Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

The inflammatory cytokine TNFα cooperates with Ras in elevating metastasis and turns WT-Ras to a tumor-promoting entity in MCF-7 cells

Authors: Tal Leibovich-Rivkin, Yulia Liubomirski, Tsipi Meshel, Anastasia Abashidze, Daphna Brisker, Hilla Solomon, Varda Rotter, Miguel Weil, Adit Ben-Baruch

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

In the present study we determined the relative contribution of two processes to breast cancer progression: (1) Intrinsic events, such as activation of the Ras pathway and down-regulation of p53; (2) The inflammatory cytokines TNFα and IL-1β, shown in our published studies to be highly expressed in tumors of >80% of breast cancer patients with recurrent disease.

Methods

Using MCF-7 human breast tumor cells originally expressing WT-Ras and WT-p53, we determined the impact of the above-mentioned elements and cooperativity between them on the expression of CXCL8 (ELISA, qRT-PCR), a member of a “cancer-related chemokine cluster” that we have previously identified. Then, we determined the mechanisms involved (Ras-binding-domain assays, Western blot, luciferase), and tested the impact of Ras + TNFα on angiogenicity (chorioallantoic membrane assays) and on tumor growth at the mammary fat pad of mice and on metastasis, in vivo.

Results

Using RasG12V that recapitulates multiple stimulations induced by receptor tyrosine kinases, we found that RasG12V alone induced CXCL8 expression at the mRNA and protein levels, whereas down-regulation of p53 did not. TNFα and IL-1β potently induced CXCL8 expression and synergized with RasG12V, together leading to amplified CXCL8 expression. Testing the impact of WT-Ras, which is the common form in breast cancer patients, we found that WT-Ras was not active in promoting CXCL8; however, TNFα has induced the activation of WT-Ras: joining these two elements has led to cooperative induction of CXCL8 expression, via the activation of MEK, NF-κB and AP-1. Importantly, TNFα has led to increased expression of WT-Ras in an active GTP-bound form, with properties similar to those of RasG12V. Jointly, TNFα + Ras activities have given rise to increased angiogenesis and to elevated tumor cell dissemination to lymph nodes.

Conclusions

TNFα cooperates with Ras in promoting the metastatic phenotype of MCF-7 breast tumor cells, and turns WT-Ras into a tumor-supporting entity. Thus, in breast cancer patients the cytokine may rescue the pro-cancerous potential of WT-Ras, and together these two elements may lead to a more aggressive disease. These findings have clinical relevance, suggesting that we need to consider new therapeutic regimens that inhibit Ras and TNFα, in breast cancer patients.
Appendix
Available only for authorised users
Literature
2.
go back to reference Blum R, Cox AD, Kloog Y: Inhibitors of chronically active ras: potential for treatment of human malignancies. Recent Pat Anticancer Drug Discov. 2008, 3 (1): 31-47. 10.2174/157489208783478702.CrossRefPubMed Blum R, Cox AD, Kloog Y: Inhibitors of chronically active ras: potential for treatment of human malignancies. Recent Pat Anticancer Drug Discov. 2008, 3 (1): 31-47. 10.2174/157489208783478702.CrossRefPubMed
3.
go back to reference Goldstein I, Marcel V, Olivier M, Oren M, Rotter V, Hainaut P: Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther. 2011, 18 (1): 2-11. 10.1038/cgt.2010.63.CrossRefPubMed Goldstein I, Marcel V, Olivier M, Oren M, Rotter V, Hainaut P: Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther. 2011, 18 (1): 2-11. 10.1038/cgt.2010.63.CrossRefPubMed
4.
go back to reference Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013.CrossRefPubMed Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013.CrossRefPubMed
5.
go back to reference Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009, 9 (4): 239-252. 10.1038/nrc2618.CrossRefPubMed Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009, 9 (4): 239-252. 10.1038/nrc2618.CrossRefPubMed
6.
go back to reference Balkwill F, Mantovani A: Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther. 2010, 87 (4): 401-406. 10.1038/clpt.2009.312.CrossRefPubMed Balkwill F, Mantovani A: Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther. 2010, 87 (4): 401-406. 10.1038/clpt.2009.312.CrossRefPubMed
8.
9.
go back to reference Leibovich-Rivkin TBY, Solomon H, Meshel T, Rotter V, Ben-Baruch A: Tumor-promoting circuits that regulate a cancer-related chemokine cluster: dominance of inflammatory mediators over oncogenic alterations. Cancers. 2012, 4: 55-76. 10.3390/cancers4010055.CrossRefPubMedPubMedCentral Leibovich-Rivkin TBY, Solomon H, Meshel T, Rotter V, Ben-Baruch A: Tumor-promoting circuits that regulate a cancer-related chemokine cluster: dominance of inflammatory mediators over oncogenic alterations. Cancers. 2012, 4: 55-76. 10.3390/cancers4010055.CrossRefPubMedPubMedCentral
10.
go back to reference Waugh DJ, Wilson C: The interleukin-8 pathway in cancer. Clin Cancer Res. 2008, 14 (21): 6735-6741. 10.1158/1078-0432.CCR-07-4843.CrossRefPubMed Waugh DJ, Wilson C: The interleukin-8 pathway in cancer. Clin Cancer Res. 2008, 14 (21): 6735-6741. 10.1158/1078-0432.CCR-07-4843.CrossRefPubMed
12.
go back to reference Soria G, Ben-Baruch A: The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008, 267 (2): 271-285. 10.1016/j.canlet.2008.03.018.CrossRefPubMed Soria G, Ben-Baruch A: The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008, 267 (2): 271-285. 10.1016/j.canlet.2008.03.018.CrossRefPubMed
13.
go back to reference Yadav A, Saini V, Arora S: MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010, 411 (21–22): 1570-1579.CrossRefPubMed Yadav A, Saini V, Arora S: MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010, 411 (21–22): 1570-1579.CrossRefPubMed
14.
go back to reference Conti I, Rollins BJ: CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol. 2004, 14 (3): 149-154. 10.1016/j.semcancer.2003.10.009.CrossRefPubMed Conti I, Rollins BJ: CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol. 2004, 14 (3): 149-154. 10.1016/j.semcancer.2003.10.009.CrossRefPubMed
15.
go back to reference Balkwill F: Tumour necrosis factor and cancer. Nat Rev Cancer. 2009, 9 (5): 361-371. 10.1038/nrc2628.CrossRefPubMed Balkwill F: Tumour necrosis factor and cancer. Nat Rev Cancer. 2009, 9 (5): 361-371. 10.1038/nrc2628.CrossRefPubMed
16.
go back to reference Ben-Baruch A: The tumor-promoting flow of cells into, within and out of the tumor site: regulation by the inflammatory axis of TNFalpha and chemokines. Cancer Microenviron. 2011, 5 (2): 151-164.CrossRefPubMedPubMedCentral Ben-Baruch A: The tumor-promoting flow of cells into, within and out of the tumor site: regulation by the inflammatory axis of TNFalpha and chemokines. Cancer Microenviron. 2011, 5 (2): 151-164.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Apte RN, Voronov E: Is interleukin-1 a good or bad ‘guy’ in tumor immunobiology and immunotherapy?. Immunol Rev. 2008, 222: 222-241. 10.1111/j.1600-065X.2008.00615.x.CrossRefPubMed Apte RN, Voronov E: Is interleukin-1 a good or bad ‘guy’ in tumor immunobiology and immunotherapy?. Immunol Rev. 2008, 222: 222-241. 10.1111/j.1600-065X.2008.00615.x.CrossRefPubMed
19.
go back to reference Bertazza L, Mocellin S: The dual role of tumor necrosis factor (TNF) in cancer biology. Curr Med Chem. 2010, 17 (29): 3337-3352. 10.2174/092986710793176339.CrossRefPubMed Bertazza L, Mocellin S: The dual role of tumor necrosis factor (TNF) in cancer biology. Curr Med Chem. 2010, 17 (29): 3337-3352. 10.2174/092986710793176339.CrossRefPubMed
20.
go back to reference Mocellin S, Nitti D: TNF and cancer: the two sides of the coin. Front Biosci. 2008, 13: 2774-2783. 10.2741/2884.CrossRefPubMed Mocellin S, Nitti D: TNF and cancer: the two sides of the coin. Front Biosci. 2008, 13: 2774-2783. 10.2741/2884.CrossRefPubMed
21.
go back to reference Soria G, Ofri-Shahak M, Haas I, Yaal-Hahoshen N, Leider-Trejo L, Leibovich-Rivkin T, Weitzenfeld P, Meshel T, Shabtai E, Gutman M, Ben-Baruch A: Inflammatory mediators in breast cancer: coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer. 2011, 11: 130-149. 10.1186/1471-2407-11-130.CrossRefPubMedPubMedCentral Soria G, Ofri-Shahak M, Haas I, Yaal-Hahoshen N, Leider-Trejo L, Leibovich-Rivkin T, Weitzenfeld P, Meshel T, Shabtai E, Gutman M, Ben-Baruch A: Inflammatory mediators in breast cancer: coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer. 2011, 11: 130-149. 10.1186/1471-2407-11-130.CrossRefPubMedPubMedCentral
22.
go back to reference Jin L, Yuan RQ, Fuchs A, Yao Y, Joseph A, Schwall R, Schnitt SJ, Guida A, Hastings HM, Andres J, Turkel G, Polverini PJ, Goldberg ID, Rosen EM: Expression of interleukin-1beta in human breast carcinoma. Cancer. 1997, 80 (3): 421-434. 10.1002/(SICI)1097-0142(19970801)80:3<421::AID-CNCR10>3.0.CO;2-Z.CrossRefPubMed Jin L, Yuan RQ, Fuchs A, Yao Y, Joseph A, Schwall R, Schnitt SJ, Guida A, Hastings HM, Andres J, Turkel G, Polverini PJ, Goldberg ID, Rosen EM: Expression of interleukin-1beta in human breast carcinoma. Cancer. 1997, 80 (3): 421-434. 10.1002/(SICI)1097-0142(19970801)80:3<421::AID-CNCR10>3.0.CO;2-Z.CrossRefPubMed
23.
go back to reference Warren MA, Shoemaker SF, Shealy DJ, Bshar W, Ip MM: Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice. Mol Cancer Ther. 2009, 8 (9): 2655-2663. 10.1158/1535-7163.MCT-09-0358.CrossRefPubMed Warren MA, Shoemaker SF, Shealy DJ, Bshar W, Ip MM: Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice. Mol Cancer Ther. 2009, 8 (9): 2655-2663. 10.1158/1535-7163.MCT-09-0358.CrossRefPubMed
24.
go back to reference Hamaguchi T, Wakabayashi H, Matsumine A, Sudo A, Uchida A: TNF inhibitor suppresses bone metastasis in a breast cancer cell line. Biochem Biophys Res Commun. 2011, 407 (3): 525-530. 10.1016/j.bbrc.2011.03.051.CrossRefPubMed Hamaguchi T, Wakabayashi H, Matsumine A, Sudo A, Uchida A: TNF inhibitor suppresses bone metastasis in a breast cancer cell line. Biochem Biophys Res Commun. 2011, 407 (3): 525-530. 10.1016/j.bbrc.2011.03.051.CrossRefPubMed
25.
go back to reference Reed JR, Leon RP, Hall MK, Schwertfeger KL: Interleukin-1beta and fibroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumourigenesis. Breast Cancer Res. 2009, 11 (2): R21-10.1186/bcr2246.CrossRefPubMedPubMedCentral Reed JR, Leon RP, Hall MK, Schwertfeger KL: Interleukin-1beta and fibroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumourigenesis. Breast Cancer Res. 2009, 11 (2): R21-10.1186/bcr2246.CrossRefPubMedPubMedCentral
26.
go back to reference Schmid MC, Avraamides CJ, Foubert P, Shaked Y, Kang SW, Kerbel RS, Varner JA: Combined blockade of integrin-alpha4beta1 plus cytokines SDF-1alpha or IL-1beta potently inhibits tumor inflammation and growth. Cancer Res. 2011, 71 (22): 6965-6975. 10.1158/0008-5472.CAN-11-0588.CrossRefPubMedPubMedCentral Schmid MC, Avraamides CJ, Foubert P, Shaked Y, Kang SW, Kerbel RS, Varner JA: Combined blockade of integrin-alpha4beta1 plus cytokines SDF-1alpha or IL-1beta potently inhibits tumor inflammation and growth. Cancer Res. 2011, 71 (22): 6965-6975. 10.1158/0008-5472.CAN-11-0588.CrossRefPubMedPubMedCentral
27.
go back to reference Katz M, Amit I, Yarden Y: Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta. 2007, 1773 (8): 1161-1176. 10.1016/j.bbamcr.2007.01.002.CrossRefPubMedPubMedCentral Katz M, Amit I, Yarden Y: Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta. 2007, 1773 (8): 1161-1176. 10.1016/j.bbamcr.2007.01.002.CrossRefPubMedPubMedCentral
28.
go back to reference Janes PW, Daly RJ, de Fazio A, Sutherland RL: Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene. 1994, 9 (12): 3601-3608.PubMed Janes PW, Daly RJ, de Fazio A, Sutherland RL: Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene. 1994, 9 (12): 3601-3608.PubMed
29.
go back to reference Omerovic J, Hammond DE, Clague MJ, Prior IA: Ras isoform abundance and signalling in human cancer cell lines. Oncogene. 2008, 27 (19): 2754-2762. 10.1038/sj.onc.1210925.CrossRefPubMed Omerovic J, Hammond DE, Clague MJ, Prior IA: Ras isoform abundance and signalling in human cancer cell lines. Oncogene. 2008, 27 (19): 2754-2762. 10.1038/sj.onc.1210925.CrossRefPubMed
30.
go back to reference Hollestelle A, Nagel JH, Smid M, Lam S, Elstrodt F, Wasielewski M, Ng SS, French PJ, Peeters JK, Rozendaal MJ, Riaz M, Koopman DG, Ten Hagen TL, de Leeuw BH, Zwarthoff EC, Teunisse A, van der Spek PJ, Klijn JG, Dinjens WN, Ethier SP, Clevers H, Jochemsen AG, den Bakker MA, Foekens JA, Martens JW, Schutte M: Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res Treat. 2010, 121 (1): 53-64. 10.1007/s10549-009-0460-8.CrossRefPubMed Hollestelle A, Nagel JH, Smid M, Lam S, Elstrodt F, Wasielewski M, Ng SS, French PJ, Peeters JK, Rozendaal MJ, Riaz M, Koopman DG, Ten Hagen TL, de Leeuw BH, Zwarthoff EC, Teunisse A, van der Spek PJ, Klijn JG, Dinjens WN, Ethier SP, Clevers H, Jochemsen AG, den Bakker MA, Foekens JA, Martens JW, Schutte M: Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res Treat. 2010, 121 (1): 53-64. 10.1007/s10549-009-0460-8.CrossRefPubMed
31.
go back to reference Neumark E, Sagi-Assif O, Shalmon B, Ben-Baruch A, Witz IP: Progression of mouse mammary tumors: MCP-1-TNFalpha cross-regulatory pathway and clonal expression of promalignancy and antimalignancy factors. Int J Cancer. 2003, 106 (6): 879-886. 10.1002/ijc.11337.CrossRefPubMed Neumark E, Sagi-Assif O, Shalmon B, Ben-Baruch A, Witz IP: Progression of mouse mammary tumors: MCP-1-TNFalpha cross-regulatory pathway and clonal expression of promalignancy and antimalignancy factors. Int J Cancer. 2003, 106 (6): 879-886. 10.1002/ijc.11337.CrossRefPubMed
32.
go back to reference Seeger H, Wallwiener D, Mueck AO: Effects of estradiol and progestogens on tumor-necrosis factor-alpha-induced changes of biochemical markers for breast cancer growth and metastasis. Gynecol Endocrinol. 2008, 24 (10): 576-579. 10.1080/09513590802288267.CrossRefPubMed Seeger H, Wallwiener D, Mueck AO: Effects of estradiol and progestogens on tumor-necrosis factor-alpha-induced changes of biochemical markers for breast cancer growth and metastasis. Gynecol Endocrinol. 2008, 24 (10): 576-579. 10.1080/09513590802288267.CrossRefPubMed
33.
go back to reference De Larco JE, Wuertz BR, Rosner KA, Erickson SA, Gamache DE, Manivel JC, Furcht LT: A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. Am J Pathol. 2001, 158 (2): 639-646. 10.1016/S0002-9440(10)64005-9.CrossRefPubMedPubMedCentral De Larco JE, Wuertz BR, Rosner KA, Erickson SA, Gamache DE, Manivel JC, Furcht LT: A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. Am J Pathol. 2001, 158 (2): 639-646. 10.1016/S0002-9440(10)64005-9.CrossRefPubMedPubMedCentral
34.
go back to reference Pantschenko AG, Pushkar I, Miller LJ, Wang YP, Anderson K, Peled Z, Kurtzman SH, Kreutzer DL: In vitro demonstration of breast cancer tumor cell sub-populations based on interleukin-1/tumor necrosis factor induction of interleukin-8 expression. Oncol Rep. 2003, 10 (4): 1011-1017.PubMed Pantschenko AG, Pushkar I, Miller LJ, Wang YP, Anderson K, Peled Z, Kurtzman SH, Kreutzer DL: In vitro demonstration of breast cancer tumor cell sub-populations based on interleukin-1/tumor necrosis factor induction of interleukin-8 expression. Oncol Rep. 2003, 10 (4): 1011-1017.PubMed
35.
go back to reference Cataisson C, Ohman R, Patel G, Pearson A, Tsien M, Jay S, Wright L, Hennings H, Yuspa SH: Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis. Cancer Res. 2009, 69 (1): 319-328. 10.1158/0008-5472.CAN-08-2490.CrossRefPubMedPubMedCentral Cataisson C, Ohman R, Patel G, Pearson A, Tsien M, Jay S, Wright L, Hennings H, Yuspa SH: Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis. Cancer Res. 2009, 69 (1): 319-328. 10.1158/0008-5472.CAN-08-2490.CrossRefPubMedPubMedCentral
36.
go back to reference Sparmann A, Bar-Sagi D: Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell. 2004, 6 (5): 447-458. 10.1016/j.ccr.2004.09.028.CrossRefPubMed Sparmann A, Bar-Sagi D: Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell. 2004, 6 (5): 447-458. 10.1016/j.ccr.2004.09.028.CrossRefPubMed
37.
go back to reference Hwang SG, Park J, Park JY, Park CH, Lee KH, Cho JW, Hwang JI, Seong JY: Anti-cancer activity of a novel small molecule compound that simultaneously activates p53 and inhibits NF-kappaB signaling. PLoS One. 2012, 7 (9): e44259-10.1371/journal.pone.0044259.CrossRefPubMedPubMedCentral Hwang SG, Park J, Park JY, Park CH, Lee KH, Cho JW, Hwang JI, Seong JY: Anti-cancer activity of a novel small molecule compound that simultaneously activates p53 and inhibits NF-kappaB signaling. PLoS One. 2012, 7 (9): e44259-10.1371/journal.pone.0044259.CrossRefPubMedPubMedCentral
38.
go back to reference Fontemaggi G, Dell’Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F, Terrenato I, Mottolese M, Muti P, Domany E, Del Bufalo D, Strano S, Blandino G: The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol. 2009, 16 (10): 1086-1093. 10.1038/nsmb.1669.CrossRefPubMed Fontemaggi G, Dell’Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F, Terrenato I, Mottolese M, Muti P, Domany E, Del Bufalo D, Strano S, Blandino G: The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol. 2009, 16 (10): 1086-1093. 10.1038/nsmb.1669.CrossRefPubMed
39.
go back to reference Sunaga N, Imai H, Shimizu K, Shames DS, Kakegawa S, Girard L, Sato M, Kaira K, Ishizuka T, Gazdar AF, Minna JD, Mori M: Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int J Cancer. 2012, 130 (8): 1733-1744. 10.1002/ijc.26164.CrossRefPubMed Sunaga N, Imai H, Shimizu K, Shames DS, Kakegawa S, Girard L, Sato M, Kaira K, Ishizuka T, Gazdar AF, Minna JD, Mori M: Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int J Cancer. 2012, 130 (8): 1733-1744. 10.1002/ijc.26164.CrossRefPubMed
40.
go back to reference Rivas MA, Tkach M, Beguelin W, Proietti CJ, Rosemblit C, Charreau EH, Elizalde PV, Schillaci R: Transactivation of ErbB-2 induced by tumor necrosis factor alpha promotes NF-kappaB activation and breast cancer cell proliferation. Breast Cancer Res Treat. 2009, 122 (1): 111-124.CrossRefPubMed Rivas MA, Tkach M, Beguelin W, Proietti CJ, Rosemblit C, Charreau EH, Elizalde PV, Schillaci R: Transactivation of ErbB-2 induced by tumor necrosis factor alpha promotes NF-kappaB activation and breast cancer cell proliferation. Breast Cancer Res Treat. 2009, 122 (1): 111-124.CrossRefPubMed
41.
go back to reference Jijon HB, Buret A, Hirota CL, Hollenberg MD, Beck PL: The EGF receptor and HER2 participate in TNF-alpha-dependent MAPK activation and IL-8 secretion in intestinal epithelial cells. Mediators Inflamm. 2012, 2012: 207398-CrossRefPubMedPubMedCentral Jijon HB, Buret A, Hirota CL, Hollenberg MD, Beck PL: The EGF receptor and HER2 participate in TNF-alpha-dependent MAPK activation and IL-8 secretion in intestinal epithelial cells. Mediators Inflamm. 2012, 2012: 207398-CrossRefPubMedPubMedCentral
42.
go back to reference Concin N, Zeillinger C, Tong D, Stimpfl M, König M, Printz D, Stonek F, Schneeberger C, Hefler L, Kainz C, Leodolter S, Haas OA, Zeillinger R: Comparison of p53 mutational status with mRNA and protein expression in a panel of 24 human breast carcinoma cell lines. Breast Cancer Res Treat. 2003, 79 (1): 37-46. 10.1023/A:1023351717408.CrossRefPubMed Concin N, Zeillinger C, Tong D, Stimpfl M, König M, Printz D, Stonek F, Schneeberger C, Hefler L, Kainz C, Leodolter S, Haas OA, Zeillinger R: Comparison of p53 mutational status with mRNA and protein expression in a panel of 24 human breast carcinoma cell lines. Breast Cancer Res Treat. 2003, 79 (1): 37-46. 10.1023/A:1023351717408.CrossRefPubMed
43.
go back to reference Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I, Ben-Baruch A: The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res. 2002, 62 (4): 1093-1102.PubMed Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I, Ben-Baruch A: The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res. 2002, 62 (4): 1093-1102.PubMed
44.
go back to reference Simstein R, Burow M, Parker A, Weldon C, Beckman B: Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med (Maywood). 2003, 228 (9): 995-1003. Simstein R, Burow M, Parker A, Weldon C, Beckman B: Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med (Maywood). 2003, 228 (9): 995-1003.
45.
go back to reference Lacroix M, Leclercq G: Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004, 83 (3): 249-289. 10.1023/B:BREA.0000014042.54925.cc.CrossRefPubMed Lacroix M, Leclercq G: Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004, 83 (3): 249-289. 10.1023/B:BREA.0000014042.54925.cc.CrossRefPubMed
46.
go back to reference Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y: Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res. 2005, 65 (3): 999-1006.PubMed Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y: Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res. 2005, 65 (3): 999-1006.PubMed
48.
go back to reference Chu PY, Li TK, Ding ST, Lai IR, Shen TL: EGF-induced Grb7 recruits and promotes Ras activity essential for the tumorigenicity of Sk-Br3 breast cancer cells. J Biol Chem. 2010, 285 (38): 29279-29285. 10.1074/jbc.C110.114124.CrossRefPubMedPubMedCentral Chu PY, Li TK, Ding ST, Lai IR, Shen TL: EGF-induced Grb7 recruits and promotes Ras activity essential for the tumorigenicity of Sk-Br3 breast cancer cells. J Biol Chem. 2010, 285 (38): 29279-29285. 10.1074/jbc.C110.114124.CrossRefPubMedPubMedCentral
49.
go back to reference Oeste CL, Díez-Dacal B, Bray F, García de Lacoba M, de la Torre BG, Andreu D, Ruiz-Sánchez AJ, Pérez-Inestrosa E, García-Domínguez CA, Rojas JM, Pérez-Sala D: The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways. PLoS One. 2011, 6 (1): e15866-10.1371/journal.pone.0015866.CrossRefPubMedPubMedCentral Oeste CL, Díez-Dacal B, Bray F, García de Lacoba M, de la Torre BG, Andreu D, Ruiz-Sánchez AJ, Pérez-Inestrosa E, García-Domínguez CA, Rojas JM, Pérez-Sala D: The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways. PLoS One. 2011, 6 (1): e15866-10.1371/journal.pone.0015866.CrossRefPubMedPubMedCentral
50.
go back to reference Sulzmaier FJ, Valmiki MK, Nelson DA, Caliva MJ, Geerts D, Matter ML, White EP, Ramos JW: PEA-15 potentiates H-Ras-mediated epithelial cell transformation through phospholipase D. Oncogene. 2012, 31 (30): 3547-3560. 10.1038/onc.2011.514.CrossRefPubMed Sulzmaier FJ, Valmiki MK, Nelson DA, Caliva MJ, Geerts D, Matter ML, White EP, Ramos JW: PEA-15 potentiates H-Ras-mediated epithelial cell transformation through phospholipase D. Oncogene. 2012, 31 (30): 3547-3560. 10.1038/onc.2011.514.CrossRefPubMed
51.
go back to reference Martinez-Salgado C, Fuentes-Calvo I, Garcia-Cenador B, Santos E, Lopez-Novoa JM: Involvement of H- and N-Ras isoforms in transforming growth factor-beta1-induced proliferation and in collagen and fibronectin synthesis. Exp Cell Res. 2006, 312 (11): 2093-2106. 10.1016/j.yexcr.2006.03.008.CrossRefPubMed Martinez-Salgado C, Fuentes-Calvo I, Garcia-Cenador B, Santos E, Lopez-Novoa JM: Involvement of H- and N-Ras isoforms in transforming growth factor-beta1-induced proliferation and in collagen and fibronectin synthesis. Exp Cell Res. 2006, 312 (11): 2093-2106. 10.1016/j.yexcr.2006.03.008.CrossRefPubMed
52.
