Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Research article

The efficacy of machine learning models in forecasting treatment failure in thoracolumbar burst fractures treated with short-segment posterior spinal fixation

Authors: Neda Khaledian, Seyed Reza Bagheri, Hasti Sharifi, Ehsan Alimohammadi

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Background

Although short-segment posterior spinal fixation (SSPSF) has shown promising clinical outcomes in thoracolumbar burst fractures, the treatment may be prone to a relatively high failure rate. This study aimed to assess the effectiveness of machine learning models (MLMs) in predicting factors associated with treatment failure in thoracolumbar burst fractures treated with SSPSF.

Methods

A retrospective review of 332 consecutive patients with traumatic thoracolumbar burst fractures who underwent SSPSF at our institution between May 2016 and May 2023 was conducted. Patients were categorized into two groups based on treatment outcome (failure or non-failure). Potential risk factors for treatment failure were compared between the groups. Four MLMs, including random forest (RF), logistic regression (LR), support vector machine (SVM), and k-nearest neighborhood (k-NN), were employed to predict treatment failure. Additionally, LR and RF models were used to assess factors associated with treatment failure.

Results

Of the 332 included patients, 61.4% were male (n = 204), and treatment failure was observed in 44 patients (13.3%). Logistic regression analysis identified Load Sharing Classification (LSC) score, lack of index level instrumentation, and interpedicular distance (IPD) as factors associated with treatment failure (P < 0.05). All models demonstrated satisfactory performance. RF exhibited the highest accuracy in predicting treatment failure (accuracy = 0.948), followed by SVM (0.933), k-NN (0.927), and LR (0.917). Moreover, the RF model outperformed other models in terms of sensitivity and specificity (sensitivity = 0.863, specificity = 0.959). The area under the curve (AUC) for RF, LR, SVM, and k-NN was 0.911, 0.823, 0.844, and 0.877, respectively.

Conclusions

This study demonstrated the utility of machine learning models in predicting treatment failure in thoracolumbar burst fractures treated with SSPSF. The findings support the potential of MLMs to predict treatment failure in this patient population, offering valuable prognostic information for early intervention and cost savings.
Literature
1.
go back to reference Rosenthal BD, Boody BS, Jenkins TJ, Hsu WK, Patel AA, Savage JW. Thoracolumbar burst fractures. Clin Spine Surg. 2018;31(4):143–51.CrossRefPubMed Rosenthal BD, Boody BS, Jenkins TJ, Hsu WK, Patel AA, Savage JW. Thoracolumbar burst fractures. Clin Spine Surg. 2018;31(4):143–51.CrossRefPubMed
2.
go back to reference Aligizakis A, Katonis P, Stergiopoulos K, Galanakis I, Karabekios S, Hadjipavlou A. Functional outcome of burst fractures of the thoracolumbar spine managed non-operatively, with early ambulation, evaluated using the load sharing classification. Acta Orthop Belg. 2002;68(3):279–87.PubMed Aligizakis A, Katonis P, Stergiopoulos K, Galanakis I, Karabekios S, Hadjipavlou A. Functional outcome of burst fractures of the thoracolumbar spine managed non-operatively, with early ambulation, evaluated using the load sharing classification. Acta Orthop Belg. 2002;68(3):279–87.PubMed
3.
go back to reference Wood K, Buttermann G, Mehbod A, Garvey T, Jhanjee R, Sechriest V. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit: a prospective, randomized study. JBJS. 2003;85(5):773–81.CrossRef Wood K, Buttermann G, Mehbod A, Garvey T, Jhanjee R, Sechriest V. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit: a prospective, randomized study. JBJS. 2003;85(5):773–81.CrossRef
4.
go back to reference Baker AD. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Classic Papers in Orthopaedics: Springer; 2013. p. 289 – 92. Baker AD. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Classic Papers in Orthopaedics: Springer; 2013. p. 289 – 92.
5.
go back to reference Gelb D, Ludwig S, Karp JE, Chung EH, Werner C, Kim T, et al. Successful treatment of thoracolumbar fractures with short-segment pedicle instrumentation. Clin Spine Surg. 2010;23(5):293–301. Gelb D, Ludwig S, Karp JE, Chung EH, Werner C, Kim T, et al. Successful treatment of thoracolumbar fractures with short-segment pedicle instrumentation. Clin Spine Surg. 2010;23(5):293–301.
6.
go back to reference Hitchon PW, Abode-Iyamah K, Dahdaleh NS, Shaffrey C, Noeller J, He W, et al. Nonoperative management in neurologically intact thoracolumbar burst fractures: clinical and radiographic outcomes. Spine. 2016;41(6):483–9.CrossRefPubMed Hitchon PW, Abode-Iyamah K, Dahdaleh NS, Shaffrey C, Noeller J, He W, et al. Nonoperative management in neurologically intact thoracolumbar burst fractures: clinical and radiographic outcomes. Spine. 2016;41(6):483–9.CrossRefPubMed
7.
go back to reference Jindal R, Jasani V, Sandal D, Garg SK. Current status of short segment fixation in thoracolumbar spine injuries. J Clin Orthop Trauma. 2020;11(5):770–7.CrossRefPubMedPubMedCentral Jindal R, Jasani V, Sandal D, Garg SK. Current status of short segment fixation in thoracolumbar spine injuries. J Clin Orthop Trauma. 2020;11(5):770–7.CrossRefPubMedPubMedCentral
8.
go back to reference Kanna RM, Shetty AP, Rajasekaran S. Posterior fixation including the fractured vertebra for severe unstable thoracolumbar fractures. Spine J. 2015;15(2):256–64.CrossRefPubMed Kanna RM, Shetty AP, Rajasekaran S. Posterior fixation including the fractured vertebra for severe unstable thoracolumbar fractures. Spine J. 2015;15(2):256–64.CrossRefPubMed
9.
go back to reference Ituarte F, Wiegers NW, Ruppar T, Goldstein C, Nourbakhsh A. Posterior thoracolumbar instrumented fusion for burst fractures: a meta-analysis. Clin Spine Surg. 2019;32(2):57–63.CrossRefPubMed Ituarte F, Wiegers NW, Ruppar T, Goldstein C, Nourbakhsh A. Posterior thoracolumbar instrumented fusion for burst fractures: a meta-analysis. Clin Spine Surg. 2019;32(2):57–63.CrossRefPubMed
11.
go back to reference Shipe ME, Deppen SA, Farjah F, Grogan EL. Developing prediction models for clinical use using logistic regression: an overview. J Thorac Disease. 2019;11(Suppl 4):S574.CrossRef Shipe ME, Deppen SA, Farjah F, Grogan EL. Developing prediction models for clinical use using logistic regression: an overview. J Thorac Disease. 2019;11(Suppl 4):S574.CrossRef
12.
go back to reference Brown M, Gunn SR, Lewis HG. Support vector machines for optimal classification and spectral unmixing. Ecol Model. 1999;120(2–3):167–79.CrossRef Brown M, Gunn SR, Lewis HG. Support vector machines for optimal classification and spectral unmixing. Ecol Model. 1999;120(2–3):167–79.CrossRef
13.
go back to reference Tang P, Long A, Shi T, Zhang L, Zhang L. Analysis of the independent risk factors of neurologic deficit after thoracolumbar burst fracture. J Orthop Surg Res. 2016;11(1):1–7.CrossRef Tang P, Long A, Shi T, Zhang L, Zhang L. Analysis of the independent risk factors of neurologic deficit after thoracolumbar burst fracture. J Orthop Surg Res. 2016;11(1):1–7.CrossRef
14.
go back to reference Shen J, Xu L, Zhang B, Hu Z. Risk factors for the failure of spinal burst fractures treated conservatively according to the Thoracolumbar Injury classification and severity score (TLICS): a retrospective cohort trial. PLoS ONE. 2015;10(8):e0135735.CrossRefPubMedPubMedCentral Shen J, Xu L, Zhang B, Hu Z. Risk factors for the failure of spinal burst fractures treated conservatively according to the Thoracolumbar Injury classification and severity score (TLICS): a retrospective cohort trial. PLoS ONE. 2015;10(8):e0135735.CrossRefPubMedPubMedCentral
15.
go back to reference Alimohammadi E, Bagheri SR, Ahadi P, Cheshmehkaboodi S, Hadidi H, Maleki S, et al. Predictors of the failure of conservative treatment in patients with a thoracolumbar burst fracture. J Orthop Surg Res. 2020;15:1–6.CrossRef Alimohammadi E, Bagheri SR, Ahadi P, Cheshmehkaboodi S, Hadidi H, Maleki S, et al. Predictors of the failure of conservative treatment in patients with a thoracolumbar burst fracture. J Orthop Surg Res. 2020;15:1–6.CrossRef
16.
go back to reference Hsu W-E, Su K-C, Chen K-H, Pan C-C, Lu W-H, Lee C-H. The evaluation of different radiological measurement parameters of the degree of collapse of the vertebral body in vertebral compression fractures. Applied bionics and biomechanics. 2019;2019. Hsu W-E, Su K-C, Chen K-H, Pan C-C, Lu W-H, Lee C-H. The evaluation of different radiological measurement parameters of the degree of collapse of the vertebral body in vertebral compression fractures. Applied bionics and biomechanics. 2019;2019.
17.
go back to reference Sekhara CR, Madhu E, MULTIMODAL CHOICE MODELING USING, RANDOM FOREST DECISION TREES. Int J Traffic Transp Eng. 2016;6(3). Sekhara CR, Madhu E, MULTIMODAL CHOICE MODELING USING, RANDOM FOREST DECISION TREES. Int J Traffic Transp Eng. 2016;6(3).
19.
go back to reference Kapp MN, Sabourin R, Maupin P. A dynamic model selection strategy for support vector machine classifiers. Appl Soft Comput. 2012;12(8):2550–65.CrossRef Kapp MN, Sabourin R, Maupin P. A dynamic model selection strategy for support vector machine classifiers. Appl Soft Comput. 2012;12(8):2550–65.CrossRef
20.
go back to reference Almansour NA, Syed HF, Khayat NR, Altheeb RK, Juri RE, Alhiyafi J, et al. Neural network and support vector machine for the prediction of chronic kidney disease: a comparative study. Comput Biol Med. 2019;109:101–11.CrossRefPubMed Almansour NA, Syed HF, Khayat NR, Altheeb RK, Juri RE, Alhiyafi J, et al. Neural network and support vector machine for the prediction of chronic kidney disease: a comparative study. Comput Biol Med. 2019;109:101–11.CrossRefPubMed
21.
go back to reference Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.CrossRef Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.CrossRef
22.
go back to reference Maleki N, Zeinali Y, Niaki STA. A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection. Expert Syst Appl. 2021;164:113981.CrossRef Maleki N, Zeinali Y, Niaki STA. A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection. Expert Syst Appl. 2021;164:113981.CrossRef
23.
go back to reference Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2(3):18–22. Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2(3):18–22.
24.
go back to reference Roque NA, Ram N. Tsfeaturex: an R package for automating time series feature extraction. J open Source Softw. 2019;4(37). Roque NA, Ram N. Tsfeaturex: an R package for automating time series feature extraction. J open Source Softw. 2019;4(37).
26.
go back to reference Whang PG, Vaccaro AR. Thoracolumbar fracture: posterior instrumentation using distraction and ligamentotaxis reduction. JAAOS-Journal Am Acad Orthop Surg. 2007;15(11):695–701.CrossRef Whang PG, Vaccaro AR. Thoracolumbar fracture: posterior instrumentation using distraction and ligamentotaxis reduction. JAAOS-Journal Am Acad Orthop Surg. 2007;15(11):695–701.CrossRef
27.
go back to reference Mahar A, Kim C, Wedemeyer M, Mitsunaga L, Odell T, Johnson B, et al. Short-segment fixation of lumbar burst fractures using pedicle fixation at the level of the fracture. Spine. 2007;32(14):1503–7.CrossRefPubMed Mahar A, Kim C, Wedemeyer M, Mitsunaga L, Odell T, Johnson B, et al. Short-segment fixation of lumbar burst fractures using pedicle fixation at the level of the fracture. Spine. 2007;32(14):1503–7.CrossRefPubMed
28.
go back to reference Dick JC, Jones MP, Zdeblick TA, Kunz DN, Horton WC. A biomechanical comparison evaluating the use of intermediate screws and cross-linkage in lumbar pedicle fixation. Clin Spine Surg. 1994;7(5):402–7. Dick JC, Jones MP, Zdeblick TA, Kunz DN, Horton WC. A biomechanical comparison evaluating the use of intermediate screws and cross-linkage in lumbar pedicle fixation. Clin Spine Surg. 1994;7(5):402–7.
29.
go back to reference Altay M, Ozkurt B, Aktekin CN, Ozturk AM, Dogan Ö, Tabak AY. Treatment of unstable thoracolumbar junction burst fractures with short-or long-segment posterior fixation in magerl type a fractures. Eur Spine J. 2007;16:1145–55.CrossRefPubMedPubMedCentral Altay M, Ozkurt B, Aktekin CN, Ozturk AM, Dogan Ö, Tabak AY. Treatment of unstable thoracolumbar junction burst fractures with short-or long-segment posterior fixation in magerl type a fractures. Eur Spine J. 2007;16:1145–55.CrossRefPubMedPubMedCentral
30.
go back to reference Scholl BM, Theiss SM, Kirkpatrick JS. Short segment fixation of thoracolumbar burst fractures. Orthopedics. 2006;29(8). Scholl BM, Theiss SM, Kirkpatrick JS. Short segment fixation of thoracolumbar burst fractures. Orthopedics. 2006;29(8).
31.
go back to reference Caffaro MFS, Avanzi O. Can the interpedicular distance reliably assess the severity of thoracolumbar burst fractures? Spine. 2012;37(4):E231–6.CrossRefPubMed Caffaro MFS, Avanzi O. Can the interpedicular distance reliably assess the severity of thoracolumbar burst fractures? Spine. 2012;37(4):E231–6.CrossRefPubMed
32.
go back to reference Martijn A, Veldhuis E, THE DIAGNOSTIC VALUE OF INTERPEDICULATE DISTANCE, ASSESSMENT ON PLAIN FILMS IN THORACIC AND LUMBAR SPINE INJURIES. J Pediatr Orthop. 1992;12(3):417.CrossRef Martijn A, Veldhuis E, THE DIAGNOSTIC VALUE OF INTERPEDICULATE DISTANCE, ASSESSMENT ON PLAIN FILMS IN THORACIC AND LUMBAR SPINE INJURIES. J Pediatr Orthop. 1992;12(3):417.CrossRef
33.
go back to reference Shi T, Horvath S. Unsupervised learning with random forest predictors. J Comput Graphical Stat. 2006;15(1):118–38.CrossRef Shi T, Horvath S. Unsupervised learning with random forest predictors. J Comput Graphical Stat. 2006;15(1):118–38.CrossRef
34.
go back to reference Qi Y. Random forest for bioinformatics. Ensemble machine learning: Methods and applications. 2012:307 – 23. Qi Y. Random forest for bioinformatics. Ensemble machine learning: Methods and applications. 2012:307 – 23.
Metadata
Title
The efficacy of machine learning models in forecasting treatment failure in thoracolumbar burst fractures treated with short-segment posterior spinal fixation
Authors
Neda Khaledian
Seyed Reza Bagheri
Hasti Sharifi
Ehsan Alimohammadi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04690-3

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue