Skip to main content
Top
Published in: BMC Infectious Diseases 1/2016

Open Access 01-12-2016 | Research article

The impact of healthcare visit timing on reported pertussis cough duration: Selection bias and disease pattern from reported cases in Michigan, USA, 2000–2010

Authors: Jennifer K. Knapp, Mark L. Wilson, Susan Murray, Matthew L. Boulton

Published in: BMC Infectious Diseases | Issue 1/2016

Login to get access

Abstract

Background

Pertussis is a potentially serious respiratory illness characterized by cough of exceptionally long duration of up to approximately100 days. While macrolide antibiotics are an effective treatment, there is an ongoing debate whether they also shorten the length of cough symptoms. We investigated whether public health surveillance data for pertussis, in which cases are identified at diagnosis, are potentially affected by selection bias and the possible consequences for reported cough duration.

Methods

Data on 4,794 pertussis cases reported during 2000–2010 were extracted from the Michigan Disease Surveillance System, a statewide, web-based communicable disease reporting system, to specifically investigate increased duration of cough observed in pertussis patients with delayed initial healthcare visit. A simulated population of cases was derived from the observed surveillance data and truncated week-by-week to evaluate the effects of bias associated with stratification on timing of antibiotics.

Results

Cases presenting for medical evaluation later in the clinical course were more likely to have experienced delayed antibiotic therapy and longer average cough duration. A comparable magnitude of increasing cough duration was also observed in the simulated data. By stratifying on initial medical visit, selection bias effects based on timing of healthcare visit were demonstrated.

