Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Research

The gene expression profile and cell of origin of canine peripheral T-cell lymphoma

Authors: Eileen Owens, Lauren Harris, Adam Harris, Janna Yoshimoto, Robert Burnett, Anne Avery

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Peripheral T-cell lymphoma (PTCL) refers to a heterogenous group of T-cell neoplasms with poor treatment responses and survival times. Canine PTCL clinically and immunophenotypically resembles the most common human subtype, PTCL-not otherwise specified (PTCL-NOS), leading to interest in this canine disease as a naturally occurring model for human PTCL. Gene expression profiling in human PTCL-NOS has helped characterize this ambiguous diagnosis into distinct subtypes, but similar gene expression profiling in canine PTCL is lacking.

Methods

Bulk RNA-sequencing was performed on tumor samples from 33 dogs with either CD4+ (26/33), CD8+ (4/33), or CD4-CD8- (3/33) PTCL as diagnosed by flow cytometry, and sorted CD4+ and CD8+ lymphocytes from healthy control dogs. Following normalization of RNA-seq data, we performed differential gene expression and unsupervised clustering methods. Gene set enrichment analysis was performed to determine the enrichment of canine CD4+ PTCL for human PTCL-NOS, oncogenic pathways, and various stages of T-cell development gene signatures. We utilized gene set variation analysis to evaluate individual canine CD4+ PTCLs for various human and murine T-cell and thymocyte gene signatures. Cultured canine PTCL cells were treated with a pan-PI3K inhibitor, and cell survival and proliferation were compared to DMSO-treated controls. Expression of GATA3 and phosphorylated AKT was validated by immunohistochemistry.

Results

While the canine CD4+ PTCL phenotype exhibited a consistent gene expression profile, the expression profiles of CD8+ and CD4-CD8- canine PTCLs were more heterogeneous. Canine CD4+ PTCL had increased expression of GATA3, upregulation of its target genes, enrichment for PI3K/AKT/mTOR signaling, and downregulation of PTEN, features consistent with the more aggressive GATA3-PTCL subtype of human PTCL-NOS. In vitro assays validated the reliance of canine CD4+ PTCL cells on PI3K/AKT/mTOR signaling for survival and proliferation. Canine CD4+ PTCL was enriched for thymic precursor gene signatures, exhibited increased expression of markers of immaturity (CD34, KIT, DNTT, and CCR9), and downregulated genes associated with the T-cell receptor, MHC class II associated genes (DLA-DQA1, DLA-DRA, HLA-DQB1, and HLA-DQB2), and CD25.

Conclusions

Canine CD4+ PTCL most closely resembled the GATA3-PTCL subtype of PTCL-NOS and may originate from an earlier stage of T-cell development than the more conventionally posited mature T-helper cell origin.
Appendix
Available only for authorised users
Literature
1.
go back to reference Matutes E. The 2017 WHO update on mature T- and natural killer (NK) cell neoplasms. Int J Lab Hematol. 2018;40(S1):97–103.CrossRefPubMed Matutes E. The 2017 WHO update on mature T- and natural killer (NK) cell neoplasms. Int J Lab Hematol. 2018;40(S1):97–103.CrossRefPubMed
2.
go back to reference Oluwasanjo A, Kartan S, Johnson W, Alpdogan O, Gru A, Mishra A, et al. Peripheral T-Cell Lymphoma, not Otherwise Specified (PTCL-NOS). In: Querfeld C, Zain J, Rosen ST, editors. T-Cell and NK-Cell Lymphomas: From Biology to Novel Therapies. Cham: Springer Int Publishing; 2019. 83–98. Available from: https://doi.org/10.1007/978-3-319-99716-2_4. Oluwasanjo A, Kartan S, Johnson W, Alpdogan O, Gru A, Mishra A, et al. Peripheral T-Cell Lymphoma, not Otherwise Specified (PTCL-NOS). In: Querfeld C, Zain J, Rosen ST, editors. T-Cell and NK-Cell Lymphomas: From Biology to Novel Therapies. Cham: Springer Int Publishing; 2019. 83–98. Available from: https://​doi.​org/​10.​1007/​978-3-319-99716-2_​4.
