Skip to main content
Top
Published in: Radiation Oncology 1/2012

Open Access 01-12-2012 | Research

The impact of direct aperture optimization on plan quality and efficiency in complex head and neck IMRT

Authors: Marcello Sabatino, Matthias Kretschmer, Klemens Zink, Florian Würschmidt

Published in: Radiation Oncology | Issue 1/2012

Login to get access

Abstract

Background

Conventional step&shoot intensity modulated radio therapy (IMRT) approaches potentially lead to treatment plans with high numbers of segments and monitor units (MU) and, therefore, could be time consuming at the linear accelerator. Direct optimization methods are able to reduce the complexity without degrading the quality of the plan. The aim of this study is the evaluation of different IMRT approaches at standardized conditions for head and neck tumors.

Method

For 27 patients with carcinomas in the head and neck region a planning study with a 2-step-IMRT system (KonRad), a direct optimization system (Panther DAO) and a mixture of both approaches (MasterPlan DSS) was created. In order to avoid different prescription doses for boost volumes a simple standardization was realized. The dose was downscaled to 50 Gy to the planning target volume (PTV) which included the primary tumor as well as the bilateral lymphatic drainage (cervical and supraclavicular). Dose restrictions for the organs at risk (OAR) were downscaled to this prescription from high dose concepts up to 72 Gy. Those limits were defined as planning objectives while reaching definable PTV coverage with a standardized field setup. The parameters were evaluated from the corresponding dose volume histogram (DVH). Special attention was paid to the efficiency of the method, measured by means of calculated MU and required segments. Statistical tests of significance were applied to quantify the differences between the evaluated systems.

Results

PTV coverage for all systems in terms of V90% and V95% fell short of the requested 100% and 95%, respectively, but were still acceptable (range: 98.7% to 99.1% and 94.2% to 94.7%). Overall for OAR sparing and the burden of healthy tissue with low doses no technique was superior for all evaluated parameters. Differences were found for the number of segments where the direct optimization systems generated less segments. Lowest average numbers of MU were 308 by Panther DAO calculated for 2 Gy fractions. Based on these findings the treatment time at the linear accelerator is the lowest for Panther DAO.

Conclusions

All IMRT approaches implemented in the different treatment planning systems (TPS) generated clinically acceptable and comparable plans. No superior system in terms of PTV coverage and OAR sparing was found. Major differences in efficiency of the method in terms of calculated MU and treatment times were found.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bertelsen A, Hansen CR, Johansen J, Brink C: Single Arc Volumetric Modulated Arc Therapy of head and neck cancer. Radiother Oncol 2010, 95: 142-148. 10.1016/j.radonc.2010.01.011CrossRefPubMed Bertelsen A, Hansen CR, Johansen J, Brink C: Single Arc Volumetric Modulated Arc Therapy of head and neck cancer. Radiother Oncol 2010, 95: 142-148. 10.1016/j.radonc.2010.01.011CrossRefPubMed
2.
go back to reference Cozzi L, Fogliata A, Bolsi A, Nicolini G, Bernier J: Three-dimensional conformal vs. intensity-modulated radiotherapy in head-and-neck cancer patients: comparative analysis of dosimetric and technical parameters. Int J Radiat Oncol Biol Phys 2004, 58: 617-624. 10.1016/j.ijrobp.2003.09.059CrossRefPubMed Cozzi L, Fogliata A, Bolsi A, Nicolini G, Bernier J: Three-dimensional conformal vs. intensity-modulated radiotherapy in head-and-neck cancer patients: comparative analysis of dosimetric and technical parameters. Int J Radiat Oncol Biol Phys 2004, 58: 617-624. 10.1016/j.ijrobp.2003.09.059CrossRefPubMed
3.
go back to reference Dobler B, Pohl F, Bogner L, Koelbl O: Comparison of direct machine parameter optimization versus fluence optimization with sequential sequencing in IMRT of hypopharyngeal carcinoma. Radiat Oncol 2007, 2: 33. 10.1186/1748-717X-2-33PubMedCentralCrossRefPubMed Dobler B, Pohl F, Bogner L, Koelbl O: Comparison of direct machine parameter optimization versus fluence optimization with sequential sequencing in IMRT of hypopharyngeal carcinoma. Radiat Oncol 2007, 2: 33. 10.1186/1748-717X-2-33PubMedCentralCrossRefPubMed
4.
go back to reference Fogliata A, Bolsi A, Cozzi L: Comparative analysis of intensity modulation inverse planning modules of three commercial treatment planning systems applied to head and neck tumour model. Radiother Oncol 2003, 66: 29-40. 10.1016/S0167-8140(02)00326-2CrossRefPubMed Fogliata A, Bolsi A, Cozzi L: Comparative analysis of intensity modulation inverse planning modules of three commercial treatment planning systems applied to head and neck tumour model. Radiother Oncol 2003, 66: 29-40. 10.1016/S0167-8140(02)00326-2CrossRefPubMed
5.
go back to reference Jones S, Williams M: Clinical evaluation of direct aperture optimization when applied to head-and-neck IMRT. Med Dosim 2008, 33: 86-92. 10.1016/j.meddos.2007.04.002CrossRefPubMed Jones S, Williams M: Clinical evaluation of direct aperture optimization when applied to head-and-neck IMRT. Med Dosim 2008, 33: 86-92. 10.1016/j.meddos.2007.04.002CrossRefPubMed
6.
go back to reference Reitz B, Miften M: Comparison of the KonRad IMRT and XiO treatment planning systems. J Appl Clin Med Phys 2008, 9: 2770.CrossRefPubMed Reitz B, Miften M: Comparison of the KonRad IMRT and XiO treatment planning systems. J Appl Clin Med Phys 2008, 9: 2770.CrossRefPubMed
7.
go back to reference Vanetti E, Clivio A, Nicolini G, et al.: Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. Radiother Oncol 2009, 92: 111-117. 10.1016/j.radonc.2008.12.008CrossRefPubMed Vanetti E, Clivio A, Nicolini G, et al.: Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. Radiother Oncol 2009, 92: 111-117. 10.1016/j.radonc.2008.12.008CrossRefPubMed
8.
go back to reference Verbakel WF, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S: Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys 2009, 74: 252-259. 10.1016/j.ijrobp.2008.12.033CrossRefPubMed Verbakel WF, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S: Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys 2009, 74: 252-259. 10.1016/j.ijrobp.2008.12.033CrossRefPubMed
9.
go back to reference Wiezorek T, Brachwitz T, Georg D, et al.: Rotational IMRT techniques compared to fixed gantry IMRT and tomotherapy: multi-institutional planning study for head-and-neck cases. Radiat Oncol 6: 20. Wiezorek T, Brachwitz T, Georg D, et al.: Rotational IMRT techniques compared to fixed gantry IMRT and tomotherapy: multi-institutional planning study for head-and-neck cases. Radiat Oncol 6: 20.
