Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2009

Open Access 01-12-2009 | Research

The free moment in walking and its change with foot rotation angle

Authors: Sivan Almosnino, Tara Kajaks, Patrick A Costigan

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2009

Login to get access

Abstract

Background

This investigation characterized the time-history pattern of the free moment (FM) during walking and, additionally, assessed whether walking with either an internally or externally rotated foot position altered the FM's time-history.

Methods

Force plate and foot kinematic data were acquired simultaneously for 11 healthy subjects (6 males, 5 females) while walking at their self-selected comfortable speed in 3 foot rotation conditions (normal, internal and external). The FM was calculated and normalized by the product of each participant's body weight and height prior to extraction of peak FM, occurrence of peak FM in stance and net relative impulse. Differences in these values across foot rotation conditions were assessed using separate one-way, repeated measures analysis of variance and subsequent pair-wise comparisons.

Results

The average FM pattern during normal walking exhibits a biphasic shape: resisting inward rotation during approximately the first half of stance and outward rotation during the latter part of stance. While no differences in peak FM or net relative impulse were observed between the internal foot rotation condition and normal walking, the external foot rotation condition resulted in significantly greater peak FM and relative net impulse in comparison to normal walking.

Conclusion

The differences in selected FM variables between normal walking and the external foot rotation condition are attributable to individual subject response to walking with an externally rotated foot. In this condition, some subjects displayed a FM pattern that was similar to that recorded during normal walking, while others displayed markedly larger FM patterns that are comparable in magnitude to those reported for running. The larger FM values in these latter subjects are speculated to be a result of excessive transverse plane body movements. Whilst further investigation is warranted regarding the FM time-history characteristics during walking, our results indicate that the FM may provide useful information in assessment of gait.
Appendix
Available only for authorised users
Literature
1.
go back to reference Birrell SA, Hooper RH, Haslam RA: effect of military load carriage on ground reaction forces. Gait and Posture. 2007, 26: 611-614. 10.1016/j.gaitpost.2006.12.008.CrossRefPubMed Birrell SA, Hooper RH, Haslam RA: effect of military load carriage on ground reaction forces. Gait and Posture. 2007, 26: 611-614. 10.1016/j.gaitpost.2006.12.008.CrossRefPubMed
2.
go back to reference Chao EY, Laughman RK, Schneider E, Stauffer RN: Normative data of knee joint motion and ground reaction forces in adult level walking. J Biomech. 1983, 16: 219-233. 10.1016/0021-9290(83)90129-X.CrossRefPubMed Chao EY, Laughman RK, Schneider E, Stauffer RN: Normative data of knee joint motion and ground reaction forces in adult level walking. J Biomech. 1983, 16: 219-233. 10.1016/0021-9290(83)90129-X.CrossRefPubMed
3.
go back to reference Gottschall JS, Kram R: Ground reaction forces during downhill and uphill running. J Biomech. 2005, 38: 445-452. 10.1016/j.jbiomech.2004.04.023.CrossRefPubMed Gottschall JS, Kram R: Ground reaction forces during downhill and uphill running. J Biomech. 2005, 38: 445-452. 10.1016/j.jbiomech.2004.04.023.CrossRefPubMed
4.
go back to reference Levinger P, Gilleard W: Tibia and rearfoot motion and ground reaction forces in subjects with patellofemoral pain syndrome during walking. Gait and Posture. 2007, 25: 2-8. 10.1016/j.gaitpost.2005.12.015.CrossRefPubMed Levinger P, Gilleard W: Tibia and rearfoot motion and ground reaction forces in subjects with patellofemoral pain syndrome during walking. Gait and Posture. 2007, 25: 2-8. 10.1016/j.gaitpost.2005.12.015.CrossRefPubMed
5.