3.
go back to reference Iqbal J, Wright G, Wang C, Rosenwald A, Gascoyne RD, Weisenburger DD, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915–23.PubMedCentralCrossRefPubMed Iqbal J, Wright G, Wang C, Rosenwald A, Gascoyne RD, Weisenburger DD, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915–23.PubMedCentralCrossRefPubMed
4.
go back to reference Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol. 2009;9(2):125–35.PubMedCentralCrossRefPubMed Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol. 2009;9(2):125–35.PubMedCentralCrossRefPubMed
5.
go back to reference Heavican TB, Bouska A, Yu J, Lone W, Amador C, Gong Q, et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood. 2019;133(15):1664–76.PubMedCentralCrossRefPubMed Heavican TB, Bouska A, Yu J, Lone W, Amador C, Gong Q, et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood. 2019;133(15):1664–76.PubMedCentralCrossRefPubMed
6.
go back to reference Valli VE, San Myint M, Barthel A, Bienzle D, Caswell J, Colbatzky F, et al. Classification of canine malignant lymphomas according to the World Health Organization criteria. Vet Pathol. 2011;48(1):198–211.CrossRefPubMed Valli VE, San Myint M, Barthel A, Bienzle D, Caswell J, Colbatzky F, et al. Classification of canine malignant lymphomas according to the World Health Organization criteria. Vet Pathol. 2011;48(1):198–211.CrossRefPubMed
7.
go back to reference Seelig DM, Avery P, Webb T, Yoshimoto J, Bromberek J, Ehrhart EJ, et al. Canine T-Zone Lymphoma: Unique Immunophenotypic Features, Outcome, and Population Characteristics. J Vet Intern Med. 2014;28(3):878–86.PubMedCentralCrossRefPubMed Seelig DM, Avery P, Webb T, Yoshimoto J, Bromberek J, Ehrhart EJ, et al. Canine T-Zone Lymphoma: Unique Immunophenotypic Features, Outcome, and Population Characteristics. J Vet Intern Med. 2014;28(3):878–86.PubMedCentralCrossRefPubMed
8.
go back to reference Harris LJ, Hughes KL, Ehrhart EJ, Labadie JD, Yoshimoto J, Avery AC. Canine CD4+ T-cell lymphoma identified by flow cytometry exhibits a consistent histomorphology and gene expression profile. Vet Comp Oncol. 2019;17(3):253–64.CrossRefPubMed Harris LJ, Hughes KL, Ehrhart EJ, Labadie JD, Yoshimoto J, Avery AC. Canine CD4+ T-cell lymphoma identified by flow cytometry exhibits a consistent histomorphology and gene expression profile. Vet Comp Oncol. 2019;17(3):253–64.CrossRefPubMed
9.
go back to reference Harris LJ, Rout ED, Labadie JD, Avery PR, Fernandez M, Yoshimoto J, et al. Clinical features of canine nodal T-cell lymphomas classified as CD8+ or CD4−CD8− by flow cytometry. Vet Comp Oncol. 2020;18(3):416–27.CrossRefPubMed Harris LJ, Rout ED, Labadie JD, Avery PR, Fernandez M, Yoshimoto J, et al. Clinical features of canine nodal T-cell lymphomas classified as CD8+ or CD4−CD8− by flow cytometry. Vet Comp Oncol. 2020;18(3):416–27.CrossRefPubMed
10.
go back to reference Rebhun RB, Kent MS, Borrofka SAEB, Frazier S, Skorupski K, Rodriguez CO. CHOP chemotherapy for the treatment of canine multicentric T-cell lymphoma. Vet Comp Oncol. 2011;9(1):38–44.CrossRefPubMed Rebhun RB, Kent MS, Borrofka SAEB, Frazier S, Skorupski K, Rodriguez CO. CHOP chemotherapy for the treatment of canine multicentric T-cell lymphoma. Vet Comp Oncol. 2011;9(1):38–44.CrossRefPubMed
11.
go back to reference Angelo G, Cronin K, Keys D. Comparison of combination l-asparaginase plus CHOP or modified MOPP treatment protocols in dogs with multi-centric T-cell or hypercalcaemic lymphoma. J Small Anim Pract. 2019;60(7):430–7.CrossRefPubMed Angelo G, Cronin K, Keys D. Comparison of combination l-asparaginase plus CHOP or modified MOPP treatment protocols in dogs with multi-centric T-cell or hypercalcaemic lymphoma. J Small Anim Pract. 2019;60(7):430–7.CrossRefPubMed
13.
14.
go back to reference Mamand S, Carr M, Allchin RL, Ahearne MJ, Wagner SD. Interleukin-2-inducible T-cell kinase inhibitors modify functional polarization of human peripheral T-cell lymphoma cells. Blood Adv. 2019;3(5):705–10.PubMedCentralCrossRefPubMed Mamand S, Carr M, Allchin RL, Ahearne MJ, Wagner SD. Interleukin-2-inducible T-cell kinase inhibitors modify functional polarization of human peripheral T-cell lymphoma cells. Blood Adv. 2019;3(5):705–10.PubMedCentralCrossRefPubMed
15.
go back to reference Newrzela S, Cornils K, Li Z, Baum C, Brugman MH, Hartmann M, et al. Resistance of mature T cells to oncogene transformation. Blood. 2008;112(6):2278–86.CrossRefPubMed Newrzela S, Cornils K, Li Z, Baum C, Brugman MH, Hartmann M, et al. Resistance of mature T cells to oncogene transformation. Blood. 2008;112(6):2278–86.CrossRefPubMed
16.
go back to reference Geng X, Wang C, Gao X, Chowdhury P, Weiss J, Villegas JA, et al. GATA-3 is a proto-oncogene in T-cell lymphoproliferative neoplasms. Blood Cancer J. 2022;12(11):149.PubMedCentralCrossRefPubMed Geng X, Wang C, Gao X, Chowdhury P, Weiss J, Villegas JA, et al. GATA-3 is a proto-oncogene in T-cell lymphoproliferative neoplasms. Blood Cancer J. 2022;12(11):149.PubMedCentralCrossRefPubMed
17.
go back to reference Cobbold S, Metcalfe S. Monoclonal antibodies that define canine homologues of human CD antigens: Summary of the First International Canine Leukocyte Antigen Workshop (CLAW). Tissue Antigens. 1994;43(3):137–54.CrossRefPubMed Cobbold S, Metcalfe S. Monoclonal antibodies that define canine homologues of human CD antigens: Summary of the First International Canine Leukocyte Antigen Workshop (CLAW). Tissue Antigens. 1994;43(3):137–54.CrossRefPubMed
18.
go back to reference Abrams VK, Hwang B, Lesnikova M, Gass MJ, Wayner E, Castilla-Llorente C, et al. A novel monoclonal antibody specific for canine CD25 (P4A10): Selection and evaluation of canine Tregs. Vet Immunol Immunopathol. 2010;135(3):257–65.CrossRefPubMed Abrams VK, Hwang B, Lesnikova M, Gass MJ, Wayner E, Castilla-Llorente C, et al. A novel monoclonal antibody specific for canine CD25 (P4A10): Selection and evaluation of canine Tregs. Vet Immunol Immunopathol. 2010;135(3):257–65.CrossRefPubMed
19.
go back to reference Rout ED, Labadie JD, Yoshimoto JA, Avery PR, Curran KM, Avery AC. Clinical outcome and prognostic factors in dogs with B-cell chronic lymphocytic leukemia: A retrospective study. J Vet Intern Med. 2021;35(4):1918–28.PubMedCentralCrossRefPubMed Rout ED, Labadie JD, Yoshimoto JA, Avery PR, Curran KM, Avery AC. Clinical outcome and prognostic factors in dogs with B-cell chronic lymphocytic leukemia: A retrospective study. J Vet Intern Med. 2021;35(4):1918–28.PubMedCentralCrossRefPubMed
21.
go back to reference Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–95.CrossRefPubMed Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–95.CrossRefPubMed
22.
go back to reference Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.CrossRefPubMed Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.CrossRefPubMed
23.
go back to reference Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.CrossRefPubMed Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.CrossRefPubMed
24.
go back to reference Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–8.PubMedCentralCrossRefPubMed Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–8.PubMedCentralCrossRefPubMed
28.
go back to reference Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS J Integr Biol. 2012;16(5):284–7.CrossRef Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS J Integr Biol. 2012;16(5):284–7.CrossRef
29.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.PubMedCentralCrossRefPubMed Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.PubMedCentralCrossRefPubMed
30.
go back to reference Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–40.PubMedCentralCrossRefPubMed Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–40.PubMedCentralCrossRefPubMed
31.
go back to reference Helgeland H, Gabrielsen I, Akselsen H, Sundaram AYM, Flåm ST, Lie BA. Transcriptome profiling of human thymic CD4+ and CD8+ T cells compared to primary peripheral T cells. BMC Genomics. 2020;21(1):350.PubMedCentralCrossRefPubMed Helgeland H, Gabrielsen I, Akselsen H, Sundaram AYM, Flåm ST, Lie BA. Transcriptome profiling of human thymic CD4+ and CD8+ T cells compared to primary peripheral T cells. BMC Genomics. 2020;21(1):350.PubMedCentralCrossRefPubMed
32.
go back to reference Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117(3):823–34 (2007/02/15 ed).PubMedCentralCrossRefPubMed Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117(3):823–34 (2007/02/15 ed).PubMedCentralCrossRefPubMed
33.
go back to reference Etebari M, Navari M, Agostinelli C, Visani A, Peron C, Iqbal J, et al. Transcriptional Analysis of Lennert Lymphoma Reveals a Unique Profile and Identifies Novel Therapeutic Targets. Front Genet. 2019;10. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fgene.2019.00780. Etebari M, Navari M, Agostinelli C, Visani A, Peron C, Iqbal J, et al. Transcriptional Analysis of Lennert Lymphoma Reveals a Unique Profile and Identifies Novel Therapeutic Targets. Front Genet. 2019;10. Available from: https://​www.​frontiersin.​org/​articles/​https://​doi.​org/​10.​3389/​fgene.​2019.​00780.
34.
go back to reference Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41(D1):D991–5.CrossRefPubMed Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41(D1):D991–5.CrossRefPubMed
36.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.PubMedCentralCrossRefPubMed Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.PubMedCentralCrossRefPubMed
38.
go back to reference Burnett RC, Vernau W, Modiano JF, Olver CS, Moore PF, Avery AC. Diagnosis of Canine Lymphoid Neoplasia Using Clonal Rearrangements of Antigen Receptor Genes. Vet Pathol. 2003;40(1):32–41.CrossRefPubMed Burnett RC, Vernau W, Modiano JF, Olver CS, Moore PF, Avery AC. Diagnosis of Canine Lymphoid Neoplasia Using Clonal Rearrangements of Antigen Receptor Genes. Vet Pathol. 2003;40(1):32–41.CrossRefPubMed
39.
go back to reference Avery PR, Burton J, Bromberek JL, Seelig DM, Elmslie R, Correa S, et al. Flow Cytometric Characterization and Clinical Outcome of CD4+ T-Cell Lymphoma in Dogs: 67 Cases. J Vet Intern Med. 2014;28(2):538–46.PubMedCentralCrossRefPubMed Avery PR, Burton J, Bromberek JL, Seelig DM, Elmslie R, Correa S, et al. Flow Cytometric Characterization and Clinical Outcome of CD4+ T-Cell Lymphoma in Dogs: 67 Cases. J Vet Intern Med. 2014;28(2):538–46.PubMedCentralCrossRefPubMed
40.
go back to reference Stein H, Foss HD, Dürkop H, Marafioti T, Delsol G, Pulford K, et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.CrossRefPubMed Stein H, Foss HD, Dürkop H, Marafioti T, Delsol G, Pulford K, et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.CrossRefPubMed
41.
go back to reference Martens M, Ammar A, Riutta A, Waagmeester A, Slenter DN, Hanspers K, et al. WikiPathways: connecting communities. Nucleic Acids Res. 2021;49(D1):D613–21.CrossRefPubMed Martens M, Ammar A, Riutta A, Waagmeester A, Slenter DN, Hanspers K, et al. WikiPathways: connecting communities. Nucleic Acids Res. 2021;49(D1):D613–21.CrossRefPubMed
42.
go back to reference Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601.CrossRefPubMed Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601.CrossRefPubMed
43.
go back to reference Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, et al. Identification of the JNK Signaling Pathway as a Functional Target of the Tumor Suppressor PTEN. Cancer Cell. 2007;11(6):555–69.CrossRefPubMed Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, et al. Identification of the JNK Signaling Pathway as a Functional Target of the Tumor Suppressor PTEN. Cancer Cell. 2007;11(6):555–69.CrossRefPubMed
44.
go back to reference Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. 2016;2016:baw100.PubMedCentralCrossRefPubMed Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. 2016;2016:baw100.PubMedCentralCrossRefPubMed
45.
go back to reference Lee MS, Hanspers K, Barker CS, Korn AP, McCune JM. Gene expression profiles during human CD4+ T cell differentiation. Int Immunol. 2004;16(8):1109–24.CrossRefPubMed Lee MS, Hanspers K, Barker CS, Korn AP, McCune JM. Gene expression profiles during human CD4+ T cell differentiation. Int Immunol. 2004;16(8):1109–24.CrossRefPubMed
46.
go back to reference Elvers I, Turner-Maier J, Swofford R, Koltookian M, Johnson J, Stewart C, et al. Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background. Genome Res. 2015;25(11):1634–45.PubMedCentralCrossRefPubMed Elvers I, Turner-Maier J, Swofford R, Koltookian M, Johnson J, Stewart C, et al. Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background. Genome Res. 2015;25(11):1634–45.PubMedCentralCrossRefPubMed
47.
go back to reference Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery. Cell. 1997;91(2):231–41.CrossRefPubMed Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery. Cell. 1997;91(2):231–41.CrossRefPubMed
48.
go back to reference Biggs WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci. 1999;96(13):7421–6.PubMedCentralCrossRefPubMed Biggs WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci. 1999;96(13):7421–6.PubMedCentralCrossRefPubMed
49.
go back to reference Averous J, Fonseca BD, Proud CG. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene. 2008;27(8):1106–13.CrossRefPubMed Averous J, Fonseca BD, Proud CG. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene. 2008;27(8):1106–13.CrossRefPubMed
50.
go back to reference Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 1999;59(15):3581–7.PubMed Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 1999;59(15):3581–7.PubMed
51.
go back to reference Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15(11):1406–18.PubMedCentralCrossRefPubMed Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15(11):1406–18.PubMedCentralCrossRefPubMed
52.
go back to reference Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272(28):17269–75.CrossRefPubMed Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272(28):17269–75.CrossRefPubMed
53.
go back to reference Ng Y, Ramm G, Lopez JA, James DE. Rapid Activation of Akt2 Is Sufficient to Stimulate GLUT4 Translocation in 3T3-L1 Adipocytes. Cell Metab. 2008;7(4):348–56.CrossRefPubMed Ng Y, Ramm G, Lopez JA, James DE. Rapid Activation of Akt2 Is Sufficient to Stimulate GLUT4 Translocation in 3T3-L1 Adipocytes. Cell Metab. 2008;7(4):348–56.CrossRefPubMed
54.
go back to reference Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB. Akt-Directed Glucose Metabolism Can Prevent Bax Conformation Change and Promote Growth Factor-Independent Survival. Mol Cell Biol. 2003;23(20):7315–28.PubMedCentralCrossRefPubMed Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB. Akt-Directed Glucose Metabolism Can Prevent Bax Conformation Change and Promote Growth Factor-Independent Survival. Mol Cell Biol. 2003;23(20):7315–28.PubMedCentralCrossRefPubMed
56.
go back to reference Mulvey E, Ruan J. Biomarker-driven management strategies for peripheral T cell lymphoma. J Hematol OncolJ Hematol Oncol. 2020;13(1):59.CrossRef Mulvey E, Ruan J. Biomarker-driven management strategies for peripheral T cell lymphoma. J Hematol OncolJ Hematol Oncol. 2020;13(1):59.CrossRef
57.
go back to reference Doveren RF, Buurman WA, Schutte B, Groenewegen G, van der Linden CJ. Class II antigens on canine T lymphocytes. Tissue Antigens. 1985;25(5):255–65.CrossRefPubMed Doveren RF, Buurman WA, Schutte B, Groenewegen G, van der Linden CJ. Class II antigens on canine T lymphocytes. Tissue Antigens. 1985;25(5):255–65.CrossRefPubMed
58.
go back to reference Doveren RF, van der Linden CJ, Spronken EE, Groenewegen G, Buurman WA. Canine MHC-class II antigens on B and T lymphocytes. Tissue Antigens. 1986;27(2):87–98.CrossRefPubMed Doveren RF, van der Linden CJ, Spronken EE, Groenewegen G, Buurman WA. Canine MHC-class II antigens on B and T lymphocytes. Tissue Antigens. 1986;27(2):87–98.CrossRefPubMed
59.
go back to reference Lowenthal JW, Zubler RH, Nabholz M, MacDonald HR. Similarities between interleukin-2 receptor number and affinity on activated B and T lymphocytes. Nature. 1985;315(6021):669–72.CrossRefPubMed Lowenthal JW, Zubler RH, Nabholz M, MacDonald HR. Similarities between interleukin-2 receptor number and affinity on activated B and T lymphocytes. Nature. 1985;315(6021):669–72.CrossRefPubMed
60.
go back to reference Galkowska H, Waldemar LO, Wojewodzka U. Reactivity of antibodies directed against human antigens with surface markers on canine leukocytes. Vet Immunol Immunopathol. 1996;53(3–4):329–34.CrossRefPubMed Galkowska H, Waldemar LO, Wojewodzka U. Reactivity of antibodies directed against human antigens with surface markers on canine leukocytes. Vet Immunol Immunopathol. 1996;53(3–4):329–34.CrossRefPubMed
61.
go back to reference Helfand SC, Modiano JF, Nowell PC. Immunophysiological studies of interleukin-2 and canine lymphocytes. Vet Immunol Immunopathol. 1992;33(1):1–16.CrossRefPubMed Helfand SC, Modiano JF, Nowell PC. Immunophysiological studies of interleukin-2 and canine lymphocytes. Vet Immunol Immunopathol. 1992;33(1):1–16.CrossRefPubMed
62.
go back to reference Reddy M, Eirikis E, Davis C, Davis HM, Prabhakar U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods. 2004;293(1):127–42.CrossRefPubMed Reddy M, Eirikis E, Davis C, Davis HM, Prabhakar U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods. 2004;293(1):127–42.CrossRefPubMed
63.
go back to reference Mizutani N, Goto-Koshino Y, Tsuboi M, Kagawa Y, Ohno K, Uchida K, et al. Evaluation of CD25-positive cells in relation to the subtypes and prognoses in various lymphoid tumours in dogs. Vet Immunol Immunopathol. 2016;1(173):39–43.CrossRef Mizutani N, Goto-Koshino Y, Tsuboi M, Kagawa Y, Ohno K, Uchida K, et al. Evaluation of CD25-positive cells in relation to the subtypes and prognoses in various lymphoid tumours in dogs. Vet Immunol Immunopathol. 2016;1(173):39–43.CrossRef
64.
go back to reference Nakase K, Kita K, Nasu K, Ueda T, Tanaka I, Shirakawa S, et al. Differential expression of interleukin-2 receptors (α and β chain) in mature lymphoid neoplasms. Am J Hematol. 1994;46(3):179–83.CrossRefPubMed Nakase K, Kita K, Nasu K, Ueda T, Tanaka I, Shirakawa S, et al. Differential expression of interleukin-2 receptors (α and β chain) in mature lymphoid neoplasms. Am J Hematol. 1994;46(3):179–83.CrossRefPubMed
65.
go back to reference Ceredig R, Rolink T. A positive look at double-negative thymocytes. Nat Rev Immunol. 2002;2(11):888–97.CrossRefPubMed Ceredig R, Rolink T. A positive look at double-negative thymocytes. Nat Rev Immunol. 2002;2(11):888–97.CrossRefPubMed
66.
go back to reference Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRefPubMed Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRefPubMed
67.
go back to reference Edling CE, Hallberg B. c-Kit—A hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol. 2007;39(11):1995–8.CrossRefPubMed Edling CE, Hallberg B. c-Kit—A hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol. 2007;39(11):1995–8.CrossRefPubMed
68.
go back to reference Bollum F. Terminal deoxynucleotidyl transferase as a hematopoietic cell marker. Blood. 1979;54(6):1203–15.CrossRefPubMed Bollum F. Terminal deoxynucleotidyl transferase as a hematopoietic cell marker. Blood. 1979;54(6):1203–15.CrossRefPubMed
69.
go back to reference Kaleem Z, Crawford E, Pathan MH, Jasper L, Covinsky MA, Johnson LR, et al. Flow Cytometric Analysis of Acute Leukemias: Diagnostic Utility and Critical Analysis of Data. Arch Pathol Lab Med. 2003;127(1):42–8.CrossRefPubMed Kaleem Z, Crawford E, Pathan MH, Jasper L, Covinsky MA, Johnson LR, et al. Flow Cytometric Analysis of Acute Leukemias: Diagnostic Utility and Critical Analysis of Data. Arch Pathol Lab Med. 2003;127(1):42–8.CrossRefPubMed
70.
go back to reference McSweeney PA, Rouleau KA, Wallace PM, Bruno B, Andrews RG, Krizanac-Bengez L, et al. Characterization of Monoclonal Antibodies That Recognize Canine CD34. Blood. 1998;91(6):1977–86.CrossRefPubMed McSweeney PA, Rouleau KA, Wallace PM, Bruno B, Andrews RG, Krizanac-Bengez L, et al. Characterization of Monoclonal Antibodies That Recognize Canine CD34. Blood. 1998;91(6):1977–86.CrossRefPubMed
71.
go back to reference Uehara S, Song K, Farber JM, Love PE. Characterization of CCR9 Expression and CCL25/Thymus-Expressed Chemokine Responsiveness During T Cell Development: CD3highCD69+ Thymocytes and γδTCR+ Thymocytes Preferentially Respond to CCL251. J Immunol. 2002;168(1):134–42.CrossRefPubMed Uehara S, Song K, Farber JM, Love PE. Characterization of CCR9 Expression and CCL25/Thymus-Expressed Chemokine Responsiveness During T Cell Development: CD3highCD69+ Thymocytes and γδTCR+ Thymocytes Preferentially Respond to CCL251. J Immunol. 2002;168(1):134–42.CrossRefPubMed
72.
go back to reference Uehara S, Grinberg A, Farber JM, Love PE. A Role for CCR9 in T Lymphocyte Development and Migration1. J Immunol. 2002;168(6):2811–9.CrossRefPubMed Uehara S, Grinberg A, Farber JM, Love PE. A Role for CCR9 in T Lymphocyte Development and Migration1. J Immunol. 2002;168(6):2811–9.CrossRefPubMed
73.
go back to reference Malcolm TIM, Villarese P, Fairbairn CJ, Lamant L, Trinquand A, Hook CE, et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun. 2016;7(1):10087.PubMedCentralCrossRefPubMed Malcolm TIM, Villarese P, Fairbairn CJ, Lamant L, Trinquand A, Hook CE, et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun. 2016;7(1):10087.PubMedCentralCrossRefPubMed
74.
go back to reference Pawlicki JM, Cookmeyer DL, Maseda D, Everett JK, Wei F, Kong H, et al. NPM–ALK-Induced Reprogramming of Mature TCR-Stimulated T Cells Results in Dedifferentiation and Malignant Transformation. Cancer Res. 2021;81(12):3241–54.PubMedCentralCrossRefPubMed Pawlicki JM, Cookmeyer DL, Maseda D, Everett JK, Wei F, Kong H, et al. NPM–ALK-Induced Reprogramming of Mature TCR-Stimulated T Cells Results in Dedifferentiation and Malignant Transformation. Cancer Res. 2021;81(12):3241–54.PubMedCentralCrossRefPubMed
75.
go back to reference Cobaleda C, Jochum W, Busslinger M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature. 2007;449(7161):473–7.CrossRefPubMed Cobaleda C, Jochum W, Busslinger M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature. 2007;449(7161):473–7.CrossRefPubMed
Metadata
Title
The gene expression profile and cell of origin of canine peripheral T-cell lymphoma
Authors
Eileen Owens
Lauren Harris
Adam Harris
Janna Yoshimoto
Robert Burnett
Anne Avery
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11762-w

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine