Skip to main content
Top
Published in: Immunity & Ageing 1/2016

Open Access 01-12-2016 | Research

The insulin receptor substrate Chico regulates antibacterial immune function in Drosophila

Authors: Sarah McCormack, Shruti Yadav, Upasana Shokal, Eric Kenney, Dustin Cooper, Ioannis Eleftherianos

Published in: Immunity & Ageing | Issue 1/2016

Login to get access

Abstract

Background

Molecular and genetic studies in model organisms have recently revealed a dynamic interplay between immunity and ageing mechanisms. In the fruit fly Drosophila melanogaster, inhibition of the insulin/insulin-like growth factor signaling pathway prolongs lifespan, and mutations in the insulin receptor substrate Chico extend the survival of mutant flies against certain bacterial pathogens. Here we investigated the immune phenotypes, immune signaling activation and immune function of chico mutant adult flies against the virulent insect pathogen Photorhabdus luminescens as well as to non-pathogenic Escherichia coli bacteria.

Results

We found that D. melanogaster chico loss-of-function mutant flies were equally able to survive infection by P. luminescens or E. coli compared to their background controls, but they contained fewer numbers of bacterial cells at most time-points after the infection. Analysis of immune signaling pathway activation in flies infected with the pathogenic or the non-pathogenic bacteria showed reduced transcript levels of antimicrobial peptide genes in the chico mutants than in controls. Evaluation of immune function in infected flies revealed increased phenoloxidase activity and melanization response to P. luminescens and E. coli together with reduced phagocytosis of bacteria in the chico mutants. Changes in the antibacterial immune function in the chico mutants was not due to altered metabolic activity.

Conclusions

Our results indicate a novel role for chico in the regulation of the antibacterial immune function in D. melanogaster. Similar studies will further contribute to a better understanding of the interconnection between ageing and immunity and lead to the identification and characterization of the molecular host components that modulate both important biological processes.
Literature
1.
2.
go back to reference Brodsky IE, Medzhitov R. Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol. 2009;11:521–6.CrossRefPubMed Brodsky IE, Medzhitov R. Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol. 2009;11:521–6.CrossRefPubMed
3.
go back to reference Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34.CrossRefPubMed Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34.CrossRefPubMed
4.
go back to reference Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int. 2009;22:1041–50.CrossRefPubMed Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int. 2009;22:1041–50.CrossRefPubMed
5.
go back to reference Dorshkind K, Montecino-Rodriguez E, Signer RA. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9:57–62.CrossRefPubMed Dorshkind K, Montecino-Rodriguez E, Signer RA. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9:57–62.CrossRefPubMed
6.
go back to reference Zerofsky M, Harel E, Silverman N, Tatar M. Aging of the innate immune response in Drosophila melanogaster. Aging Cell. 2005;4:103–8.CrossRefPubMed Zerofsky M, Harel E, Silverman N, Tatar M. Aging of the innate immune response in Drosophila melanogaster. Aging Cell. 2005;4:103–8.CrossRefPubMed
10.
go back to reference Paaby AB, Schmidt PS. Dissecting the genetics of longevity in Drosophila melanogaster. Fly. 2009;3:29–38.CrossRefPubMed Paaby AB, Schmidt PS. Dissecting the genetics of longevity in Drosophila melanogaster. Fly. 2009;3:29–38.CrossRefPubMed
11.
go back to reference Barbieri M, Bonafè M, Franceschi C, Paolisso G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab. 2003;285:E1064–71.CrossRefPubMed Barbieri M, Bonafè M, Franceschi C, Paolisso G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab. 2003;285:E1064–71.CrossRefPubMed
12.
go back to reference McElwee JJ, Schuster E, Blanc E, Piper MD, Thomas JH, Patel DS, et al. Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biol. 2007;8:R132.CrossRefPubMedPubMedCentral McElwee JJ, Schuster E, Blanc E, Piper MD, Thomas JH, Patel DS, et al. Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biol. 2007;8:R132.CrossRefPubMedPubMedCentral
13.
go back to reference Piper MD, Selman C, McElwee JJ, Partridge L. Separating cause from effect: How does insulin/IGF signalling control lifespan in worms, flies and mice? J Intern Med. 2008;263:179–91.CrossRefPubMed Piper MD, Selman C, McElwee JJ, Partridge L. Separating cause from effect: How does insulin/IGF signalling control lifespan in worms, flies and mice? J Intern Med. 2008;263:179–91.CrossRefPubMed
14.
go back to reference Böhni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell. 1999;97:865–75.CrossRefPubMed Böhni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell. 1999;97:865–75.CrossRefPubMed
15.
go back to reference Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001;292:104–6.CrossRefPubMed Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001;292:104–6.CrossRefPubMed
16.
go back to reference Libert S, Chao Y, Zwiener J, Pletcher SD. Realized immune response is enhanced in long-lived puc and chico mutants but is unaffected by dietary restriction. Mol Immunol. 2008;45:810–7.CrossRefPubMed Libert S, Chao Y, Zwiener J, Pletcher SD. Realized immune response is enhanced in long-lived puc and chico mutants but is unaffected by dietary restriction. Mol Immunol. 2008;45:810–7.CrossRefPubMed
17.
go back to reference Waterfield NR, Ciche T, Clarke D. Photorhabdus and a host of hosts. Annu Rev Microbiol. 2009;63:557–74.CrossRefPubMed Waterfield NR, Ciche T, Clarke D. Photorhabdus and a host of hosts. Annu Rev Microbiol. 2009;63:557–74.CrossRefPubMed
19.
go back to reference Eleftherianos I, ffrench-Constant RH, Clarke DJ, Dowling AJ, Reynolds SE. Dissecting the immune response to the entomopathogen Photorhabdus. Trends Microbiol. 2010;18:552–60.CrossRefPubMed Eleftherianos I, ffrench-Constant RH, Clarke DJ, Dowling AJ, Reynolds SE. Dissecting the immune response to the entomopathogen Photorhabdus. Trends Microbiol. 2010;18:552–60.CrossRefPubMed
21.
go back to reference Tanji T, Hu X, Weber AN, Ip YT. Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol. 2007;27:4578–88.CrossRefPubMedPubMedCentral Tanji T, Hu X, Weber AN, Ip YT. Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol. 2007;27:4578–88.CrossRefPubMedPubMedCentral
22.
go back to reference Sorrentino RP, Small CN, Govind S. Quantitative analysis of phenol oxidase activity in insect hemolymph. Biotechniques. 2002;32:815–6,818,820,822–3. Sorrentino RP, Small CN, Govind S. Quantitative analysis of phenol oxidase activity in insect hemolymph. Biotechniques. 2002;32:815–6,818,820,822–3.
23.
go back to reference Elrod-Erickson M, Mishra S, Schneider S. Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol. 2000;10:781–4.CrossRefPubMed Elrod-Erickson M, Mishra S, Schneider S. Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol. 2000;10:781–4.CrossRefPubMed
24.
go back to reference Miksa M, Komura H, Wu R, Shah KG, Wang P. A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J Immunol Methods. 2009;342(1-2):71–7.CrossRefPubMedPubMedCentral Miksa M, Komura H, Wu R, Shah KG, Wang P. A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J Immunol Methods. 2009;342(1-2):71–7.CrossRefPubMedPubMedCentral
25.
go back to reference ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, et al. Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev. 2003;26:433–56.CrossRefPubMed ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, et al. Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev. 2003;26:433–56.CrossRefPubMed
26.
go back to reference Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M, Vlisidou I, et al. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics. 2009;10:302.CrossRefPubMedPubMedCentral Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M, Vlisidou I, et al. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics. 2009;10:302.CrossRefPubMedPubMedCentral
27.
go back to reference Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol. 2003;21:1307–13.CrossRefPubMed Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol. 2003;21:1307–13.CrossRefPubMed
28.
go back to reference Song W, Ren D, Li W, Jiang L, Cho KW, Huang P, et al. SH2B regulation of growth, metabolism, and longevity in both insects and mammals. Cell Metab. 2010;11:427–37.CrossRefPubMedPubMedCentral Song W, Ren D, Li W, Jiang L, Cho KW, Huang P, et al. SH2B regulation of growth, metabolism, and longevity in both insects and mammals. Cell Metab. 2010;11:427–37.CrossRefPubMedPubMedCentral
29.
go back to reference Neyen C, Bretscher A, Binggeli O, Lemaitre B. Methods to study Drosophila immunity. Methods. 2014;68:116–28.CrossRefPubMed Neyen C, Bretscher A, Binggeli O, Lemaitre B. Methods to study Drosophila immunity. Methods. 2014;68:116–28.CrossRefPubMed
30.
go back to reference Schneider D, Ayers J. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol. 2008;8:889–95.CrossRefPubMedPubMedCentral Schneider D, Ayers J. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol. 2008;8:889–95.CrossRefPubMedPubMedCentral
31.
go back to reference Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol. 2014;42:25–35.CrossRefPubMed Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol. 2014;42:25–35.CrossRefPubMed
32.
go back to reference Lindsay S, Wasserman S. Conventional and non-conventional Drosophila Toll signaling. Dev Comp Immunol. 2014;42:16–24.CrossRefPubMed Lindsay S, Wasserman S. Conventional and non-conventional Drosophila Toll signaling. Dev Comp Immunol. 2014;42:16–24.CrossRefPubMed
33.
go back to reference Ferrandon D, Imler J, Hetru C, Hoffmann J. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol. 2007;7:862–74.CrossRefPubMed Ferrandon D, Imler J, Hetru C, Hoffmann J. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol. 2007;7:862–74.CrossRefPubMed
34.
go back to reference Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743.CrossRefPubMed Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743.CrossRefPubMed
35.
go back to reference Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep. 2000;1:353–8.CrossRefPubMedPubMedCentral Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep. 2000;1:353–8.CrossRefPubMedPubMedCentral
36.
go back to reference Kylsten P, Samakovlis C, Hultmark D. The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J. 1990;9:217–24.PubMedPubMedCentral Kylsten P, Samakovlis C, Hultmark D. The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J. 1990;9:217–24.PubMedPubMedCentral
37.
38.
go back to reference Eleftherianos I, Revenis C. Role and importance of phenoloxidase in insect hemostasis. J Innate Immun. 2011;3:28–33.CrossRefPubMed Eleftherianos I, Revenis C. Role and importance of phenoloxidase in insect hemostasis. J Innate Immun. 2011;3:28–33.CrossRefPubMed
39.
go back to reference Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, et al. An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci U S A. 2007;104:2419–24.CrossRefPubMedPubMedCentral Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, et al. An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci U S A. 2007;104:2419–24.CrossRefPubMedPubMedCentral
40.
go back to reference Eleftherianos I, Waterfield NR, Bone P, Boundy S, ffrench-Constant RH, Reynolds SE. A single locus from the entomopathogenic bacterium Photorhabdus luminescens inhibits activated Manduca sexta phenoloxidase. FEMS Microbiol Lett. 2009;293:170–6.CrossRefPubMed Eleftherianos I, Waterfield NR, Bone P, Boundy S, ffrench-Constant RH, Reynolds SE. A single locus from the entomopathogenic bacterium Photorhabdus luminescens inhibits activated Manduca sexta phenoloxidase. FEMS Microbiol Lett. 2009;293:170–6.CrossRefPubMed
41.
go back to reference Crawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J. Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci U S A. 2012;109:10821–6.CrossRefPubMedPubMedCentral Crawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J. Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci U S A. 2012;109:10821–6.CrossRefPubMedPubMedCentral
42.
go back to reference Eleftherianos I, More K, Spivack S, Paulin E, Khojandi A, Shukla S. Nitric oxide levels regulate the immune response of Drosophila melanogaster reference laboratory strains to bacterial infections. Infect Immun. 2014;82:4169–81.CrossRefPubMedPubMedCentral Eleftherianos I, More K, Spivack S, Paulin E, Khojandi A, Shukla S. Nitric oxide levels regulate the immune response of Drosophila melanogaster reference laboratory strains to bacterial infections. Infect Immun. 2014;82:4169–81.CrossRefPubMedPubMedCentral
43.
go back to reference Vlisidou I, Wood W. Drosophila blood cells and their role in immune responses. FEBS J. 2015;282:1368–82.CrossRefPubMed Vlisidou I, Wood W. Drosophila blood cells and their role in immune responses. FEBS J. 2015;282:1368–82.CrossRefPubMed
44.
go back to reference Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, et al. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature. 2013;495:520–3.CrossRefPubMed Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, et al. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature. 2013;495:520–3.CrossRefPubMed
45.
go back to reference Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA. Fat metabolism in insects. Annu Rev Nutr. 2001;21:23–46.CrossRefPubMed Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA. Fat metabolism in insects. Annu Rev Nutr. 2001;21:23–46.CrossRefPubMed
49.
go back to reference Castillo JC, Shokal U, Eleftherianos I. Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria. J Insect Physiol. 2013;59:179–85.CrossRefPubMed Castillo JC, Shokal U, Eleftherianos I. Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria. J Insect Physiol. 2013;59:179–85.CrossRefPubMed
50.
go back to reference Rugjee KN, Roy Chaudhury S, Al-Jubran K, Ramanathan P, Matina T, Wen J, et al. Fluorescent protein tagging confirms the presence of ribosomal proteins at Drosophila polytene chromosomes. PeerJ. 2013;1:e15.CrossRefPubMedPubMedCentral Rugjee KN, Roy Chaudhury S, Al-Jubran K, Ramanathan P, Matina T, Wen J, et al. Fluorescent protein tagging confirms the presence of ribosomal proteins at Drosophila polytene chromosomes. PeerJ. 2013;1:e15.CrossRefPubMedPubMedCentral
Metadata
Title
The insulin receptor substrate Chico regulates antibacterial immune function in Drosophila
Authors
Sarah McCormack
Shruti Yadav
Upasana Shokal
Eric Kenney
Dustin Cooper
Ioannis Eleftherianos
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2016
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-016-0072-1

Other articles of this Issue 1/2016

Immunity & Ageing 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.