Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2019

Open Access 01-12-2019 | Research article

The immune system in sporadic inclusion body myositis patients is not compromised by blood-flow restricted exercise training

Authors: Kasper Yde Jensen, Mikkel Jacobsen, Henrik Daa Schrøder, Per Aagaard, Jakob Lindberg Nielsen, Anders Nørkær Jørgensen, Eleanor Boyle, Rune Dueholm Bech, Sofie Rosmark, Louise Pyndt Diederichsen, Ulrik Frandsen

Published in: Arthritis Research & Therapy | Issue 1/2019

Login to get access

Abstract

Background

Sporadic inclusion body myositis (sIBM) is clinically characterised by progressive proximal and distal muscle weakness and impaired physical function while skeletal muscle tissue displays abnormal cellular infiltration of T cells, macrophages, and dendritic cells. Only limited knowledge exists about the effects of low-load blood flow restriction exercise in sIBM patients, and its effect on the immunological responses at the myocellular level remains unknown. The present study is the first to investigate the longitudinal effects of low-load blood flow restriction exercise on innate and adaptive immune markers in skeletal muscle from sIBM patients.

Methods

Twenty-two biopsy-validated sIBM patients were randomised into either 12 weeks of low-load blood flow restriction exercise (BFRE) or no exercise (CON). Five patients from the control group completed 12 weeks of BFRE immediately following participation in the 12-week control period leading to an intervention group of 16 patients. Muscle biopsies were obtained from either the m. tibialis anterior or the m. vastus lateralis for evaluation of CD3-, CD8-, CD68-, CD206-, CD244- and FOXP3-positive cells by three-colour immunofluorescence microscopy and Visiopharm-based image analysis quantification. A linear mixed model was used for the statistical analysis.

Results

Myocellular infiltration of CD3/CD8+ expressing natural killer cells increased following BFRE (P < 0.05) with no changes in CON. No changes were observed for CD3+/CD8 or CD3+/CD8+ T cells in BFRE or CON. CD3+/CD244+ T cells decreased in CON, while no changes were observed in BFRE. Pronounced infiltration of M1 pro-inflammatory (CD68+/CD206) and M2 anti-inflammatory (CD68+/CD206+) macrophages were observed at baseline; however, no longitudinal changes in macrophage content were observed for both groups.