go back to reference Kubota Y, O’Grady P, Saito H, Takekawa M: Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat Cell Biol. 2011, 13 (3): 282-291. 10.1038/ncb2169.CrossRefPubMed Kubota Y, O’Grady P, Saito H, Takekawa M: Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat Cell Biol. 2011, 13 (3): 282-291. 10.1038/ncb2169.CrossRefPubMed
53.
go back to reference Gutierrez L, Magee AI, Marshall CJ, Hancock JF: Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. Embo J. 1989, 8 (4): 1093-1098.PubMedPubMedCentral Gutierrez L, Magee AI, Marshall CJ, Hancock JF: Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. Embo J. 1989, 8 (4): 1093-1098.PubMedPubMedCentral
54.
go back to reference Tsai FM, Shyu RY, Jiang SY: RIG1 inhibits the Ras/mitogen-activated protein kinase pathway by suppressing the activation of Ras. Cell Signal. 2006, 18 (3): 349-358. 10.1016/j.cellsig.2005.05.005.CrossRefPubMed Tsai FM, Shyu RY, Jiang SY: RIG1 inhibits the Ras/mitogen-activated protein kinase pathway by suppressing the activation of Ras. Cell Signal. 2006, 18 (3): 349-358. 10.1016/j.cellsig.2005.05.005.CrossRefPubMed
55.
go back to reference Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y: A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A. 2004, 101 (34): 12479-12484. 10.1073/pnas.0403413101.CrossRefPubMedPubMedCentral Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y: A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A. 2004, 101 (34): 12479-12484. 10.1073/pnas.0403413101.CrossRefPubMedPubMedCentral
56.
go back to reference Pons M, Tebar F, Kirchhoff M, Peiro S, de Diego I, Grewal T, Enrich C: Activation of Raf-1 is defective in annexin 6 overexpressing Chinese hamster ovary cells. FEBS Lett. 2001, 501 (1): 69-73. 10.1016/S0014-5793(01)02635-7.CrossRefPubMed Pons M, Tebar F, Kirchhoff M, Peiro S, de Diego I, Grewal T, Enrich C: Activation of Raf-1 is defective in annexin 6 overexpressing Chinese hamster ovary cells. FEBS Lett. 2001, 501 (1): 69-73. 10.1016/S0014-5793(01)02635-7.CrossRefPubMed
57.
go back to reference Roebuck KA: Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (Review). Int J Mol Med. 1999, 4 (3): 223-230.PubMed Roebuck KA: Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (Review). Int J Mol Med. 1999, 4 (3): 223-230.PubMed
58.
go back to reference Vallabhapurapu S, Karin M: Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009, 27: 693-733. 10.1146/annurev.immunol.021908.132641.CrossRefPubMed Vallabhapurapu S, Karin M: Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009, 27: 693-733. 10.1146/annurev.immunol.021908.132641.CrossRefPubMed
59.
go back to reference Adcock IM: Transcription factors as activators of gene transcription: AP-1 and NF-kappa B. Monaldi Arch Chest Dis. 1997, 52 (2): 178-186.PubMed Adcock IM: Transcription factors as activators of gene transcription: AP-1 and NF-kappa B. Monaldi Arch Chest Dis. 1997, 52 (2): 178-186.PubMed
60.
go back to reference Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007, 449 (7162): 557-563. 10.1038/nature06188.CrossRefPubMed Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007, 449 (7162): 557-563. 10.1038/nature06188.CrossRefPubMed
61.
go back to reference Chakraborty G, Kumar S, Mishra R, Patil TV, Kundu GC: Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model. PLoS One. 2012, 7 (3): e33633-10.1371/journal.pone.0033633.CrossRefPubMedPubMedCentral Chakraborty G, Kumar S, Mishra R, Patil TV, Kundu GC: Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model. PLoS One. 2012, 7 (3): e33633-10.1371/journal.pone.0033633.CrossRefPubMedPubMedCentral
62.