10.
go back to reference Broderick M, Leech M, Coffey M: Direct aperture optimization as a means of reducing the complexity of Intensity Modulated Radiation Therapy plans. Radiat Oncol 2009, 4: 8. 10.1186/1748-717X-4-8PubMedCentralCrossRefPubMed Broderick M, Leech M, Coffey M: Direct aperture optimization as a means of reducing the complexity of Intensity Modulated Radiation Therapy plans. Radiat Oncol 2009, 4: 8. 10.1186/1748-717X-4-8PubMedCentralCrossRefPubMed
11.
go back to reference Shepard DM, Earl MA, Li XA, Naqvi S, Yu C: Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 2002, 29: 1007-1018. 10.1118/1.1477415CrossRefPubMed Shepard DM, Earl MA, Li XA, Naqvi S, Yu C: Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 2002, 29: 1007-1018. 10.1118/1.1477415CrossRefPubMed
12.
go back to reference Hall EJ: Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006, 65: 1-7. 10.1016/j.ijrobp.2006.01.027CrossRefPubMed Hall EJ: Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006, 65: 1-7. 10.1016/j.ijrobp.2006.01.027CrossRefPubMed
13.
go back to reference Webb S: The physical basis of IMRT and inverse planning. Br J Radiol 2003, 76: 678-689. 10.1259/bjr/65676879CrossRefPubMed Webb S: The physical basis of IMRT and inverse planning. Br J Radiol 2003, 76: 678-689. 10.1259/bjr/65676879CrossRefPubMed
14.
go back to reference Oelfke U, Nill S, Wilkens JJ: Physical Optimization. Edited by: Bortfeld TR, Schmidt-Ullrich R, De Neve W, Wazer DE. Image-guided IMRT, Berlin Heidelberg: Springer; 2006:31-46. Oelfke U, Nill S, Wilkens JJ: Physical Optimization. Edited by: Bortfeld TR, Schmidt-Ullrich R, De Neve W, Wazer DE. Image-guided IMRT, Berlin Heidelberg: Springer; 2006:31-46.
15.
go back to reference Hardemark B, Liander A, Rehbinder H, Löf J: Direct machine parameter optimization with RayMachine in Pinnacle. Ray-Search White Paper 2003. Hardemark B, Liander A, Rehbinder H, Löf J: Direct machine parameter optimization with RayMachine in Pinnacle. Ray-Search White Paper 2003.
16.
go back to reference Marks LB, Yorke ED, Jackson A, et al.: Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76: S10-19. Marks LB, Yorke ED, Jackson A, et al.: Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76: S10-19.
17.
go back to reference Tacke MB, Nill S, Haring P, Oelfke U: 6 MV dosimetric characterization of the 160 MLC, the new Siemens multileaf collimator. Med Phys 2008, 35: 1634-1642. 10.1118/1.2889782CrossRefPubMed Tacke MB, Nill S, Haring P, Oelfke U: 6 MV dosimetric characterization of the 160 MLC, the new Siemens multileaf collimator. Med Phys 2008, 35: 1634-1642. 10.1118/1.2889782CrossRefPubMed
18.
go back to reference ICRU Report 50-Prescribing, recording and reporting photon beam therapy International Commission on Radiation Units and Measurements 1993. ICRU Report 50-Prescribing, recording and reporting photon beam therapy International Commission on Radiation Units and Measurements 1993.
19.
go back to reference Chung H, Jin H, Dempsey JF, et al.: Evaluation of surface and build-up region dose for intensity-modulated radiation therapy in head and neck cancer. Med Phys 2005, 32: 2682-2689. 10.1118/1.1992067CrossRefPubMed Chung H, Jin H, Dempsey JF, et al.: Evaluation of surface and build-up region dose for intensity-modulated radiation therapy in head and neck cancer. Med Phys 2005, 32: 2682-2689. 10.1118/1.1992067CrossRefPubMed
20.
go back to reference Wiezorek T, Schwahofer A, Schubert K: The influence of different IMRT techniques on the peripheral dose: a comparison between sMLM-IMRT and helical tomotherapy. Strahlenther Onkol 2009, 185: 696-702. 10.1007/s00066-009-2005-9CrossRefPubMed Wiezorek T, Schwahofer A, Schubert K: The influence of different IMRT techniques on the peripheral dose: a comparison between sMLM-IMRT and helical tomotherapy. Strahlenther Onkol 2009, 185: 696-702. 10.1007/s00066-009-2005-9CrossRefPubMed
Metadata
Title
The impact of direct aperture optimization on plan quality and efficiency in complex head and neck IMRT
Authors
Marcello Sabatino
Matthias Kretschmer
Klemens Zink
Florian Würschmidt
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2012
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-7-7

Other articles of this Issue 1/2012

Radiation Oncology 1/2012 Go to the issue