go back to reference Nilsson J, Thorsensson A: Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand. 1989, 136: 217-227. 10.1111/j.1748-1716.1989.tb08655.x.CrossRefPubMed Nilsson J, Thorsensson A: Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand. 1989, 136: 217-227. 10.1111/j.1748-1716.1989.tb08655.x.CrossRefPubMed
6.
go back to reference Stacoff A, Diezi C, Luder G, Stüssi E, Kramers-de Quervain IA: Ground reaction forces on stairs: effects of stair inclination. Gait and Posture. 2005, 21: 24-38. 10.1016/j.gaitpost.2003.11.003.CrossRefPubMed Stacoff A, Diezi C, Luder G, Stüssi E, Kramers-de Quervain IA: Ground reaction forces on stairs: effects of stair inclination. Gait and Posture. 2005, 21: 24-38. 10.1016/j.gaitpost.2003.11.003.CrossRefPubMed
7.
go back to reference Nigg BM: Experimental techniques used in running shoe research. Biomechanics of Running Shoes. Edited by: Nigg BM. 1986, Champagne, IL, USA, Human Kinetics, 27-61. Nigg BM: Experimental techniques used in running shoe research. Biomechanics of Running Shoes. Edited by: Nigg BM. 1986, Champagne, IL, USA, Human Kinetics, 27-61.
8.
go back to reference Holden JP, Cavanagh PR: The free moment of ground reaction in distance running and its changes with pronation. J Biomech. 1991, 24: 887-897. 10.1016/0021-9290(91)90167-L.CrossRefPubMed Holden JP, Cavanagh PR: The free moment of ground reaction in distance running and its changes with pronation. J Biomech. 1991, 24: 887-897. 10.1016/0021-9290(91)90167-L.CrossRefPubMed
9.
go back to reference Milner CE, Davis IS, Hamill J: Free moment as a predictor of tibial stress fractures. J Biomech. 2006, 39: 2819-2825. 10.1016/j.jbiomech.2005.09.022.CrossRefPubMed Milner CE, Davis IS, Hamill J: Free moment as a predictor of tibial stress fractures. J Biomech. 2006, 39: 2819-2825. 10.1016/j.jbiomech.2005.09.022.CrossRefPubMed
10.
go back to reference George WT, Vashishth D: Influence of phase angle between axial and torsional loadings on fatigue fractures of bone. J Biomech. 2005, 38: 819-825. 10.1016/j.jbiomech.2004.05.008.CrossRefPubMed George WT, Vashishth D: Influence of phase angle between axial and torsional loadings on fatigue fractures of bone. J Biomech. 2005, 38: 819-825. 10.1016/j.jbiomech.2004.05.008.CrossRefPubMed
11.
go back to reference Vashishth D, Tanner KE, Bonfield W: Fatigue of cortical bone under combined axial-torsional loading. J Orthop Res. 2001, 19: 414-420. 10.1016/S0736-0266(00)00036-X.CrossRefPubMed Vashishth D, Tanner KE, Bonfield W: Fatigue of cortical bone under combined axial-torsional loading. J Orthop Res. 2001, 19: 414-420. 10.1016/S0736-0266(00)00036-X.CrossRefPubMed
12.
go back to reference Carter DR: Anisotropic analysis of strain rosette information from cortical bone. J Biomech. 1978, 11: 199-202. 10.1016/0021-9290(78)90013-1.CrossRefPubMed Carter DR: Anisotropic analysis of strain rosette information from cortical bone. J Biomech. 1978, 11: 199-202. 10.1016/0021-9290(78)90013-1.CrossRefPubMed
13.
go back to reference Li Y, Wang W, Crompton RH, Gunther MM: Free vertical moments and transverse forces in human walking and their role in relationship to arm swing. J Exp Biol. 2001, 204: 47-58.PubMed Li Y, Wang W, Crompton RH, Gunther MM: Free vertical moments and transverse forces in human walking and their role in relationship to arm swing. J Exp Biol. 2001, 204: 47-58.PubMed
14.
go back to reference Umberger BR: Effects of suppressing arm swing on kinematic, kinetics and energetic of human walking. J Biomech. 2008, 41: 2575-2580. 10.1016/j.jbiomech.2008.05.024.CrossRefPubMed Umberger BR: Effects of suppressing arm swing on kinematic, kinetics and energetic of human walking. J Biomech. 2008, 41: 2575-2580. 10.1016/j.jbiomech.2008.05.024.CrossRefPubMed
15.
go back to reference Eredmir A, Piazza SJ: Rotational foot placement specifies the lever arm of the ground reaction force during the push-off phase of walking initiation. Gait and Posture. 2002, 15: 212-219. 10.1016/S0966-6362(01)00192-8.CrossRef Eredmir A, Piazza SJ: Rotational foot placement specifies the lever arm of the ground reaction force during the push-off phase of walking initiation. Gait and Posture. 2002, 15: 212-219. 10.1016/S0966-6362(01)00192-8.CrossRef
17.
go back to reference Bojsen-Møller F: The human foot - a two speed construction. Biomechanics V. Edited by: Asmussen E, Jorgensen K. 1978, Baltimore, MD, USA, University Park Press, 261-266. Bojsen-Møller F: The human foot - a two speed construction. Biomechanics V. Edited by: Asmussen E, Jorgensen K. 1978, Baltimore, MD, USA, University Park Press, 261-266.
18.
go back to reference Andrews M, Noyes FR, Hewett TE, Andriacchi TP: Lower limb alignment and foot angle are related to stance phase knee adduction in normal subjects: a critical analysis of the reliability of gait analysis data. J Orthop Res. 1996, 14: 289-295. 10.1002/jor.1100140218.CrossRefPubMed Andrews M, Noyes FR, Hewett TE, Andriacchi TP: Lower limb alignment and foot angle are related to stance phase knee adduction in normal subjects: a critical analysis of the reliability of gait analysis data. J Orthop Res. 1996, 14: 289-295. 10.1002/jor.1100140218.CrossRefPubMed
19.
go back to reference Lynn SK, Costigan PA: Effect of foot rotation on knee kinetics and hamstring activation in older adults with and without signs of knee osteoarthritis. Clin Biomech (Bristol, Avon). 2008, 23: 779-786. 10.1016/j.clinbiomech.2008.01.012.CrossRef Lynn SK, Costigan PA: Effect of foot rotation on knee kinetics and hamstring activation in older adults with and without signs of knee osteoarthritis. Clin Biomech (Bristol, Avon). 2008, 23: 779-786. 10.1016/j.clinbiomech.2008.01.012.CrossRef
20.
go back to reference Teichtahl AJ, Morris ME, Wluka AE, Baker R, Wolfe R, Davis SR, Cicuttini FM: Foot rotation - a potential target to modify the knee adduction moment. J Sci Med Sports. 2006, 9: 67-71. 10.1016/j.jsams.2006.03.011.CrossRef Teichtahl AJ, Morris ME, Wluka AE, Baker R, Wolfe R, Davis SR, Cicuttini FM: Foot rotation - a potential target to modify the knee adduction moment. J Sci Med Sports. 2006, 9: 67-71. 10.1016/j.jsams.2006.03.011.CrossRef
21.
go back to reference Wang JW, Kuo KN, Andriacchi TP, Galante JO: The influence of walking mechanics and time on the results of proximal tibial osteotomy. J Bone Joint Surg Am. 1990, 72: 905-909.PubMed Wang JW, Kuo KN, Andriacchi TP, Galante JO: The influence of walking mechanics and time on the results of proximal tibial osteotomy. J Bone Joint Surg Am. 1990, 72: 905-909.PubMed
22.
go back to reference Lynn SK, Kajaks T, Costigan P: The effect of internal and external foot rotation on the adduction moment and lateral-medial shear forces at the knee during gait. J Sci Med Sport. 2008, 11: 444-451. 10.1016/j.jsams.2007.03.004.CrossRefPubMed Lynn SK, Kajaks T, Costigan P: The effect of internal and external foot rotation on the adduction moment and lateral-medial shear forces at the knee during gait. J Sci Med Sport. 2008, 11: 444-451. 10.1016/j.jsams.2007.03.004.CrossRefPubMed
23.
go back to reference Costigan PA, Wyss UP, Deluzio KJ, Li J: Semiautomatic 3-dimensional knee motion assessment system. Med Biol Eng Comput. 1992, 30: 343-350. 10.1007/BF02446973.CrossRefPubMed Costigan PA, Wyss UP, Deluzio KJ, Li J: Semiautomatic 3-dimensional knee motion assessment system. Med Biol Eng Comput. 1992, 30: 343-350. 10.1007/BF02446973.CrossRefPubMed
24.
go back to reference Deluzio KJ, Wyss UP, Li JA, Costigan PA: A procedure to validate 3-dimensional motion assessment systems. J Biomech. 1993, 26: 753-759. 10.1016/0021-9290(93)90037-F.CrossRefPubMed Deluzio KJ, Wyss UP, Li JA, Costigan PA: A procedure to validate 3-dimensional motion assessment systems. J Biomech. 1993, 26: 753-759. 10.1016/0021-9290(93)90037-F.CrossRefPubMed
25.
go back to reference Li J, Wyss UP, Costigan PA, Deluzio KJ: An integrated procedure to assess knee-joint kinematics and kinetics during gait using an optoelectric system and standardized X-rays. J Biomed Eng. 1993, 15: 392-400. 10.1016/0141-5425(93)90076-B.CrossRefPubMed Li J, Wyss UP, Costigan PA, Deluzio KJ: An integrated procedure to assess knee-joint kinematics and kinetics during gait using an optoelectric system and standardized X-rays. J Biomed Eng. 1993, 15: 392-400. 10.1016/0141-5425(93)90076-B.CrossRefPubMed
29.
go back to reference Hamill J, Bates BT, Knutzen KM, Sawhill JA: Variations in ground reaction force parameters at different running speeds. Hum Mov Sci. 1983, 2: 47-56. 10.1016/0167-9457(83)90005-2.CrossRef Hamill J, Bates BT, Knutzen KM, Sawhill JA: Variations in ground reaction force parameters at different running speeds. Hum Mov Sci. 1983, 2: 47-56. 10.1016/0167-9457(83)90005-2.CrossRef
30.
go back to reference Derrick TR, Bates BT, Dufek JS: Comparative evaluation of time-series data sets using the Pearson product-moment correlation coefficient. Med Sci Sports Exerc. 1994, 26: 919-928.CrossRefPubMed Derrick TR, Bates BT, Dufek JS: Comparative evaluation of time-series data sets using the Pearson product-moment correlation coefficient. Med Sci Sports Exerc. 1994, 26: 919-928.CrossRefPubMed
31.
go back to reference Derrick TR, Thomas JM: Time series analysis: The cross - correlation function. Innovative Analysis of Human Movement. Edited by: Stergiou N. 2004, Champaign, IL: Human Kinetics, 189-205. Derrick TR, Thomas JM: Time series analysis: The cross - correlation function. Innovative Analysis of Human Movement. Edited by: Stergiou N. 2004, Champaign, IL: Human Kinetics, 189-205.
32.
go back to reference Dunlop WP, Cortina JM, Vaslow JB, Burke MJ: Meta-analysis of experiments with matched groups or repeated measures designs. Psychological Methods. 1996, 1: 170-177. 10.1037/1082-989X.1.2.170.CrossRef Dunlop WP, Cortina JM, Vaslow JB, Burke MJ: Meta-analysis of experiments with matched groups or repeated measures designs. Psychological Methods. 1996, 1: 170-177. 10.1037/1082-989X.1.2.170.CrossRef
33.
go back to reference Creaby MW, Dixon SJ: External frontal plane loads may be associated with tibial stress fractures. Med Sci Sports Exerc. 2008, 40: 1669-1674. 10.1249/MSS.0b013e31817571ae.CrossRefPubMed Creaby MW, Dixon SJ: External frontal plane loads may be associated with tibial stress fractures. Med Sci Sports Exerc. 2008, 40: 1669-1674. 10.1249/MSS.0b013e31817571ae.CrossRefPubMed
34.
go back to reference Nigg BM, Bell GD, Kiefer GN, Luethi SM, Schachar NS: A quantitative assessment of asymmetry of locomotion parameters in subjects with chronic anterior cruciate ligament injuries. Proceedings of the second biannual conference of the Canadian society of biomechanics. 1-3 September 1982. Edited by: Reid JG, Bryant T, Olney S, Smith B, Stevenson J, Walmsley R. 1982, Kingston, ON, 9-11. Nigg BM, Bell GD, Kiefer GN, Luethi SM, Schachar NS: A quantitative assessment of asymmetry of locomotion parameters in subjects with chronic anterior cruciate ligament injuries. Proceedings of the second biannual conference of the Canadian society of biomechanics. 1-3 September 1982. Edited by: Reid JG, Bryant T, Olney S, Smith B, Stevenson J, Walmsley R. 1982, Kingston, ON, 9-11.
35.
36.
go back to reference Grabiner MD, Feuerbach JW, Lundin TM, Davis BL: Visual guidance does not influence ground reaction force variability. J Biomech. 1995, 28: 1115-1117. 10.1016/0021-9290(94)00175-4.CrossRefPubMed Grabiner MD, Feuerbach JW, Lundin TM, Davis BL: Visual guidance does not influence ground reaction force variability. J Biomech. 1995, 28: 1115-1117. 10.1016/0021-9290(94)00175-4.CrossRefPubMed
37.
go back to reference Wearing SC, Urry SR, Smeathers JE: The effect of visual targeting on ground reaction force and temporospatial parameters of gait. Clin Biomech (Bristol, Avon). 2000, 15: 583-591. 10.1016/S0268-0033(00)00025-5.CrossRef Wearing SC, Urry SR, Smeathers JE: The effect of visual targeting on ground reaction force and temporospatial parameters of gait. Clin Biomech (Bristol, Avon). 2000, 15: 583-591. 10.1016/S0268-0033(00)00025-5.CrossRef
Metadata
Title
The free moment in walking and its change with foot rotation angle
Authors
Sivan Almosnino
Tara Kajaks
Patrick A Costigan
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2009
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/1758-2555-1-19

Other articles of this Issue 1/2009

BMC Sports Science, Medicine and Rehabilitation 1/2009 Go to the issue