go back to reference Kuriyama S, Masui K, Kikukawa M, Sakamoto T, Nakatani T, Nagao S, Yamazaki M, Yoshiji H, Tsujinoue H, Fukui H, Yoshimatsu T, Ikenaka K: Complete cure of established murine hepatocellular carcinoma is achievable by repeated injections of retroviruses carrying the herpes simplex virus thymidine kinase gene. Gene Ther. 1999, 6 (4): 525-533. 10.1038/sj.gt.3300869.CrossRefPubMed Kuriyama S, Masui K, Kikukawa M, Sakamoto T, Nakatani T, Nagao S, Yamazaki M, Yoshiji H, Tsujinoue H, Fukui H, Yoshimatsu T, Ikenaka K: Complete cure of established murine hepatocellular carcinoma is achievable by repeated injections of retroviruses carrying the herpes simplex virus thymidine kinase gene. Gene Ther. 1999, 6 (4): 525-533. 10.1038/sj.gt.3300869.CrossRefPubMed
63.
go back to reference Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissiere F, Laune D, Roques S, Lazennec G: Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res. 2007, 9 (1): R15-10.1186/bcr1648.CrossRefPubMedPubMedCentral Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissiere F, Laune D, Roques S, Lazennec G: Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res. 2007, 9 (1): R15-10.1186/bcr1648.CrossRefPubMedPubMedCentral
64.
go back to reference Si Q, Zhao ML, Morgan AC, Brosnan CF, Lee SC: 15-deoxy-Delta12,14-prostaglandin J2 inhibits IFN-inducible protein 10/CXC chemokine ligand 10 expression in human microglia: mechanisms and implications. J Immunol. 2004, 173 (5): 3504-3513.CrossRefPubMed Si Q, Zhao ML, Morgan AC, Brosnan CF, Lee SC: 15-deoxy-Delta12,14-prostaglandin J2 inhibits IFN-inducible protein 10/CXC chemokine ligand 10 expression in human microglia: mechanisms and implications. J Immunol. 2004, 173 (5): 3504-3513.CrossRefPubMed
65.
go back to reference Perrot-Applanat M, Vacher S, Toullec A, Pelaez I, Velasco G, Cormier F, Saad Hel S, Lidereau R, Baud V, Bieche I: Similar NF-kappaB gene signatures in TNF-alpha treated human endothelial cells and breast tumor biopsies. PLoS One. 2011, 6 (7): e21589-10.1371/journal.pone.0021589.CrossRefPubMedPubMedCentral Perrot-Applanat M, Vacher S, Toullec A, Pelaez I, Velasco G, Cormier F, Saad Hel S, Lidereau R, Baud V, Bieche I: Similar NF-kappaB gene signatures in TNF-alpha treated human endothelial cells and breast tumor biopsies. PLoS One. 2011, 6 (7): e21589-10.1371/journal.pone.0021589.CrossRefPubMedPubMedCentral
66.
go back to reference Solomon H, Brosh R, Buganim Y, Rotter V: Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene: cooperative events in tumorigenesis. Discov Med. 2010, 9 (48): 448-454.PubMed Solomon H, Brosh R, Buganim Y, Rotter V: Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene: cooperative events in tumorigenesis. Discov Med. 2010, 9 (48): 448-454.PubMed
67.
go back to reference Hacke K, Rincon-Orozco B, Buchwalter G, Siehler SY, Wasylyk B, Wiesmuller L, Rosl F: Regulation of MCP-1 chemokine transcription by p53. Mol Cancer. 2010, 9: 82-10.1186/1476-4598-9-82.CrossRefPubMedPubMedCentral Hacke K, Rincon-Orozco B, Buchwalter G, Siehler SY, Wasylyk B, Wiesmuller L, Rosl F: Regulation of MCP-1 chemokine transcription by p53. Mol Cancer. 2010, 9: 82-10.1186/1476-4598-9-82.CrossRefPubMedPubMedCentral
68.
go back to reference Tang X, Asano M, O’Reilly A, Farquhar A, Yang Y, Amar S: p53 is an important regulator of CCL2 gene expression. Curr Mol Med. 2012, 12 (8): 929-943. 10.2174/156652412802480844.CrossRefPubMedPubMedCentral Tang X, Asano M, O’Reilly A, Farquhar A, Yang Y, Amar S: p53 is an important regulator of CCL2 gene expression. Curr Mol Med. 2012, 12 (8): 929-943. 10.2174/156652412802480844.CrossRefPubMedPubMedCentral
Metadata
Title
The inflammatory cytokine TNFα cooperates with Ras in elevating metastasis and turns WT-Ras to a tumor-promoting entity in MCF-7 cells
Authors
Tal Leibovich-Rivkin
Yulia Liubomirski
Tsipi Meshel
Anastasia Abashidze
Daphna Brisker
Hilla Solomon
Varda Rotter
Miguel Weil
Adit Ben-Baruch
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-158

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine