Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Tigecycline | Research

Regulation of metastatic potential by drug repurposing and mitochondrial targeting in colorectal cancer cells

Authors: Shashank Mathur, Pransu Srivastava, Anubhav Srivastava, Neeraj Kumar Rai, Sabiya Abbas, Ashok kumar, Meenakshi Tiwari, Lokendra Kumar Sharma

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Increased mitochondrial activities contributing to cancer cell proliferation, invasion, and metastasis have been reported in different cancers; however, studies on the therapeutic targeting of mitochondria in regulating cell proliferation and invasiveness are limited. Because mitochondria are believed to have evolved through bacterial invasion in mammalian cells, antibiotics could provide an alternative approach to target mitochondria, especially in cancers with increased mitochondrial activities. In this study, we investigated the therapeutic potential of bacteriostatic antibiotics in regulating the growth potential of colorectal cancer (CRC) cells, which differ in their metastatic potential and mitochondrial functions.

Methods

A combination of viability, cell migration, and spheroid formation assays was used to measure the effect on metastatic potential. The effect on mitochondrial mechanisms was investigated by measuring mitochondrial DNA copy number by qPCR, biogenesis (by qPCR and immunoblotting), and functions by measuring reactive oxygen species, membrane potential, and ATP using standard methods. In addition, the effect on assembly and activities of respiratory chain (RC) complexes was determined using blue native gel electrophoresis and in-gel assays, respectively). Changes in metastatic and cell death signaling were measured by immunoblotting with specific marker proteins and compared between CRC cells.

Results

Both tigecycline and tetracycline effectively reduced the viability, migration, and spheroid-forming capacity of highly metastatic CRC cells. This increased sensitivity was attributed to reduced mtDNA content, mitochondrial biogenesis, ATP content, membrane potential, and increased oxidative stress. Specifically, complex I assembly and activity were significantly inhibited by these antibiotics in high-metastatic cells. Significant down-regulation in the expression of mitochondrial-mediated survival pathways, such as phospho-AKT, cMYC, phospho-SRC, and phospho-FAK, and upregulation in cell death (apoptosis and autophagy) were observed, which contributed to the enhanced sensitivity of highly metastatic CRC cells toward these antibiotics. In addition, the combined treatment of the CRC chemotherapeutic agent oxaliplatin with tigecycline/tetracycline at physiological concentrations effectively sensitized these cells at early time points.