Conclusions

Low-load blood flow restriction exercise elicited an upregulation in CD3/CD8+ expressing natural killer cell content, which suggests that 12 weeks of BFRE training evokes an amplified immune response in sIBM muscle. However, the observation of no changes in macrophage or T cell infiltration in the BFRE-trained patients indicates that patients with sIBM may engage in this type of exercise with no risk of intensified inflammatory activity.
Literature
1.
go back to reference Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol. 2019;15(5):257–72.PubMedCrossRef Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol. 2019;15(5):257–72.PubMedCrossRef
2.
go back to reference Yunis EJ, Samaha FJ. Inclusion body myositis. Lab Invest. 1971;25(3):240–8.PubMed Yunis EJ, Samaha FJ. Inclusion body myositis. Lab Invest. 1971;25(3):240–8.PubMed
3.
go back to reference Griggs RC, Askanas V, DiMauro S, Engel A, Karpati G, Mendell JR, et al. Inclusion body myositis and myopathies. Ann Neurol. 1995;38(5):705–13.PubMedCrossRef Griggs RC, Askanas V, DiMauro S, Engel A, Karpati G, Mendell JR, et al. Inclusion body myositis and myopathies. Ann Neurol. 1995;38(5):705–13.PubMedCrossRef
4.
go back to reference Karpati G, O'Ferrall EK. Sporadic inclusion body myositis: pathogenic considerations. Ann Neurol. 2009;65(1):7–11.PubMedCrossRef Karpati G, O'Ferrall EK. Sporadic inclusion body myositis: pathogenic considerations. Ann Neurol. 2009;65(1):7–11.PubMedCrossRef
5.
go back to reference Askanas V, Engel WK, Nogalska A. Pathogenic considerations in sporadic inclusion-body myositis, a degenerative muscle disease associated with aging and abnormalities of myoproteostasis. J Neuropathol Exp Neurol. 2012;71(8):680–93.PubMedCrossRef Askanas V, Engel WK, Nogalska A. Pathogenic considerations in sporadic inclusion-body myositis, a degenerative muscle disease associated with aging and abnormalities of myoproteostasis. J Neuropathol Exp Neurol. 2012;71(8):680–93.PubMedCrossRef
6.
go back to reference Cox FM, Titulaer MJ, Sont JK, Wintzen AR, Verschuuren JJ, Badrising UA. A 12-year follow-up in sporadic inclusion body myositis: an end stage with major disabilities. Brain. 2011;134(Pt 11):3167–75.PubMedCrossRef Cox FM, Titulaer MJ, Sont JK, Wintzen AR, Verschuuren JJ, Badrising UA. A 12-year follow-up in sporadic inclusion body myositis: an end stage with major disabilities. Brain. 2011;134(Pt 11):3167–75.PubMedCrossRef
7.
go back to reference Hogrel JY, Allenbach Y, Canal A, Leroux G, Ollivier G, Mariampillai K, et al. Four-year longitudinal study of clinical and functional endpoints in sporadic inclusion body myositis: implications for therapeutic trials. Neuromuscular Disord. 2014;24(7):604–10.CrossRef Hogrel JY, Allenbach Y, Canal A, Leroux G, Ollivier G, Mariampillai K, et al. Four-year longitudinal study of clinical and functional endpoints in sporadic inclusion body myositis: implications for therapeutic trials. Neuromuscular Disord. 2014;24(7):604–10.CrossRef
8.
go back to reference Skelton DA, Greig CA, Davies JM, Young A. Strength, power and related functional ability of healthy people aged 65-89 years. Age Ageing. 1994;23(5):371–7.PubMedCrossRef Skelton DA, Greig CA, Davies JM, Young A. Strength, power and related functional ability of healthy people aged 65-89 years. Age Ageing. 1994;23(5):371–7.PubMedCrossRef
9.
go back to reference Pearson SJ, Young A, Macaluso A, Devito G, Nimmo MA, Cobbold M, et al. Muscle function in elite master weightlifters. Med Sci Sports Exerc. 2002;34(7):1199–206.PubMedCrossRef Pearson SJ, Young A, Macaluso A, Devito G, Nimmo MA, Cobbold M, et al. Muscle function in elite master weightlifters. Med Sci Sports Exerc. 2002;34(7):1199–206.PubMedCrossRef
10.
go back to reference Askanas V, Engel WK. Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer’s and Parkinson’s disease brains. Acta Neuropathol. 2008;116(6):583–95.PubMedPubMedCentralCrossRef Askanas V, Engel WK. Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer’s and Parkinson’s disease brains. Acta Neuropathol. 2008;116(6):583–95.PubMedPubMedCentralCrossRef
11.
go back to reference Lundberg IE, Nader GA. Molecular effects of exercise in patients with inflammatory rheumatic disease. Nat Clin Pract Rheumatol. 2008;4(11):597–604.PubMedCrossRef Lundberg IE, Nader GA. Molecular effects of exercise in patients with inflammatory rheumatic disease. Nat Clin Pract Rheumatol. 2008;4(11):597–604.PubMedCrossRef
12.
go back to reference Nader GA, Lundberg IE. Exercise as an anti-inflammatory intervention to combat inflammatory diseases of muscle. Curr Opin Rheumatol. 2009;21(6):599–603.PubMedCrossRef Nader GA, Lundberg IE. Exercise as an anti-inflammatory intervention to combat inflammatory diseases of muscle. Curr Opin Rheumatol. 2009;21(6):599–603.PubMedCrossRef
13.
go back to reference Alexanderson H. Exercise in myositis. Curr Treat Options Rheumatol. 2018;4(4):289–98.CrossRef Alexanderson H. Exercise in myositis. Curr Treat Options Rheumatol. 2018;4(4):289–98.CrossRef
14.
go back to reference Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol. 2015;11(2):86–97.PubMedCrossRef Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol. 2015;11(2):86–97.PubMedCrossRef
15.
go back to reference Dorneles GP, Colato AS, Galvao SL, Ramis TR, Ribeiro JL, Romao PR, et al. Acute response of peripheral CCr5 chemoreceptor and NK cells in individuals submitted to a single session of low-intensity strength exercise with blood flow restriction. Clin Physiol Funct Imaging. 2016;36(4):311–7.PubMedCrossRef Dorneles GP, Colato AS, Galvao SL, Ramis TR, Ribeiro JL, Romao PR, et al. Acute response of peripheral CCr5 chemoreceptor and NK cells in individuals submitted to a single session of low-intensity strength exercise with blood flow restriction. Clin Physiol Funct Imaging. 2016;36(4):311–7.PubMedCrossRef
16.
go back to reference Nielsen JL, Aagaard P, Prokhorova TA, Nygaard T, Bech RD, Suetta C, et al. Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. J Physiol. 2017;595(14):4857–73.PubMedPubMedCentralCrossRef Nielsen JL, Aagaard P, Prokhorova TA, Nygaard T, Bech RD, Suetta C, et al. Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. J Physiol. 2017;595(14):4857–73.PubMedPubMedCentralCrossRef
17.
go back to reference Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):1003–11.PubMedCrossRef Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):1003–11.PubMedCrossRef
18.
go back to reference Gualano B, Neves M Jr, Lima FR, Pinto AL, Laurentino G, Borges C, et al. Resistance training with vascular occlusion in inclusion body myositis: a case study. Med Sci Sports Exerc. 2010;42(2):250–4.PubMedCrossRef Gualano B, Neves M Jr, Lima FR, Pinto AL, Laurentino G, Borges C, et al. Resistance training with vascular occlusion in inclusion body myositis: a case study. Med Sci Sports Exerc. 2010;42(2):250–4.PubMedCrossRef
19.
go back to reference Jorgensen AN, Aagaard P, Nielsen JL, Frandsen U, Diederichsen LP. Effects of blood-flow-restricted resistance training on muscle function in a 74-year-old male with sporadic inclusion body myositis: a case report. Clin Physiol Funct Imaging. 2016;36(6):504–9.PubMedCrossRef Jorgensen AN, Aagaard P, Nielsen JL, Frandsen U, Diederichsen LP. Effects of blood-flow-restricted resistance training on muscle function in a 74-year-old male with sporadic inclusion body myositis: a case report. Clin Physiol Funct Imaging. 2016;36(6):504–9.PubMedCrossRef
20.
go back to reference Mattar MA, Gualano B, Perandini LA, Shinjo SK, Lima FR, Sa-Pinto AL, et al. Safety and possible effects of low-intensity resistance training associated with partial blood flow restriction in polymyositis and dermatomyositis. Arthritis Re Ther. 2014;16(5):473.CrossRef Mattar MA, Gualano B, Perandini LA, Shinjo SK, Lima FR, Sa-Pinto AL, et al. Safety and possible effects of low-intensity resistance training associated with partial blood flow restriction in polymyositis and dermatomyositis. Arthritis Re Ther. 2014;16(5):473.CrossRef
21.
go back to reference Jorgensen AN, Aagaard P, Frandsen U, Boyle E, Diederichsen LP. Blood-flow restricted resistance training in patients with sporadic inclusion body myositis: a randomized controlled trial. Scand J Rheumatol. 2018;47(5):400–9.PubMedCrossRef Jorgensen AN, Aagaard P, Frandsen U, Boyle E, Diederichsen LP. Blood-flow restricted resistance training in patients with sporadic inclusion body myositis: a randomized controlled trial. Scand J Rheumatol. 2018;47(5):400–9.PubMedCrossRef
22.
go back to reference Pandya JM, Fasth AE, Zong M, Arnardottir S, Dani L, Lindroos E, et al. Expanded T cell receptor Vbeta-restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28null T cells. Arthritis Rheum. 2010;62(11):3457–66.PubMedCrossRef Pandya JM, Fasth AE, Zong M, Arnardottir S, Dani L, Lindroos E, et al. Expanded T cell receptor Vbeta-restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28null T cells. Arthritis Rheum. 2010;62(11):3457–66.PubMedCrossRef
23.
go back to reference Pandya JM, Loell I, Hossain MS, Zong M, Alexanderson H, Raghavan S, et al. Effects of conventional immunosuppressive treatment on CD244+ (CD28null) and FOXP3+ T cells in the inflamed muscle of patients with polymyositis and dermatomyositis. Arthritis Res Ther. 2016;18:80.PubMedPubMedCentralCrossRef Pandya JM, Loell I, Hossain MS, Zong M, Alexanderson H, Raghavan S, et al. Effects of conventional immunosuppressive treatment on CD244+ (CD28null) and FOXP3+ T cells in the inflamed muscle of patients with polymyositis and dermatomyositis. Arthritis Res Ther. 2016;18:80.PubMedPubMedCentralCrossRef
24.
go back to reference Pandya JM, Venalis P, Al-Khalili L, Shahadat Hossain M, Stache V, Lundberg IE, et al. CD4+ and CD8+ CD28(null) T cells are cytotoxic to autologous muscle cells in patients with polymyositis. Arthritis Rheumatol. 2016;68(8):2016–26.PubMedCrossRef Pandya JM, Venalis P, Al-Khalili L, Shahadat Hossain M, Stache V, Lundberg IE, et al. CD4+ and CD8+ CD28(null) T cells are cytotoxic to autologous muscle cells in patients with polymyositis. Arthritis Rheumatol. 2016;68(8):2016–26.PubMedCrossRef
25.
26.
27.
go back to reference Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.PubMedCrossRef Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.PubMedCrossRef
28.
go back to reference Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.PubMedCrossRef Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.PubMedCrossRef
29.
go back to reference Waschbisch A, Schwab N, Ruck T, Stenner MP, Wiendl H. FOXP3+ T regulatory cells in idiopathic inflammatory myopathies. J Neuroimmunol. 2010;225(1–2):137–42.PubMedCrossRef Waschbisch A, Schwab N, Ruck T, Stenner MP, Wiendl H. FOXP3+ T regulatory cells in idiopathic inflammatory myopathies. J Neuroimmunol. 2010;225(1–2):137–42.PubMedCrossRef
30.
go back to reference Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS One. 2015;10(6):e0128094.PubMedPubMedCentralCrossRef Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS One. 2015;10(6):e0128094.PubMedPubMedCentralCrossRef
33.
go back to reference Allenbach Y, Chaara W, Rosenzwajg M, Six A, Prevel N, Mingozzi F, et al. Th1 response and systemic treg deficiency in inclusion body myositis. PLoS One. 2014;9(3):e88788.PubMedPubMedCentralCrossRef Allenbach Y, Chaara W, Rosenzwajg M, Six A, Prevel N, Mingozzi F, et al. Th1 response and systemic treg deficiency in inclusion body myositis. PLoS One. 2014;9(3):e88788.PubMedPubMedCentralCrossRef
34.
go back to reference Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol. 2007;578(Pt 1):327–36.PubMedCrossRef Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol. 2007;578(Pt 1):327–36.PubMedCrossRef
35.
go back to reference Massimino ML, Rapizzi E, Cantini M, Libera LD, Mazzoleni F, Arslan P, et al. ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochem Biophys Res Commun. 1997;235(3):754–9.PubMedCrossRef Massimino ML, Rapizzi E, Cantini M, Libera LD, Mazzoleni F, Arslan P, et al. ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochem Biophys Res Commun. 1997;235(3):754–9.PubMedCrossRef
36.
go back to reference Gleeson M, Bishop NC. The T cell and NK cell immune response to exercise. Ann Transplantation. 2005;10(4):43–8. Gleeson M, Bishop NC. The T cell and NK cell immune response to exercise. Ann Transplantation. 2005;10(4):43–8.
37.
go back to reference Bigley AB, Simpson RJ. NK cells and exercise: implications for cancer immunotherapy and survivorship. Discov Med. 2015;19(107):433–45.PubMed Bigley AB, Simpson RJ. NK cells and exercise: implications for cancer immunotherapy and survivorship. Discov Med. 2015;19(107):433–45.PubMed
