Skip to main content
Top
Published in: Pediatric Surgery International 2/2018

01-02-2018 | Original Article

The expression pattern of keratin 24 in tissue-engineered dermo-epidermal human skin substitutes in an in vivo model

Authors: Agnes S. Klar, Katarzyna Michalak, Sophie Böttcher-Haberzeth, Ernst Reichmann, Martin Meuli, Thomas Biedermann

Published in: Pediatric Surgery International | Issue 2/2018

Login to get access

Abstract

Aims and objectives

The use of autologous tissue-engineered skin substitutes is a promising approach to cover large skin defects in patients. Preclinical investigation is pivotal to test and improve the quality of these bio-engineered substitutes. In the skin, the epidermis, formed mainly by keratinocytes, provides the first physical barrier protecting from the environment. Proper keratinocyte differentiation and, thus, formation of a stratified epidermis is essential for this function. Keratins, the main structural support of keratinocytes, play a vital role regarding differentiation of keratinocytes. Here, we examined the expression pattern of a recently described keratinocyte differentiation marker, namely Keratin 24, in our skin substitutes.

Materials and Methods

Human epidermal keratinocytes, melanocytes, dermal fibroblasts, palmar fibroblasts or sweat gland cells were used to prepare skin substitutes. Fibroblast-containing collagen hydrogels were prepared, and keratinocytes or sweat gland cells and melanocytes were seeded onto the hydrogels. The generated tissue-engineered dermo-epidermal skin analogs were transplanted onto full-thickness skin wounds created on the back of immuno-incompetent rats. The skin substitutes were excised at different time points and histologically examined with regard to Keratin 24 expression.

Results

We observed the expression of Keratin 24 in keratinocytes of the upper stratum spinosum of the epidermis. In particular, we observed an intensified expression of Keratin 24 13 weeks after transplantation compared to 4 weeks after transplantation. Importantly, we noticed a markedly higher presence of Keratin 24 in more spinous layers if we used palmar fibroblasts or sweat gland cells in our skin substitutes compared non-palmar fibroblasts or epidermal keratinocytes.

Conclusion

Our observations prove that the keratinocyte differentiation marker Keratin 24 is expressed in our dermo-epidermal skin substitutes in a normal pattern. This highlights that our bio-engineered skin analogs mature and reach homeostasis in an in vivo assay. These findings harbor favorable implications regarding future clinical application.
Literature
1.
go back to reference Berman B, Viera MH, Amini S, Huo R, Jones IS (2008) Prevention and management of hypertrophic scars and keloids after burns in children. J Craniofac Surg 19(4):989–1006CrossRefPubMed Berman B, Viera MH, Amini S, Huo R, Jones IS (2008) Prevention and management of hypertrophic scars and keloids after burns in children. J Craniofac Surg 19(4):989–1006CrossRefPubMed
2.
go back to reference Schiestl C, Stiefel D, Meuli M (2010) Giant naevus, giant excision, eleg(i)ant closure? Reconstructive surgery with integra artificial skin to treat giant congenital melanocytic naevi in children. J Plast Reconstr Aesthet Surg 63(4):610–615CrossRefPubMed Schiestl C, Stiefel D, Meuli M (2010) Giant naevus, giant excision, eleg(i)ant closure? Reconstructive surgery with integra artificial skin to treat giant congenital melanocytic naevi in children. J Plast Reconstr Aesthet Surg 63(4):610–615CrossRefPubMed
3.
go back to reference Biedermann T, Boettcher-Haberzeth S, Reichmann E (2013) Tissue engineering of skin for wound coverage. Eur J Pediatr Surg 23(5):375–382CrossRefPubMed Biedermann T, Boettcher-Haberzeth S, Reichmann E (2013) Tissue engineering of skin for wound coverage. Eur J Pediatr Surg 23(5):375–382CrossRefPubMed
4.
go back to reference Meuli M, Raghunath M (1997) Burns (Part 2). Tops and flops using cultured epithelial autografts in children. Pediatr Surg Int 12(7):471–477PubMed Meuli M, Raghunath M (1997) Burns (Part 2). Tops and flops using cultured epithelial autografts in children. Pediatr Surg Int 12(7):471–477PubMed
5.
go back to reference Braziulis E, Diezi M, Biedermann T, Pontiggia L, Schmucki M, Hartmann-Fritsch F, Luginbühl J, Schiestl C, Meuli M, Reichmann E (2012) Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes. Tissue Eng Part C Methods 18(6):464–474CrossRefPubMed Braziulis E, Diezi M, Biedermann T, Pontiggia L, Schmucki M, Hartmann-Fritsch F, Luginbühl J, Schiestl C, Meuli M, Reichmann E (2012) Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes. Tissue Eng Part C Methods 18(6):464–474CrossRefPubMed
6.
go back to reference Klar AS, Güven S, Biedermann T, Luginbühl J, Böttcher-Haberzeth S, Meuli-Simmen C, Meuli M, Martin I, Scherberich A, Reichmann E (2014) Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials 35(19):5065–5078CrossRefPubMed Klar AS, Güven S, Biedermann T, Luginbühl J, Böttcher-Haberzeth S, Meuli-Simmen C, Meuli M, Martin I, Scherberich A, Reichmann E (2014) Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials 35(19):5065–5078CrossRefPubMed
7.
go back to reference Boyce ST, Lloyd CM, Kleiner MC, Swope VB, Abdel-Malek Z, Supp DM (2017) Restoration of cutaneous pigmentation by transplantation to mice of isogeneic human melanocytes in dermal-epidermal engineered skin substitutes. Pigment Cell Melanoma Res. doi:10.1111/pcmr.12609 PubMed Boyce ST, Lloyd CM, Kleiner MC, Swope VB, Abdel-Malek Z, Supp DM (2017) Restoration of cutaneous pigmentation by transplantation to mice of isogeneic human melanocytes in dermal-epidermal engineered skin substitutes. Pigment Cell Melanoma Res. doi:10.​1111/​pcmr.​12609 PubMed
8.
go back to reference Madison KC (2003) Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol 121(2):231–241CrossRefPubMed Madison KC (2003) Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol 121(2):231–241CrossRefPubMed
10.
go back to reference Henry J, Toulza E, Hsu CY, Pellerin L, Balica S, Mazereeuw-Hautier J, Paul C, Serre G, Jonca N, Simon M (2012) Update on the epidermal differentiation complex. Front Biosci (Landmark Ed) 17:1517–1532CrossRef Henry J, Toulza E, Hsu CY, Pellerin L, Balica S, Mazereeuw-Hautier J, Paul C, Serre G, Jonca N, Simon M (2012) Update on the epidermal differentiation complex. Front Biosci (Landmark Ed) 17:1517–1532CrossRef
11.
go back to reference Candi E, Schmidt R, Melino G (2005 Apr) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6(4):328–340CrossRefPubMed Candi E, Schmidt R, Melino G (2005 Apr) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6(4):328–340CrossRefPubMed
13.
14.
go back to reference Coulombe PA (2017) The molecular revolution in cutaneous biology: keratin genes and their associated disease: diversity, opportunities, and challenges. J Invest Dermatol 137(5):e67-e71CrossRefPubMedPubMedCentral Coulombe PA (2017) The molecular revolution in cutaneous biology: keratin genes and their associated disease: diversity, opportunities, and challenges. J Invest Dermatol 137(5):e67-e71CrossRefPubMedPubMedCentral
15.
go back to reference Irvine AD, McLean WH (1999) Human keratin diseases: the increasing spectrum of disease and subtlety of the phenotype–genotype correlation. Br J Dermatol 140(5):815–828CrossRefPubMed Irvine AD, McLean WH (1999) Human keratin diseases: the increasing spectrum of disease and subtlety of the phenotype–genotype correlation. Br J Dermatol 140(5):815–828CrossRefPubMed
17.
go back to reference Sprecher E, Itin P, Whittock NV, McGrath JA, Meyer R, DiGiovanna JJ, Bale SJ, Uitto J, Richard G (2002) Refined mapping of Naegeli–Franceschetti–Jadassohn syndrome to a 6 cM interval on chromosome 17q11.2-q21 and investigation of candidate genes. J Invest Dermatol 119(3):692–698CrossRefPubMed Sprecher E, Itin P, Whittock NV, McGrath JA, Meyer R, DiGiovanna JJ, Bale SJ, Uitto J, Richard G (2002) Refined mapping of Naegeli–Franceschetti–Jadassohn syndrome to a 6 cM interval on chromosome 17q11.2-q21 and investigation of candidate genes. J Invest Dermatol 119(3):692–698CrossRefPubMed
18.
go back to reference Min M, Chen XB, Wang P, Landeck L, Chen JQ, Li W, Cai SQ, Zheng M, Man XY (2017) Role of keratin 24 in human epidermal keratinocytes. PLoS One 12(3):e0174626CrossRefPubMedPubMedCentral Min M, Chen XB, Wang P, Landeck L, Chen JQ, Li W, Cai SQ, Zheng M, Man XY (2017) Role of keratin 24 in human epidermal keratinocytes. PLoS One 12(3):e0174626CrossRefPubMedPubMedCentral
19.
go back to reference Böttcher-Haberzeth S, Biedermann T, Pontiggia L, Braziulis E, Schiestl C, Hendriks B, Eichhoff OM, Widmer DS, Meuli-Simmen C, Meuli M, Reichmann E (2013) Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in stratifying dermo-epidermal skin substitutes. J Invest Dermatol 133(2):316–324CrossRefPubMed Böttcher-Haberzeth S, Biedermann T, Pontiggia L, Braziulis E, Schiestl C, Hendriks B, Eichhoff OM, Widmer DS, Meuli-Simmen C, Meuli M, Reichmann E (2013) Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in stratifying dermo-epidermal skin substitutes. J Invest Dermatol 133(2):316–324CrossRefPubMed
20.
go back to reference Biedermann T, Pontiggia L, Böttcher-Haberzeth S, Tharakan S, Braziulis E, Schiestl C, Meuli M, Reichmann E (2010) Human eccrine sweat gland cells can reconstitute a stratified epidermis. J Invest Dermatol 130(8):1996–2009CrossRefPubMed Biedermann T, Pontiggia L, Böttcher-Haberzeth S, Tharakan S, Braziulis E, Schiestl C, Meuli M, Reichmann E (2010) Human eccrine sweat gland cells can reconstitute a stratified epidermis. J Invest Dermatol 130(8):1996–2009CrossRefPubMed
21.
go back to reference Biedermann T, Böttcher-Haberzeth S, Klar AS, Widmer DS, Pontiggia L, Weber AD, Weber DM, Schiestl C, Meuli M, Reichmann E (2015) The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts. Tissue Eng Part A 21(5–6):960–969CrossRefPubMedPubMedCentral Biedermann T, Böttcher-Haberzeth S, Klar AS, Widmer DS, Pontiggia L, Weber AD, Weber DM, Schiestl C, Meuli M, Reichmann E (2015) The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts. Tissue Eng Part A 21(5–6):960–969CrossRefPubMedPubMedCentral
22.
go back to reference Klar AS, Biedermann T, Michalak K, Michalczyk T, Meuli-Simmen C, Scherberich A, Meuli M, Reichmann E (2017) Human adipose mesenchymal cells inhibit melanocyte differentiation and the pigmentation of human skin via increased expression of TGF-β1. J Invest Dermatol Klar AS, Biedermann T, Michalak K, Michalczyk T, Meuli-Simmen C, Scherberich A, Meuli M, Reichmann E (2017) Human adipose mesenchymal cells inhibit melanocyte differentiation and the pigmentation of human skin via increased expression of TGF-β1. J Invest Dermatol
23.
go back to reference Knapp AC, Franke WW, Heid H, Hatzfeld M, Jorcano JL, Moll R (1986) Cytokeratin No. 9, an epidermal type I keratin characteristic of a special program of keratinocyte differentiation displaying body site specificity. J Cell Biol 103(2):657–667CrossRefPubMed Knapp AC, Franke WW, Heid H, Hatzfeld M, Jorcano JL, Moll R (1986) Cytokeratin No. 9, an epidermal type I keratin characteristic of a special program of keratinocyte differentiation displaying body site specificity. J Cell Biol 103(2):657–667CrossRefPubMed
24.
go back to reference Compton CC, Nadire KB, Regauer S, Simon M, Warland G, O’Connor NE, Gallico GG, Landry DB (1998) Cultured human sole-derived keratinocyte grafts re-express site-specific differentiation after transplantation. Differentiation 64(1):45–53CrossRefPubMed Compton CC, Nadire KB, Regauer S, Simon M, Warland G, O’Connor NE, Gallico GG, Landry DB (1998) Cultured human sole-derived keratinocyte grafts re-express site-specific differentiation after transplantation. Differentiation 64(1):45–53CrossRefPubMed
25.
go back to reference Yamaguchi Y, Itami S, Tarutani M, Hosokawa K, Miura H, Yoshikawa K (1999) Regulation of keratin 9 in nonpalmoplantar keratinocytes by palmoplantar fibroblasts through epithelial-mesenchymal interactions. J Invest Dermatol 112(4):483–488CrossRefPubMed Yamaguchi Y, Itami S, Tarutani M, Hosokawa K, Miura H, Yoshikawa K (1999) Regulation of keratin 9 in nonpalmoplantar keratinocytes by palmoplantar fibroblasts through epithelial-mesenchymal interactions. J Invest Dermatol 112(4):483–488CrossRefPubMed
26.
go back to reference Pontiggia L, Biedermann T, Böttcher-Haberzeth S, Oliveira C, Braziulis E, Klar AS, Meuli-Simmen C, Meuli M, Reichmann E (2014) De novo epidermal regeneration using human eccrine sweat gland cells: higher competence of secretory over absorptive cells. J Invest Dermatol 134(6):1735–1742CrossRefPubMed Pontiggia L, Biedermann T, Böttcher-Haberzeth S, Oliveira C, Braziulis E, Klar AS, Meuli-Simmen C, Meuli M, Reichmann E (2014) De novo epidermal regeneration using human eccrine sweat gland cells: higher competence of secretory over absorptive cells. J Invest Dermatol 134(6):1735–1742CrossRefPubMed
27.
go back to reference Watt FM J (1983) Involucrin and other markers of keratinocyte terminal differentiation. J Invest Dermatol 81(1 Suppl):100 s–3 sCrossRef Watt FM J (1983) Involucrin and other markers of keratinocyte terminal differentiation. J Invest Dermatol 81(1 Suppl):100 s–3 sCrossRef
Metadata
Title
The expression pattern of keratin 24 in tissue-engineered dermo-epidermal human skin substitutes in an in vivo model
Authors
Agnes S. Klar
Katarzyna Michalak
Sophie Böttcher-Haberzeth
Ernst Reichmann
Martin Meuli
Thomas Biedermann
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Surgery International / Issue 2/2018
Print ISSN: 0179-0358
Electronic ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-017-4198-9

Other articles of this Issue 2/2018

Pediatric Surgery International 2/2018 Go to the issue