBS Lett. 2007;581:2473–7.CrossRefPubMed Ogasawara Y, Namai T, Yoshino F, Lee MC, Ishii K. Sialic acid is an essential moiety of mucin as a hydroxyl radical scavenger. FEBS Lett. 2007;581:2473–7.CrossRefPubMed
58.
go back to reference Savov JD, Whitehead GS, Wang J, Liao G, Usuka J, Peltz G, et al. Ozone-induced acute pulmonary injury in inbred mouse strains. Am J Respir Cell Mol Biol. 2004;31:69–77.CrossRefPubMed Savov JD, Whitehead GS, Wang J, Liao G, Usuka J, Peltz G, et al. Ozone-induced acute pulmonary injury in inbred mouse strains. Am J Respir Cell Mol Biol. 2004;31:69–77.CrossRefPubMed
59.
go back to reference Zhang LY, Levitt RC, Kleeberger SR. Differential susceptibility to ozone-induced airways hyperreactivity in inbred strains of mice. Exp Lung Res. 1995;21:503–18.CrossRefPubMed Zhang LY, Levitt RC, Kleeberger SR. Differential susceptibility to ozone-induced airways hyperreactivity in inbred strains of mice. Exp Lung Res. 1995;21:503–18.CrossRefPubMed
60.
go back to reference Kleeberger SR, Levitt RC, Zhang LY, Longphre M, Harkema J, Jedlicka A, et al. Linkage analysis of susceptibility to ozone-induced lung inflammation in inbred mice. Nat Genet. 1997;17:475–8.CrossRefPubMed Kleeberger SR, Levitt RC, Zhang LY, Longphre M, Harkema J, Jedlicka A, et al. Linkage analysis of susceptibility to ozone-induced lung inflammation in inbred mice. Nat Genet. 1997;17:475–8.CrossRefPubMed
61.
go back to reference Prows DR, Shertzer HG, Daly MJ, Sidman CL, Leikauf GD. Genetic analysis of ozone-induced acute lung injury in sensitive and resistant strains of mice. Nat Genet. 1997;17:471–4.CrossRefPubMed Prows DR, Shertzer HG, Daly MJ, Sidman CL, Leikauf GD. Genetic analysis of ozone-induced acute lung injury in sensitive and resistant strains of mice. Nat Genet. 1997;17:471–4.CrossRefPubMed
62.
go back to reference Song Y, Shi Y, Ao LH, Harken AH, Meng XZ. TLR4 mediates LPS-induced HO-1 expression in mouse liver: role of TNF-alpha and IL-1beta. World J Gastroenterol. 2003;9:1799–803.CrossRefPubMedPubMedCentral Song Y, Shi Y, Ao LH, Harken AH, Meng XZ. TLR4 mediates LPS-induced HO-1 expression in mouse liver: role of TNF-alpha and IL-1beta. World J Gastroenterol. 2003;9:1799–803.CrossRefPubMedPubMedCentral
63.
go back to reference Chen C, Zhang F, Zhang Z, Peng M, Wang Y, Chen Y. TLR4 signaling-induced heme oxygenase upregulation in the acute lung injury: role in hemorrhagic shock and two-hit induced lung inflammation. Mol Biol Rep. 2013;40:1167–72.CrossRefPubMed Chen C, Zhang F, Zhang Z, Peng M, Wang Y, Chen Y. TLR4 signaling-induced heme oxygenase upregulation in the acute lung injury: role in hemorrhagic shock and two-hit induced lung inflammation. Mol Biol Rep. 2013;40:1167–72.CrossRefPubMed
65.
go back to reference Dennery PA, Rodgers PA, Lum MA, Jennings BC, Shokoohi V. Hyperoxic regulation of lung heme oxygenase in neonatal rats. Pediatr Res. 1996;40:815–21.CrossRefPubMed Dennery PA, Rodgers PA, Lum MA, Jennings BC, Shokoohi V. Hyperoxic regulation of lung heme oxygenase in neonatal rats. Pediatr Res. 1996;40:815–21.CrossRefPubMed
66.
go back to reference Kassovska-Bratinova S, Yang G, Igarashi K, Dennery PA. Bach1 modulates heme oxygenase-1 expression in the neonatal mouse lung. Pediatr Res. 2009;65:145–9.CrossRefPubMedPubMedCentral Kassovska-Bratinova S, Yang G, Igarashi K, Dennery PA. Bach1 modulates heme oxygenase-1 expression in the neonatal mouse lung. Pediatr Res. 2009;65:145–9.CrossRefPubMedPubMedCentral
67.
go back to reference Ishikawa M, Numazawa S, Yoshida T. Redox regulation of the transcriptional repressor Bach1. Free Radic Biol Med. 2005;38:1344–52.CrossRefPubMed Ishikawa M, Numazawa S, Yoshida T. Redox regulation of the transcriptional repressor Bach1. Free Radic Biol Med. 2005;38:1344–52.CrossRefPubMed
68.
go back to reference Hollingsworth 2nd JW, Cook DN, Brass DM, Walker JK, Morgan DL, Foster WM, et al. The role of Toll-like receptor 4 in environmental airway injury in mice. Am J Respir Crit Care Med. 2004;170:126–32.CrossRefPubMed Hollingsworth 2nd JW, Cook DN, Brass DM, Walker JK, Morgan DL, Foster WM, et al. The role of Toll-like receptor 4 in environmental airway injury in mice. Am J Respir Crit Care Med. 2004;170:126–32.CrossRefPubMed
69.
go back to reference Williams AS, Leung SY, Nath P, Khorasani NM, Bhavsar P, Issa R, et al. Role of TLR2, TLR4, and MyD88 in murine ozone-induced airway hyperresponsiveness and neutrophilia. J Appl Physiol. 2007;103:1189–95.CrossRefPubMed Williams AS, Leung SY, Nath P, Khorasani NM, Bhavsar P, Issa R, et al. Role of TLR2, TLR4, and MyD88 in murine ozone-induced airway hyperresponsiveness and neutrophilia. J Appl Physiol. 2007;103:1189–95.CrossRefPubMed
Metadata
Title
The lung response to ozone is determined by age and is partially dependent on toll-Like receptor 4
Authors
Kelsa Gabehart
Kelly A. Correll
Joan E. Loader
Carl W. White
Azzeddine Dakhama
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2015
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-015-0279-2

Other articles of this Issue 1/2015

Respiratory Research 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.