Conclusions

Stratifying or controlling for the timing of the initial case identification and accompanying antibiotic treatment can create artificial patterns of observed cough duration. In surveillance data, differences in symptom duration may arise from selection bias and should not be presumed to be related to early antibiotic treatment.
Literature
2.
go back to reference Centers for Disease Control and Prevention. Case definitions for infectious conditions under public health surveillance. MMWR Recomm Rep. 1997;46:1–55. Centers for Disease Control and Prevention. Case definitions for infectious conditions under public health surveillance. MMWR Recomm Rep. 1997;46:1–55.
3.
go back to reference Carbonetti NH. Immunomodulation in the pathogenesis of Bordetella pertussis infection and disease. Curr Opin Pharmacol. 2007;7:272–8.CrossRefPubMed Carbonetti NH. Immunomodulation in the pathogenesis of Bordetella pertussis infection and disease. Curr Opin Pharmacol. 2007;7:272–8.CrossRefPubMed
4.
go back to reference Bass JW, Klenk EL, Kotheimer JB, Linnemann CC, Smith MH. Antimicrobial treatment of pertussis. J Pediatr. 1969;75:768–81.CrossRefPubMed Bass JW, Klenk EL, Kotheimer JB, Linnemann CC, Smith MH. Antimicrobial treatment of pertussis. J Pediatr. 1969;75:768–81.CrossRefPubMed
5.
go back to reference Aoyama T, Sunakawa K, Iwata S, Takeuchi Y, Fujii R. Efficacy of short-term treatment of pertussis with clarithromycin and azithromycin. J Pediatr. 1996;129:761–4.CrossRefPubMed Aoyama T, Sunakawa K, Iwata S, Takeuchi Y, Fujii R. Efficacy of short-term treatment of pertussis with clarithromycin and azithromycin. J Pediatr. 1996;129:761–4.CrossRefPubMed
6.
go back to reference Tiwari T, Murphy T, Moran J. National Immunization Program(CDC). Recommended antimicrobial agents for the treatment and postexposure prophylaxis of pertussis: 2005 CDC Guidelines. MMWR Recomm Rep. 2005;54:1–16.PubMed Tiwari T, Murphy T, Moran J. National Immunization Program(CDC). Recommended antimicrobial agents for the treatment and postexposure prophylaxis of pertussis: 2005 CDC Guidelines. MMWR Recomm Rep. 2005;54:1–16.PubMed
7.
go back to reference Baraff LJ, Wilkins J, Wehrle PF. The role of antibiotics, immunizations, and adenoviruses in pertussis. Pediatrics. 1978;61:224–30.PubMed Baraff LJ, Wilkins J, Wehrle PF. The role of antibiotics, immunizations, and adenoviruses in pertussis. Pediatrics. 1978;61:224–30.PubMed
8.
go back to reference Halperin SA, Bortolussi R, Langley JM, Eastwood BJ, De Serres G. A randomized, placebo-controlled trial of erythromycin estolate chemoprophylaxis for household contacts of children with culture-positive Bordetella pertussis infection. Pediatrics. 1999;104, e42.CrossRefPubMed Halperin SA, Bortolussi R, Langley JM, Eastwood BJ, De Serres G. A randomized, placebo-controlled trial of erythromycin estolate chemoprophylaxis for household contacts of children with culture-positive Bordetella pertussis infection. Pediatrics. 1999;104, e42.CrossRefPubMed
9.
go back to reference Altunaiji S, Kukuruzovic R, Curtis N, Massie J. Antibiotics for whooping cough (pertussis). Cochrane Database Syst Rev. 2007;18, CD004404. Altunaiji S, Kukuruzovic R, Curtis N, Massie J. Antibiotics for whooping cough (pertussis). Cochrane Database Syst Rev. 2007;18, CD004404.
10.
go back to reference Langley JM, Halperin SA, Boucher FD, Smith B. Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC). Azithromycin is as effective as and better tolerated than erythromycin estolate for the treatment of pertussis. Pediatrics. 2004;114:e96–e101.CrossRefPubMed Langley JM, Halperin SA, Boucher FD, Smith B. Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC). Azithromycin is as effective as and better tolerated than erythromycin estolate for the treatment of pertussis. Pediatrics. 2004;114:e96–e101.CrossRefPubMed
11.
go back to reference Bortolussi R, Miller B, Ledwith M, Halperin S. Clinical course of pertussis in immunized children. Pediatr Infect Dis J. 1995;14:870–4.CrossRefPubMed Bortolussi R, Miller B, Ledwith M, Halperin S. Clinical course of pertussis in immunized children. Pediatr Infect Dis J. 1995;14:870–4.CrossRefPubMed
12.
go back to reference Steketee RW, Wassilak SG, Adkins WNJ, et al. Evidence for a high attack rate and efficacy of erythromycin prophylaxis in a pertussis outbreak in a facility for the developmentally disabled. J Infect Dis. 1988;157:434–40.CrossRefPubMed Steketee RW, Wassilak SG, Adkins WNJ, et al. Evidence for a high attack rate and efficacy of erythromycin prophylaxis in a pertussis outbreak in a facility for the developmentally disabled. J Infect Dis. 1988;157:434–40.CrossRefPubMed
13.
go back to reference Swedish Institute for Communicable Disease Control (Smittskyddsinstitutet). Pertussis surveillance in Sweden: thirteen year report. Solna: Smittskyddsinstitutet; 2011. Report No.: 2011-18-1. Swedish Institute for Communicable Disease Control (Smittskyddsinstitutet). Pertussis surveillance in Sweden: thirteen year report. Solna: Smittskyddsinstitutet; 2011. Report No.: 2011-18-1.
14.
15.
go back to reference Horiba K, Nishimura N, Gotoh K, et al. Clinical manifestations of children with microbiologically confirmed pertussis infection and antimicrobial susceptibility of isolated strains in a regional hospital in Japan, 2008–2012. Jpn J Infect Dis. 2014;67:345–8.CrossRefPubMed Horiba K, Nishimura N, Gotoh K, et al. Clinical manifestations of children with microbiologically confirmed pertussis infection and antimicrobial susceptibility of isolated strains in a regional hospital in Japan, 2008–2012. Jpn J Infect Dis. 2014;67:345–8.CrossRefPubMed
16.
go back to reference Strebel P, Nordin J, Edwards K, et al. Population-based incidence of pertussis among adolescents and adults, Minnesota, 1995–1996. J Infect Dis. 2001;183:1353–9.CrossRefPubMed Strebel P, Nordin J, Edwards K, et al. Population-based incidence of pertussis among adolescents and adults, Minnesota, 1995–1996. J Infect Dis. 2001;183:1353–9.CrossRefPubMed
Metadata
Title
The impact of healthcare visit timing on reported pertussis cough duration: Selection bias and disease pattern from reported cases in Michigan, USA, 2000–2010
Authors
Jennifer K. Knapp
Mark L. Wilson
Susan Murray
Matthew L. Boulton
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2016
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-1852-0

Other articles of this Issue 1/2016

BMC Infectious Diseases 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.