Conclusion

Altogether, our study reports that bacterial antibiotics, such as tigecycline and tetracycline, target mitochondrial functions specifically mitochondrial complex I architecture and activity and would be useful in combination with cancer chemotherapeutics for high metastatic conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020 GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer Journal for Clinicians. 2021;71:209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020 GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer Journal for Clinicians. 2021;71:209–49.PubMedCrossRef
2.
go back to reference Patil PS. Improving outcomes for colorectal cancer in India: Time to take the first step! Cancer Research, Statistics, and Treatment. 2023;6:328–9.CrossRef Patil PS. Improving outcomes for colorectal cancer in India: Time to take the first step! Cancer Research, Statistics, and Treatment. 2023;6:328–9.CrossRef
3.
5.
go back to reference Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GRS, Chandel NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. PNAS. 2010;107:8788–93.PubMedPubMedCentralCrossRefADS Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GRS, Chandel NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. PNAS. 2010;107:8788–93.PubMedPubMedCentralCrossRefADS
7.
go back to reference Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nature Reviews Drug Discovery. 2010;9:447–64.PubMedCrossRef Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nature Reviews Drug Discovery. 2010;9:447–64.PubMedCrossRef
8.
go back to reference Bhattacharya B, Mukherjee S. Cancer Therapy Using Antibiotics Journal of. Cancer Therapy. 2015;6(10):10. Bhattacharya B, Mukherjee S. Cancer Therapy Using Antibiotics Journal of. Cancer Therapy. 2015;6(10):10.
9.
go back to reference Bauer G, Berens C, Projan SJ, Hillen W. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. Journal of Antimicrobial Chemotherapy. 2004;53:592–9.PubMedCrossRef Bauer G, Berens C, Projan SJ, Hillen W. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. Journal of Antimicrobial Chemotherapy. 2004;53:592–9.PubMedCrossRef
10.
go back to reference Richards C, Pantanowitz L, Dezube BJ. Antimicrobial and non-antimicrobial tetracyclines in human cancer trials. Pharmacological Research. 2011;63:151–6.PubMedCrossRef Richards C, Pantanowitz L, Dezube BJ. Antimicrobial and non-antimicrobial tetracyclines in human cancer trials. Pharmacological Research. 2011;63:151–6.PubMedCrossRef
11.
go back to reference Gao Y, Shang Q, Li W, Guo W, Stojadinovic A, Mannion C, Man YG, Chen T. Antibiotics for cancer treatment: A double-edged sword. J Cancer. 2020;11:5135–49.PubMedPubMedCentralCrossRef Gao Y, Shang Q, Li W, Guo W, Stojadinovic A, Mannion C, Man YG, Chen T. Antibiotics for cancer treatment: A double-edged sword. J Cancer. 2020;11:5135–49.PubMedPubMedCentralCrossRef
12.
go back to reference Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget. 2015;6:4569–84.PubMedPubMedCentralCrossRef Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget. 2015;6:4569–84.PubMedPubMedCentralCrossRef
13.
go back to reference Rai NK, Mathur S, Singh SK, Tiwari M, Singh VK, Haque R, Tiwari S, Kumar Sharma L. Differential regulation of mitochondrial complex I and oxidative stress based on metastatic potential of colorectal cancer cells. Oncol Lett. 2020;20:313.PubMedPubMedCentralCrossRef Rai NK, Mathur S, Singh SK, Tiwari M, Singh VK, Haque R, Tiwari S, Kumar Sharma L. Differential regulation of mitochondrial complex I and oxidative stress based on metastatic potential of colorectal cancer cells. Oncol Lett. 2020;20:313.PubMedPubMedCentralCrossRef
14.
go back to reference Sun X, Zhan L, Chen Y, Wang G, He L, Wang Q, Zhou F, Yang F, Wu J, Wu Y, Xing J, He X, Huang Q. Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal Transduction and Targeted Therapy. 2018;3:8.PubMedPubMedCentralCrossRef Sun X, Zhan L, Chen Y, Wang G, He L, Wang Q, Zhou F, Yang F, Wu J, Wu Y, Xing J, He X, Huang Q. Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal Transduction and Targeted Therapy. 2018;3:8.PubMedPubMedCentralCrossRef
15.
go back to reference Magdeldin T, López-Dávila V, Pape J, Cameron GW, Emberton M, Loizidou M, Cheema U. Engineering a vascularised 3D in vitro model of cancer progression. Sci Rep. 2017;7:44045.PubMedPubMedCentralCrossRefADS Magdeldin T, López-Dávila V, Pape J, Cameron GW, Emberton M, Loizidou M, Cheema U. Engineering a vascularised 3D in vitro model of cancer progression. Sci Rep. 2017;7:44045.PubMedPubMedCentralCrossRefADS
16.
go back to reference Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 2008;3:1101–8.PubMedCrossRef Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 2008;3:1101–8.PubMedCrossRef
17.
go back to reference Sivandzade F, Bhalerao A, Cucullo L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio Protoc. 2019;9:e3128PubMedPubMedCentralCrossRef Sivandzade F, Bhalerao A, Cucullo L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio Protoc. 2019;9:e3128PubMedPubMedCentralCrossRef
18.
go back to reference Edmunds LR, Sharma L, Wang H, Kang A, d’Souza S, Lu J, McLaughlin M, Dolezal JM, Gao X, Weintraub ST, Ding Y, Zeng X, Yates N, Prochownik EV. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function. PLOS ONE. 2015;10: e0134049.PubMedPubMedCentralCrossRef Edmunds LR, Sharma L, Wang H, Kang A, d’Souza S, Lu J, McLaughlin M, Dolezal JM, Gao X, Weintraub ST, Ding Y, Zeng X, Yates N, Prochownik EV. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function. PLOS ONE. 2015;10: e0134049.PubMedPubMedCentralCrossRef
19.
go back to reference Wittig I, Karas M, Schägger H. High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes *. Molecular & Cellular Proteomics. 2007;6:1215–25.CrossRef Wittig I, Karas M, Schägger H. High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes *. Molecular & Cellular Proteomics. 2007;6:1215–25.CrossRef
20.
go back to reference Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. Journal of Antimicrobial Chemotherapy. 2006;58:256–65.PubMedCrossRef Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. Journal of Antimicrobial Chemotherapy. 2006;58:256–65.PubMedCrossRef
21.
go back to reference Benson AB 3rd. Epidemiology, disease progression, and economic burden of colorectal cancer. J Manag Care Pharm. 2007;13:S5–18.PubMed Benson AB 3rd. Epidemiology, disease progression, and economic burden of colorectal cancer. J Manag Care Pharm. 2007;13:S5–18.PubMed
22.
go back to reference Cervantes A, Adam R, Roselló S, Arnold D, Normanno N, Taïeb J, Seligmann J, De Baere T, Osterlund P, Yoshino T, Martinelli E. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up☆. Annals of Oncology. 2023;34:10–32.PubMedCrossRef Cervantes A, Adam R, Roselló S, Arnold D, Normanno N, Taïeb J, Seligmann J, De Baere T, Osterlund P, Yoshino T, Martinelli E. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up☆. Annals of Oncology. 2023;34:10–32.PubMedCrossRef
23.
go back to reference Wang Q, Shen X, Chen G, Du J. Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers (Basel). 2022;14:2928.PubMedCrossRef Wang Q, Shen X, Chen G, Du J. Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers (Basel). 2022;14:2928.PubMedCrossRef
25.
26.
go back to reference Scheid AD, Beadnell TC, Welch DR. Roles of mitochondria in the hallmarks of metastasis. British Journal of Cancer. 2021;124:124–35.PubMedCrossRef Scheid AD, Beadnell TC, Welch DR. Roles of mitochondria in the hallmarks of metastasis. British Journal of Cancer. 2021;124:124–35.PubMedCrossRef
27.
go back to reference Pancu DF, Racea RC, Macasoi I, Sarau CA, Pinzaru I, Poenaru M, Rusu L-C, Dehelean CA, Dinu S. Assessment of the In Vitro Cytotoxic Profile of Two Broad-Spectrum Antibiotics—Tetracycline and Ampicillin—On Pharyngeal Carcinoma Cells. Medicina. 2022;58:1289. Pancu DF, Racea RC, Macasoi I, Sarau CA, Pinzaru I, Poenaru M, Rusu L-C, Dehelean CA, Dinu S. Assessment of the In Vitro Cytotoxic Profile of Two Broad-Spectrum Antibiotics—Tetracycline and Ampicillin—On Pharyngeal Carcinoma Cells. Medicina. 2022;58:1289.
28.
go back to reference Song H, Fares M, Maguire KR, Sidén Å, Potácová Z. Cytotoxic Effects of Tetracycline Analogues (Doxycycline, Minocycline and COL-3) in Acute Myeloid Leukemia HL-60 Cells. PLOS ONE. 2014;9: e114457.PubMedPubMedCentralCrossRefADS Song H, Fares M, Maguire KR, Sidén Å, Potácová Z. Cytotoxic Effects of Tetracycline Analogues (Doxycycline, Minocycline and COL-3) in Acute Myeloid Leukemia HL-60 Cells. PLOS ONE. 2014;9: e114457.PubMedPubMedCentralCrossRefADS
29.
go back to reference Dong Z, Abbas MN, Kausar S, Yang J, Li L, Tan L, Cui H. Biological Functions and Molecular Mechanisms of Antibiotic Tigecycline in the Treatment of Cancers. Int J Mol Sci. 2019;20:3577.PubMedPubMedCentralCrossRef Dong Z, Abbas MN, Kausar S, Yang J, Li L, Tan L, Cui H. Biological Functions and Molecular Mechanisms of Antibiotic Tigecycline in the Treatment of Cancers. Int J Mol Sci. 2019;20:3577.PubMedPubMedCentralCrossRef
30.
go back to reference Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–24.PubMedCrossRef Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–24.PubMedCrossRef
31.
go back to reference Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. Journal of Genetics and Genomics. 2009;36:125–31.PubMedPubMedCentralCrossRef Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. Journal of Genetics and Genomics. 2009;36:125–31.PubMedPubMedCentralCrossRef
32.
go back to reference Larsson N-G, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA. Mitochondrial transcription factor A is necessary for mtDNA maintance and embryogenesis in mice. Nature Genetics. 1998;18:231–6.PubMedCrossRef Larsson N-G, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA. Mitochondrial transcription factor A is necessary for mtDNA maintance and embryogenesis in mice. Nature Genetics. 1998;18:231–6.PubMedCrossRef
33.
34.
go back to reference Moraes CT. What regulates mitochondrial DNA copy number in animal cells? Trends in Genetics. 2001;17:199–205.PubMedCrossRef Moraes CT. What regulates mitochondrial DNA copy number in animal cells? Trends in Genetics. 2001;17:199–205.PubMedCrossRef
35.
go back to reference Mei H, Sun S, Bai Y, Chen Y, Chai R, Li H. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs. Cell Death & Disease. 2015;6:e1710–e1710.CrossRef Mei H, Sun S, Bai Y, Chen Y, Chai R, Li H. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs. Cell Death & Disease. 2015;6:e1710–e1710.CrossRef
36.
go back to reference Dijk SN, Protasoni M, Elpidorou M, Kroon AM, Taanman J-W. Mitochondria as target to inhibit proliferation and induce apoptosis of cancer cells: the effects of doxycycline and gemcitabine. Scientific Reports. 2020;10:4363.PubMedPubMedCentralCrossRefADS Dijk SN, Protasoni M, Elpidorou M, Kroon AM, Taanman J-W. Mitochondria as target to inhibit proliferation and induce apoptosis of cancer cells: the effects of doxycycline and gemcitabine. Scientific Reports. 2020;10:4363.PubMedPubMedCentralCrossRefADS
37.
go back to reference Lokeshwar BL, Selzer MG, Zhu BQ, Block NL, Golub LM. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int J Cancer. 2002;98:297–309.PubMedCrossRef Lokeshwar BL, Selzer MG, Zhu BQ, Block NL, Golub LM. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int J Cancer. 2002;98:297–309.PubMedCrossRef
38.
go back to reference Tan J, Song M, Zhou M, Hu Y. Antibiotic tigecycline enhances cisplatin activity against human hepatocellular carcinoma through inducing mitochondrial dysfunction and oxidative damage. Biochemical and Biophysical Research Communications. 2017;483:17–23.PubMedCrossRef Tan J, Song M, Zhou M, Hu Y. Antibiotic tigecycline enhances cisplatin activity against human hepatocellular carcinoma through inducing mitochondrial dysfunction and oxidative damage. Biochemical and Biophysical Research Communications. 2017;483:17–23.PubMedCrossRef
39.
go back to reference Martin TD, Cook DR, Choi MY, Li MZ, Haigis KM, Elledge SJ. A Role for Mitochondrial Translation in Promotion of Viability in K-Ras Mutant Cells. Cell Reports. 2017;20:427–38.PubMedCrossRef Martin TD, Cook DR, Choi MY, Li MZ, Haigis KM, Elledge SJ. A Role for Mitochondrial Translation in Promotion of Viability in K-Ras Mutant Cells. Cell Reports. 2017;20:427–38.PubMedCrossRef
40.
