Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2009

Open Access 01-12-2009 | Editorial

Challenging for cartilage repair

Author: Mitsuo Ochi

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2009

Login to get access

Excerpt

When we look back on the past 15-year history of cartilage repair, it is clear that remarkable progress has been made in this area. There is no doubt that a lot of studies have been carried out on cartilage repair and chondrocytes since Brittebergs' report on ACI in 1994 [1]. I would like to introduce our multi-pronged approach to cartilage repair. After the 1994 report [1], we performed implantation of tissue-engineered cartilage made ex vivo for the treatment of osteochondral defects of the joints, to avoid the leakage of grafted cultured chondrocytes in suspension [2, 3]. Sixty knees of 57 patients with full-thickness cartilage defects were followed-up over 5 years. The clinical rating improved significantly after implantation of tissue-engineered cartilage and was maintained for an average of 8.3 years. The arthroscopic findings 2 years after implantation were graded as normal or nearly normal according to the ICRS scale in more than 90% of patients. Biomechanically, stiffness of the graft almost equaled the surrounding normal cartilage (87.9 ~102.5%) 2 years after implantation. …
Literature
1.
go back to reference Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994, 331: 889-895. 10.1056/NEJM199410063311401.CrossRefPubMed Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994, 331: 889-895. 10.1056/NEJM199410063311401.CrossRefPubMed
2.
go back to reference Ochi M, Uchio Y, Tobita M, Kuriwaka M: Current concepts in tissue engineering technique for repair of cartilage defect. Artif Organs. 2001, 25: 172-179. 10.1046/j.1525-1594.2001.025003172.x.CrossRefPubMed Ochi M, Uchio Y, Tobita M, Kuriwaka M: Current concepts in tissue engineering technique for repair of cartilage defect. Artif Organs. 2001, 25: 172-179. 10.1046/j.1525-1594.2001.025003172.x.CrossRefPubMed
3.
go back to reference Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J: Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br. 2002, 84: 571-578. 10.1302/0301-620X.84B4.11947.CrossRefPubMed Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J: Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br. 2002, 84: 571-578. 10.1302/0301-620X.84B4.11947.CrossRefPubMed
4.
go back to reference Ito Y, Ochi M, Adachi N, Sugawara K, Yanada S, Ikada Y, Ronakorn P: Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthroscopy. 2005, 21: 1155-1163.CrossRefPubMed Ito Y, Ochi M, Adachi N, Sugawara K, Yanada S, Ikada Y, Ronakorn P: Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthroscopy. 2005, 21: 1155-1163.CrossRefPubMed
5.
go back to reference Ito Y, Adachi N, Nakamae A, Yanada S, Ochi M: Transplantation of tissue-engineered osteochondral plug using cultured chondrocytes and interconnected porous calcium hydroxyapatite ceramic cylindrical plugs to treat osteochondral degects in a rabbit model. Artif Organs. 2008, 32: 36-44.PubMed Ito Y, Adachi N, Nakamae A, Yanada S, Ochi M: Transplantation of tissue-engineered osteochondral plug using cultured chondrocytes and interconnected porous calcium hydroxyapatite ceramic cylindrical plugs to treat osteochondral degects in a rabbit model. Artif Organs. 2008, 32: 36-44.PubMed
6.
go back to reference Kajiwara R, Ishida O, Kawasaki K, Adachi N, Yasunaga Y, Ochi M: Effective repair of a fresh osteochondral defect in the rabbit knee joint by articulated joint distraction following subchondral drilling. J Orthop Res. 2005, 23: 909-915. 10.1016/j.orthres.2004.12.003.CrossRefPubMed Kajiwara R, Ishida O, Kawasaki K, Adachi N, Yasunaga Y, Ochi M: Effective repair of a fresh osteochondral defect in the rabbit knee joint by articulated joint distraction following subchondral drilling. J Orthop Res. 2005, 23: 909-915. 10.1016/j.orthres.2004.12.003.CrossRefPubMed
7.
go back to reference Deie M, Ochi M, Adachi N, Kajiwara R, Kanaya A: A new articulated distraction arthroplasty device for treatment of the osteoarthritic knee joint: a preliminary report. Arthroscopy. 2007, 23: 833-838.CrossRefPubMed Deie M, Ochi M, Adachi N, Kajiwara R, Kanaya A: A new articulated distraction arthroplasty device for treatment of the osteoarthritic knee joint: a preliminary report. Arthroscopy. 2007, 23: 833-838.CrossRefPubMed
8.
go back to reference Nishimori M, Deie M, Kanaya A, Exham H, Adachi N, Ochi M: A bone marrow-stimulating procedure enhanced by cultured allogenic bone marrow mesenchymal stromal cells. J Bone Joint Surg Br. 2006, 88: 1236-1244. 10.1302/0301-620X.88B9.17810.CrossRefPubMed Nishimori M, Deie M, Kanaya A, Exham H, Adachi N, Ochi M: A bone marrow-stimulating procedure enhanced by cultured allogenic bone marrow mesenchymal stromal cells. J Bone Joint Surg Br. 2006, 88: 1236-1244. 10.1302/0301-620X.88B9.17810.CrossRefPubMed
9.
go back to reference Kobayashi T, Ochi M, Yanada S, Ishikawa M, Adachi N, Deie M, Arihiro K: A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair. Arthroscopy. 2008, 24: 69-76.CrossRefPubMed Kobayashi T, Ochi M, Yanada S, Ishikawa M, Adachi N, Deie M, Arihiro K: A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair. Arthroscopy. 2008, 24: 69-76.CrossRefPubMed
Metadata
Title
Challenging for cartilage repair
Author
Mitsuo Ochi
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2009
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/1758-2555-1-13

Other articles of this Issue 1/2009

BMC Sports Science, Medicine and Rehabilitation 1/2009 Go to the issue