38.
go back to reference Jorgensen AN, Aagaard P, Nielsen JL, Christiansen M, Hvid LG, Frandsen U, et al. Physical function and muscle strength in sporadic inclusion body myositis. Muscle Nerve. 2017;56(6):E50–e8.PubMedCrossRef Jorgensen AN, Aagaard P, Nielsen JL, Christiansen M, Hvid LG, Frandsen U, et al. Physical function and muscle strength in sporadic inclusion body myositis. Muscle Nerve. 2017;56(6):E50–e8.PubMedCrossRef
39.
go back to reference Nielsen JL, Aagaard P, Bech RD, Nygaard T, Hvid LG, Wernbom M, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol. 2012;590(17):4351–61.PubMedPubMedCentralCrossRef Nielsen JL, Aagaard P, Bech RD, Nygaard T, Hvid LG, Wernbom M, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol. 2012;590(17):4351–61.PubMedPubMedCentralCrossRef
40.
go back to reference Nader GA, Dastmalchi M, Alexanderson H, Grundtman C, Gernapudi R, Esbjornsson M, et al. A longitudinal, integrated, clinical, histological and mRNA profiling study of resistance exercise in myositis. Mol Med. 2010;16(11–12):455–64.PubMedPubMedCentralCrossRef Nader GA, Dastmalchi M, Alexanderson H, Grundtman C, Gernapudi R, Esbjornsson M, et al. A longitudinal, integrated, clinical, histological and mRNA profiling study of resistance exercise in myositis. Mol Med. 2010;16(11–12):455–64.PubMedPubMedCentralCrossRef
41.
go back to reference Munters LA, Loell I, Ossipova E, Raouf J, Dastmalchi M, Lindroos E, et al. Endurance exercise improves molecular pathways of aerobic metabolism in patients with myositis. Arthritis Rheumatol. 2016;68(7):1738–50.PubMedCrossRef Munters LA, Loell I, Ossipova E, Raouf J, Dastmalchi M, Lindroos E, et al. Endurance exercise improves molecular pathways of aerobic metabolism in patients with myositis. Arthritis Rheumatol. 2016;68(7):1738–50.PubMedCrossRef
42.
go back to reference Fasth AE, Dastmalchi M, Rahbar A, Salomonsson S, Pandya JM, Lindroos E, et al. T cell infiltrates in the muscles of patients with dermatomyositis and polymyositis are dominated by CD28null T cells. J Immunol. 2009;183(7):4792–9.PubMedCrossRef Fasth AE, Dastmalchi M, Rahbar A, Salomonsson S, Pandya JM, Lindroos E, et al. T cell infiltrates in the muscles of patients with dermatomyositis and polymyositis are dominated by CD28null T cells. J Immunol. 2009;183(7):4792–9.PubMedCrossRef
43.
go back to reference Loell I, Pandya J, Raghvan S, Zong M, Malmström V, Lundberg IE. Persisting CD28<sup>null</sup> T cells, but not regulatory T cells, in muscle tissue of myositis patients after immunosuppressive therapy. Ann Rheumatic Dis. 2012;71(Suppl 1):A44-A. Loell I, Pandya J, Raghvan S, Zong M, Malmström V, Lundberg IE. Persisting CD28<sup>null</sup> T cells, but not regulatory T cells, in muscle tissue of myositis patients after immunosuppressive therapy. Ann Rheumatic Dis. 2012;71(Suppl 1):A44-A.
44.
go back to reference Pandya J, Venalis P, Stache V, Al-Khalili L, Malmström V, Lundberg I, et al. CD28<sup>null</sup> T cells from myositis patients are cytotoxic to autologous muscle cells in vitro. Ann Rheum Dis. 2012;71(Suppl 1):A44–A5.CrossRef Pandya J, Venalis P, Stache V, Al-Khalili L, Malmström V, Lundberg I, et al. CD28<sup>null</sup> T cells from myositis patients are cytotoxic to autologous muscle cells in vitro. Ann Rheum Dis. 2012;71(Suppl 1):A44–A5.CrossRef
45.
go back to reference Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev. 2005;205:158–69.PubMedCrossRef Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev. 2005;205:158–69.PubMedCrossRef
46.
go back to reference Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, et al. Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology. 1996;88(4):501–7.PubMedPubMedCentralCrossRef Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, et al. Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology. 1996;88(4):501–7.PubMedPubMedCentralCrossRef
47.
go back to reference Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, et al. Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol. 1994;29(6):601–9.PubMedCrossRef Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, et al. Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol. 1994;29(6):601–9.PubMedCrossRef
49.
go back to reference Wilson LD, Zaldivar FP, Schwindt CD, Wang-Rodriguez J, Cooper DM. Circulating T-regulatory cells, exercise and the elite adolescent swimmer. Pediatr Exerc Sci. 2009;21(3):305–17.PubMedPubMedCentralCrossRef Wilson LD, Zaldivar FP, Schwindt CD, Wang-Rodriguez J, Cooper DM. Circulating T-regulatory cells, exercise and the elite adolescent swimmer. Pediatr Exerc Sci. 2009;21(3):305–17.PubMedPubMedCentralCrossRef
50.
go back to reference Kruger K, Alack K, Ringseis R, Mink L, Pfeifer E, Schinle M, et al. Apoptosis of T-cell subsets after acute high-intensity interval exercise. Med Sci Sports Exerc. 2016;48(10):2021–9.PubMedCrossRef Kruger K, Alack K, Ringseis R, Mink L, Pfeifer E, Schinle M, et al. Apoptosis of T-cell subsets after acute high-intensity interval exercise. Med Sci Sports Exerc. 2016;48(10):2021–9.PubMedCrossRef
51.
go back to reference Young NA, Sharma R, Friedman AK, Kaffenberger BH, Bolon B, Jarjour WN. Aberrant muscle antigen exposure in mice is sufficient to cause myositis in a Treg cell-deficient milieu. Arthritis Rheum. 2013;65(12):3259–70.PubMedPubMedCentralCrossRef Young NA, Sharma R, Friedman AK, Kaffenberger BH, Bolon B, Jarjour WN. Aberrant muscle antigen exposure in mice is sufficient to cause myositis in a Treg cell-deficient milieu. Arthritis Rheum. 2013;65(12):3259–70.PubMedPubMedCentralCrossRef
52.
go back to reference Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.CrossRefPubMed Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.CrossRefPubMed
53.
go back to reference Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T cells and skeletal muscle regeneration. FEBS J. 2017;284(4):517–24.PubMedCrossRef Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T cells and skeletal muscle regeneration. FEBS J. 2017;284(4):517–24.PubMedCrossRef
54.
go back to reference Weavers H, Evans IR, Martin P, Wood W. Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell. 2016;165(7):1658–71.PubMedPubMedCentralCrossRef Weavers H, Evans IR, Martin P, Wood W. Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell. 2016;165(7):1658–71.PubMedPubMedCentralCrossRef
55.
go back to reference Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett. 2005;100(1):7–13.PubMedCrossRef Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett. 2005;100(1):7–13.PubMedCrossRef
56.
go back to reference Shepard RJ, Shek PN. Impact of physical activity and sport on the immune system. Rev Environ Health. 1996;11(3):133–47.PubMed Shepard RJ, Shek PN. Impact of physical activity and sport on the immune system. Rev Environ Health. 1996;11(3):133–47.PubMed
57.
go back to reference Nieman DC, Henson DA, Gusewitch G, Warren BJ, Dotson RC, Butterworth DE, et al. Physical activity and immune function in elderly women. Med Sci Sports Exerc. 1993;25(7):823–31.PubMedCrossRef Nieman DC, Henson DA, Gusewitch G, Warren BJ, Dotson RC, Butterworth DE, et al. Physical activity and immune function in elderly women. Med Sci Sports Exerc. 1993;25(7):823–31.PubMedCrossRef
58.
go back to reference De Bleecker JL, De Paepe B, Aronica E, de Visser M, Amato A, Aronica E, et al. 205th ENMC International Workshop: pathology diagnosis of idiopathic inflammatory myopathies part II 28-30 March 2014, Naarden, The Netherlands. Neuromuscular Disord. 2015;25(3):268–72.CrossRef De Bleecker JL, De Paepe B, Aronica E, de Visser M, Amato A, Aronica E, et al. 205th ENMC International Workshop: pathology diagnosis of idiopathic inflammatory myopathies part II 28-30 March 2014, Naarden, The Netherlands. Neuromuscular Disord. 2015;25(3):268–72.CrossRef
Metadata
Title
The immune system in sporadic inclusion body myositis patients is not compromised by blood-flow restricted exercise training
Authors
Kasper Yde Jensen
Mikkel Jacobsen
Henrik Daa Schrøder
Per Aagaard
Jakob Lindberg Nielsen
Anders Nørkær Jørgensen
Eleanor Boyle
Rune Dueholm Bech
Sofie Rosmark
Louise Pyndt Diederichsen
Ulrik Frandsen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2019
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-019-2036-2

Other articles of this Issue 1/2019

Arthritis Research & Therapy 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.