go back to reference Skrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N, Lai CK, Eberhard Y, Bartoszko J, Spagnuolo P, Rutledge AC, Datti A, Ketela T, Moffat J, Robinson BH, Cameron JH, Wrana J, Eaves CJ, Minden MD, Wang JC, Dick JE, Humphries K, Nislow C, Giaever G, Schimmer AD. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20:674–88.PubMedPubMedCentralCrossRef Skrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N, Lai CK, Eberhard Y, Bartoszko J, Spagnuolo P, Rutledge AC, Datti A, Ketela T, Moffat J, Robinson BH, Cameron JH, Wrana J, Eaves CJ, Minden MD, Wang JC, Dick JE, Humphries K, Nislow C, Giaever G, Schimmer AD. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20:674–88.PubMedPubMedCentralCrossRef
41.
go back to reference Sharma L, Lu J, Bai Y. Mitochondrial Respiratory Complex I: Structure, Function and Implication in Human Diseases. Current Medicinal Chemistry. 2009;16:1266–77.PubMedPubMedCentralCrossRef Sharma L, Lu J, Bai Y. Mitochondrial Respiratory Complex I: Structure, Function and Implication in Human Diseases. Current Medicinal Chemistry. 2009;16:1266–77.PubMedPubMedCentralCrossRef
42.
go back to reference Wang B, Ao J, Yu D, Rao T, Ruan Y, Yao X. Inhibition of mitochondrial translation effectively sensitizes renal cell carcinoma to chemotherapy. Biochem Biophys Res Commun. 2017;490:767–73.PubMedCrossRef Wang B, Ao J, Yu D, Rao T, Ruan Y, Yao X. Inhibition of mitochondrial translation effectively sensitizes renal cell carcinoma to chemotherapy. Biochem Biophys Res Commun. 2017;490:767–73.PubMedCrossRef
43.
go back to reference Hu B, Guo Y. Inhibition of mitochondrial translation as a therapeutic strategy for human ovarian cancer to overcome chemoresistance. Biochem Biophys Res Commun. 2019;509:373–8.PubMedCrossRef Hu B, Guo Y. Inhibition of mitochondrial translation as a therapeutic strategy for human ovarian cancer to overcome chemoresistance. Biochem Biophys Res Commun. 2019;509:373–8.PubMedCrossRef
44.
go back to reference Quinn BA, Dash R, Sarkar S, Azab B, Bhoopathi P, Das SK, Emdad L, Wei J, Pellecchia M, Sarkar D, Fisher PB. Pancreatic Cancer Combination Therapy Using a BH3 Mimetic and a Synthetic Tetracycline. Cancer Res. 2015;75:2305–15.PubMedPubMedCentralCrossRef Quinn BA, Dash R, Sarkar S, Azab B, Bhoopathi P, Das SK, Emdad L, Wei J, Pellecchia M, Sarkar D, Fisher PB. Pancreatic Cancer Combination Therapy Using a BH3 Mimetic and a Synthetic Tetracycline. Cancer Res. 2015;75:2305–15.PubMedPubMedCentralCrossRef
45.
go back to reference Tang C, Yang L, Jiang X, Xu C, Wang M, Wang Q, Zhou Z, Xiang Z, Cui H. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells. Biochemical Biophysical Res Commun. 2014;446:105–12.CrossRef Tang C, Yang L, Jiang X, Xu C, Wang M, Wang Q, Zhou Z, Xiang Z, Cui H. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells. Biochemical Biophysical Res Commun. 2014;446:105–12.CrossRef
46.
go back to reference Ruiz-Malagón AJ, Hidalgo-García L, Rodríguez-Sojo MJ, Molina-Tijeras JA, García F, Diez-Echave P, Vezza T, Becerra P, Marchal JA, Redondo-Cerezo E, Hausmann M, Rogler G, Garrido-Mesa J, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Gálvez J. Tigecycline reduces tumorigenesis in colorectal cancer via inhibition of cell proliferation and modulation of immune response. Biomed Pharmacother. 2023;163:114760.PubMedCrossRef Ruiz-Malagón AJ, Hidalgo-García L, Rodríguez-Sojo MJ, Molina-Tijeras JA, García F, Diez-Echave P, Vezza T, Becerra P, Marchal JA, Redondo-Cerezo E, Hausmann M, Rogler G, Garrido-Mesa J, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Gálvez J. Tigecycline reduces tumorigenesis in colorectal cancer via inhibition of cell proliferation and modulation of immune response. Biomed Pharmacother. 2023;163:114760.PubMedCrossRef
Metadata
Title
Regulation of metastatic potential by drug repurposing and mitochondrial targeting in colorectal cancer cells
Authors
Shashank Mathur
Pransu Srivastava
Anubhav Srivastava
Neeraj Kumar Rai
Sabiya Abbas
Ashok kumar
Meenakshi Tiwari
Lokendra Kumar Sharma
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12064-5

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine