Skip to main content
Top
Published in: BMC Hematology 1/2016

Open Access 01-12-2016 | Research article

The expression of embryonic globin mRNA in a severely anemic mouse model induced by treatment with nitrogen-containing bisphosphonate

Authors: Hirotada Otsuka, Jiro Takito, Yasuo Endo, Hideki Yagi, Satoshi Soeta, Nobuaki Yanagisawa, Naoko Nonaka, Masanori Nakamura

Published in: BMC Hematology | Issue 1/2016

Login to get access

Abstract

Background

Mammalian erythropoiesis can be divided into two distinct types, primitive and definitive, in which new cells are derived from the yolk sac and hematopoietic stem cells, respectively. Primitive erythropoiesis occurs within a restricted period during embryogenesis. Primitive erythrocytes remain nucleated, and their hemoglobins are different from those in definitive erythrocytes. Embryonic type hemoglobin is expressed in adult animals under genetically abnormal condition, but its later expression has not been reported in genetically normal adult animals, even under anemic conditions. We previously reported that injecting animals with nitrogen-containing bisphosphonate (NBP) decreased erythropoiesis in bone marrow (BM). Here, we induced severe anemia in a mouse model by injecting NBP injection in combination with phenylhydrazine (PHZ), and then we analyzed erythropoiesis and the levels of different types of hemoglobin.

Methods

Splenectomized mice were treated with NBP to inhibit erythropoiesis in BM, and with PHZ to induce hemolytic anemia. We analyzed hematopoietic sites and peripheral blood using morphological and molecular biological methods.

Results

Combined treatment of splenectomized mice with NBP and PHZ induced critical anemia compared to treatment with PHZ alone, and numerous nucleated erythrocytes appeared in the peripheral blood. In the BM, immature CD71-positive erythroblasts were increased, and extramedullary erythropoiesis occurred in the liver. Furthermore, embryonic type globin mRNA was detected in both the BM and the liver. In peripheral blood, spots that did not correspond to control hemoglobin were observed in 2D electrophoresis. ChIP analyses showed that KLF1 and KLF2 bind to the promoter regions of β-like globin. Wine-colored capsuled structures were unexpectedly observed in the abdominal cavity, and active erythropoiesis was also observed in these structures.

Conclusion

These results indicate that primitive erythropoiesis occurs in adult mice to rescue critical anemia because primitive erythropoiesis does not require macrophages as stroma whereas macrophages play a pivotal role in definitive erythropoiesis even outside the medulla. The cells expressing embryonic hemoglobin in this study were similar to primitive erythrocytes, indicating the possibility that yolk sac-derived primitive erythroid cells may persist into adulthood in mice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Palis J, Yoder MC. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol. 2001;29(8):927–36.CrossRefPubMed Palis J, Yoder MC. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol. 2001;29(8):927–36.CrossRefPubMed
2.
go back to reference McGrath KE, Palis J. Hematopoiesis in the yolk sac: more than meets the eye. Exp Hematol. 2005;33(9):1021–8.CrossRefPubMed McGrath KE, Palis J. Hematopoiesis in the yolk sac: more than meets the eye. Exp Hematol. 2005;33(9):1021–8.CrossRefPubMed
3.
go back to reference McGrath K, Palis J. Ontogeny of erythropoiesis in the mammalian embryo. Curr Top Dev Biol. 2008;82:1–22.CrossRefPubMed McGrath K, Palis J. Ontogeny of erythropoiesis in the mammalian embryo. Curr Top Dev Biol. 2008;82:1–22.CrossRefPubMed
4.
go back to reference Kingsley PD, Malik J, Fantauzzo KA, Palis J. Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood. 2004;104(1):19–25.CrossRefPubMed Kingsley PD, Malik J, Fantauzzo KA, Palis J. Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood. 2004;104(1):19–25.CrossRefPubMed
5.
go back to reference Palis J. Molecular Biology of Erythropoiesis. In: Wickrema A, Kee B, editors. Molecular Basis of Hematopoiesis. New York: Springer; 2009. p. 73–93.CrossRef Palis J. Molecular Biology of Erythropoiesis. In: Wickrema A, Kee B, editors. Molecular Basis of Hematopoiesis. New York: Springer; 2009. p. 73–93.CrossRef
7.
go back to reference Kingsley PD, Malik J, Emerson RL, Bushnell TP, McGrath KE, Bloedorn LA, et al. “Maturational” globin switching in primary primitive erythroid cells. Blood. 2006;107(4):1665–72.PubMedCentralCrossRefPubMed Kingsley PD, Malik J, Emerson RL, Bushnell TP, McGrath KE, Bloedorn LA, et al. “Maturational” globin switching in primary primitive erythroid cells. Blood. 2006;107(4):1665–72.PubMedCentralCrossRefPubMed
8.
go back to reference McGrath KE, Frame JM, Fromm GJ, Koniski AD, Kingsley PD, Little J, et al. A transient definitive erythroid lineage with unique regulation of the beta-globin locus in the mammalian embryo. Blood. 2011;117(17):4600–8.PubMedCentralCrossRefPubMed McGrath KE, Frame JM, Fromm GJ, Koniski AD, Kingsley PD, Little J, et al. A transient definitive erythroid lineage with unique regulation of the beta-globin locus in the mammalian embryo. Blood. 2011;117(17):4600–8.PubMedCentralCrossRefPubMed
10.
go back to reference Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life. 2009;61(8):800–30.CrossRefPubMed Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life. 2009;61(8):800–30.CrossRefPubMed
12.
go back to reference Hodge D, Coghill E, Keys J, Maguire T, Hartmann B, McDowall A, et al. A global role for EKLF in definitive and primitive erythropoiesis. Blood. 2006;107(8):3359–70.PubMedCentralCrossRefPubMed Hodge D, Coghill E, Keys J, Maguire T, Hartmann B, McDowall A, et al. A global role for EKLF in definitive and primitive erythropoiesis. Blood. 2006;107(8):3359–70.PubMedCentralCrossRefPubMed
13.
go back to reference Drissen R, von Lindern M, Kolbus A, Driegen S, Steinlein P, Beug H, et al. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol. 2005;25(12):5205–14.PubMedCentralCrossRefPubMed Drissen R, von Lindern M, Kolbus A, Driegen S, Steinlein P, Beug H, et al. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol. 2005;25(12):5205–14.PubMedCentralCrossRefPubMed
14.
go back to reference Basu P, Lung TK, Lemsaddek W, Sargent TG, Williams Jr DC, Basu M, et al. EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis. Blood. 2007;110(9):3417–25.PubMedCentralCrossRefPubMed Basu P, Lung TK, Lemsaddek W, Sargent TG, Williams Jr DC, Basu M, et al. EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis. Blood. 2007;110(9):3417–25.PubMedCentralCrossRefPubMed
15.
go back to reference Alhashem YN, Vinjamur DS, Basu M, Klingmuller U, Gaensler KM, Lloyd JA. Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal beta-globin genes through direct promoter binding. J Biol Chem. 2011;286(28):24819–27.PubMedCentralCrossRefPubMed Alhashem YN, Vinjamur DS, Basu M, Klingmuller U, Gaensler KM, Lloyd JA. Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal beta-globin genes through direct promoter binding. J Biol Chem. 2011;286(28):24819–27.PubMedCentralCrossRefPubMed
16.
go back to reference Bessis M, Mize C, Prenant M. Erythropoiesis: comparison of in vivo and in vitro amplification. Blood Cells. 1978;4(1-2):155–74.PubMed Bessis M, Mize C, Prenant M. Erythropoiesis: comparison of in vivo and in vitro amplification. Blood Cells. 1978;4(1-2):155–74.PubMed
17.
go back to reference Seshi B, Kumar S, Sellers D. Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages. Blood Cells Mol Dis. 2000;26(3):234–46.CrossRefPubMed Seshi B, Kumar S, Sellers D. Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages. Blood Cells Mol Dis. 2000;26(3):234–46.CrossRefPubMed
20.
go back to reference Rich IN, Heit W, Kubanek B. Extrarenal erythropoietin production by macrophages. Blood. 1982;60(4):1007–18.PubMed Rich IN, Heit W, Kubanek B. Extrarenal erythropoietin production by macrophages. Blood. 1982;60(4):1007–18.PubMed
21.
go back to reference Rich IN. A role for the macrophage in normal hemopoiesis. II. Effect of varying physiological oxygen tensions on the release of hemopoietic growth factors from bone-marrow-derived macrophages in vitro. Exp Hematol. 1986;14(8):746–51.PubMed Rich IN. A role for the macrophage in normal hemopoiesis. II. Effect of varying physiological oxygen tensions on the release of hemopoietic growth factors from bone-marrow-derived macrophages in vitro. Exp Hematol. 1986;14(8):746–51.PubMed
22.
go back to reference Body JJ. Rationale for the use of bisphosphonates in osteoblastic and osteolytic bone lesions. Breast. 2003;12 Suppl 2:S37–44.CrossRefPubMed Body JJ. Rationale for the use of bisphosphonates in osteoblastic and osteolytic bone lesions. Breast. 2003;12 Suppl 2:S37–44.CrossRefPubMed
23.
go back to reference Cremers SC, Eekhoff ME, Den Hartigh J, Hamdy NA, Vermeij P, Papapoulos SE. Relationships between pharmacokinetics and rate of bone turnover after intravenous bisphosphonate (olpadronate) in patients with Paget’s disease of bone. J Bone Miner Res. 2003;18(5):868–75.CrossRefPubMed Cremers SC, Eekhoff ME, Den Hartigh J, Hamdy NA, Vermeij P, Papapoulos SE. Relationships between pharmacokinetics and rate of bone turnover after intravenous bisphosphonate (olpadronate) in patients with Paget’s disease of bone. J Bone Miner Res. 2003;18(5):868–75.CrossRefPubMed
24.
go back to reference Endo Y, Shibazaki M, Yamaguchi K, Nakamura M, Kosugi H. Inhibition of inflammatory actions of aminobisphosphonates by dichloromethylene bisphosphonate, a non-aminobisphosphonate. Br J Pharmacol. 1999;126(4):903–10.PubMedCentralCrossRefPubMed Endo Y, Shibazaki M, Yamaguchi K, Nakamura M, Kosugi H. Inhibition of inflammatory actions of aminobisphosphonates by dichloromethylene bisphosphonate, a non-aminobisphosphonate. Br J Pharmacol. 1999;126(4):903–10.PubMedCentralCrossRefPubMed
25.
go back to reference Yamaguchi K, Oizumi T, Funayama H, Kawamura H, Sugawara S, Endo Y. Osteonecrosis of the jawbones in 2 osteoporosis patients treated with nitrogen-containing bisphosphonates: osteonecrosis reduction replacing NBP with non-NBP (etidronate) and rationale. J Oral Maxillofac Surg. 2010;68(4):889–97.CrossRefPubMed Yamaguchi K, Oizumi T, Funayama H, Kawamura H, Sugawara S, Endo Y. Osteonecrosis of the jawbones in 2 osteoporosis patients treated with nitrogen-containing bisphosphonates: osteonecrosis reduction replacing NBP with non-NBP (etidronate) and rationale. J Oral Maxillofac Surg. 2010;68(4):889–97.CrossRefPubMed
26.
go back to reference Nakamura M, Yagi H, Endo Y, Kosugi H, Ishi T, Itoh T. A time kinetic study of the effect of aminobisphosphonate on murine haemopoiesis. Br J Haematol. 1999;107(4):779–90.CrossRefPubMed Nakamura M, Yagi H, Endo Y, Kosugi H, Ishi T, Itoh T. A time kinetic study of the effect of aminobisphosphonate on murine haemopoiesis. Br J Haematol. 1999;107(4):779–90.CrossRefPubMed
27.
go back to reference Otsuka H, Yagi H, Endo Y, Nonaka N, Nakamura M. Kupffer cells support extramedullary erythropoiesis induced by nitrogen-containing bisphosphonate in splenectomized mice. Cell Immunol. 2011;271(1):197–204.CrossRefPubMed Otsuka H, Yagi H, Endo Y, Nonaka N, Nakamura M. Kupffer cells support extramedullary erythropoiesis induced by nitrogen-containing bisphosphonate in splenectomized mice. Cell Immunol. 2011;271(1):197–204.CrossRefPubMed
28.
go back to reference Perry JM, Harandi OF, Paulson RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood. 2007;109(10):4494–502.PubMedCentralCrossRefPubMed Perry JM, Harandi OF, Paulson RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood. 2007;109(10):4494–502.PubMedCentralCrossRefPubMed
29.
go back to reference Josef B. Phenylhydrazine haematotoxicity. J Appl Biomed. 2007;5:125–30. Zhu X, Liu J, Feng Y, Pang W, Qi Z, Jiang Y, Shang H, Cao Y. Phenylhydrazine administration accelerates the development of experimental cerebral malaria. Exp Parasitol 2015; 156:1-11. Josef B. Phenylhydrazine haematotoxicity. J Appl Biomed. 2007;5:125–30. Zhu X, Liu J, Feng Y, Pang W, Qi Z, Jiang Y, Shang H, Cao Y. Phenylhydrazine administration accelerates the development of experimental cerebral malaria. Exp Parasitol 2015; 156:1-11.
30.
go back to reference Esteghamat F, Gillemans N, Bilic I, van den Akker E, Cantu I, van Gent T, et al. Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood. 2013;121(13):2553–62.CrossRefPubMed Esteghamat F, Gillemans N, Bilic I, van den Akker E, Cantu I, van Gent T, et al. Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood. 2013;121(13):2553–62.CrossRefPubMed
31.
go back to reference McConnell SC, Huo Y, Liu S, Ryan TM. Human globin knock-in mice complete fetal-to-adult hemoglobin switching in postnatal development. Mol Cell Biol. 2011;31(4):876–83.PubMedCentralCrossRefPubMed McConnell SC, Huo Y, Liu S, Ryan TM. Human globin knock-in mice complete fetal-to-adult hemoglobin switching in postnatal development. Mol Cell Biol. 2011;31(4):876–83.PubMedCentralCrossRefPubMed
32.
go back to reference D’Amici GM, Rinalducci S, Zolla L. An easy preparative gel electrophoretic method for targeted depletion of hemoglobin in erythrocyte cytosolic samples. Electrophoresis. 2011;32(11):1319–22.CrossRefPubMed D’Amici GM, Rinalducci S, Zolla L. An easy preparative gel electrophoretic method for targeted depletion of hemoglobin in erythrocyte cytosolic samples. Electrophoresis. 2011;32(11):1319–22.CrossRefPubMed
33.
go back to reference Wen L, Zhu P, Liu Y, Pan Q, Qu Y, Xu X, et al. Development of a fluorescence immunochromatographic assay for the detection of zeta globin in the blood of (--(SEA)) alpha-thalassemia carriers. Blood Cells Mol Dis. 2012;49(3-4):128–32.CrossRefPubMed Wen L, Zhu P, Liu Y, Pan Q, Qu Y, Xu X, et al. Development of a fluorescence immunochromatographic assay for the detection of zeta globin in the blood of (--(SEA)) alpha-thalassemia carriers. Blood Cells Mol Dis. 2012;49(3-4):128–32.CrossRefPubMed
34.
go back to reference Laing EL, Brasch HD, Steel R, Jia J, Itinteang T, Tan ST, et al. Verrucous hemangioma expresses primitive markers. J Cutan Pathol. 2013;40(4):391–6.CrossRefPubMed Laing EL, Brasch HD, Steel R, Jia J, Itinteang T, Tan ST, et al. Verrucous hemangioma expresses primitive markers. J Cutan Pathol. 2013;40(4):391–6.CrossRefPubMed
35.
go back to reference Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet. 2010;42(9):742–4.CrossRefPubMed Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet. 2010;42(9):742–4.CrossRefPubMed
36.
go back to reference Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature. 2009;460(7259):1093–7.PubMedCentralCrossRefPubMed Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature. 2009;460(7259):1093–7.PubMedCentralCrossRefPubMed
37.
go back to reference He Z, Lian L, Asakura T, Russell JE. Functional effects of replacing human alpha- and beta-globins with their embryonic globin homologues in defined haemoglobin heterotetramers. Br J Haematol. 2000;109(4):882–90.CrossRefPubMed He Z, Lian L, Asakura T, Russell JE. Functional effects of replacing human alpha- and beta-globins with their embryonic globin homologues in defined haemoglobin heterotetramers. Br J Haematol. 2000;109(4):882–90.CrossRefPubMed
38.
go back to reference Bichet S, Wenger RH, Camenisch G, Rolfs A, Ehleben W, Porwol T, et al. Oxygen tension modulates beta-globin switching in embryoid bodies. FASEB J. 1999;13(2):285–95.PubMed Bichet S, Wenger RH, Camenisch G, Rolfs A, Ehleben W, Porwol T, et al. Oxygen tension modulates beta-globin switching in embryoid bodies. FASEB J. 1999;13(2):285–95.PubMed
40.
go back to reference Malik J, Kim AR, Tyre KA, Cherukuri AR, Palis J. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica. 2013;98(11):1778–87.PubMedCentralCrossRefPubMed Malik J, Kim AR, Tyre KA, Cherukuri AR, Palis J. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica. 2013;98(11):1778–87.PubMedCentralCrossRefPubMed
41.
go back to reference Kieran MW, Perkins AC, Orkin SH, Zon LI. Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc Natl Acad Sci U S A. 1996;93(17):9126–31.PubMedCentralCrossRefPubMed Kieran MW, Perkins AC, Orkin SH, Zon LI. Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc Natl Acad Sci U S A. 1996;93(17):9126–31.PubMedCentralCrossRefPubMed
42.
go back to reference Ciriza J, Hall D, Lu A, De Sena JR, Al-Kuhlani M, Garcia-Ojeda ME. Single-cell analysis of murine long-term hematopoietic stem cells reveals distinct patterns of gene expression during fetal migration. PLoS One. 2012;7(1):e30542.PubMedCentralCrossRefPubMed Ciriza J, Hall D, Lu A, De Sena JR, Al-Kuhlani M, Garcia-Ojeda ME. Single-cell analysis of murine long-term hematopoietic stem cells reveals distinct patterns of gene expression during fetal migration. PLoS One. 2012;7(1):e30542.PubMedCentralCrossRefPubMed
43.
go back to reference Isern J, Fraser ST, He Z, Baron MH. The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A. 2008;105(18):6662–7.PubMedCentralCrossRefPubMed Isern J, Fraser ST, He Z, Baron MH. The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A. 2008;105(18):6662–7.PubMedCentralCrossRefPubMed
44.
go back to reference Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, et al. CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 2013;19(4):429–36.PubMedCentralCrossRefPubMed Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, et al. CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 2013;19(4):429–36.PubMedCentralCrossRefPubMed
45.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.PubMedCentralCrossRefPubMed Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.PubMedCentralCrossRefPubMed
46.
go back to reference Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86–90.CrossRefPubMed Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86–90.CrossRefPubMed
47.
go back to reference Lau ET, Kwok YK, Chui DH, Wong HS, Luo HY, Tang MH. Embryonic and fetal globins are expressed in adult erythroid progenitor cells and in erythroid cell cultures. Prenat Diagn. 2001;21(7):529–39.CrossRefPubMed Lau ET, Kwok YK, Chui DH, Wong HS, Luo HY, Tang MH. Embryonic and fetal globins are expressed in adult erythroid progenitor cells and in erythroid cell cultures. Prenat Diagn. 2001;21(7):529–39.CrossRefPubMed
48.
go back to reference Luo HY, Liang XL, Frye C, Wonio M, Hankins GD, Chui DH, et al. Embryonic hemoglobins are expressed in definitive cells. Blood. 1999;94(1):359–61.PubMed Luo HY, Liang XL, Frye C, Wonio M, Hankins GD, Chui DH, et al. Embryonic hemoglobins are expressed in definitive cells. Blood. 1999;94(1):359–61.PubMed
49.
go back to reference Qiu C, Olivier EN, Velho M, Bouhassira EE. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood. 2008;111(4):2400–8.PubMedCentralCrossRefPubMed Qiu C, Olivier EN, Velho M, Bouhassira EE. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood. 2008;111(4):2400–8.PubMedCentralCrossRefPubMed
50.
go back to reference Yang CT, French A, Goh PA, Pagnamenta A, Mettananda S, Taylor J, et al. Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins. Br J Haematol. 2014;166(3):435–48.PubMedCentralCrossRefPubMed Yang CT, French A, Goh PA, Pagnamenta A, Mettananda S, Taylor J, et al. Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins. Br J Haematol. 2014;166(3):435–48.PubMedCentralCrossRefPubMed
Metadata
Title
The expression of embryonic globin mRNA in a severely anemic mouse model induced by treatment with nitrogen-containing bisphosphonate
Authors
Hirotada Otsuka
Jiro Takito
Yasuo Endo
Hideki Yagi
Satoshi Soeta
Nobuaki Yanagisawa
Naoko Nonaka
Masanori Nakamura
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Hematology / Issue 1/2016
Electronic ISSN: 2052-1839
DOI
https://doi.org/10.1186/s12878-016-0041-0

Other articles of this Issue 1/2016

BMC Hematology 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.