Skip to main content
Top
Published in: Acta Diabetologica 1/2010

01-12-2010 | Original Article

The effects of telmisartan on mechanical responses of left ventricular papillary muscle in rats with streptozotocin-induced diabetes mellitus

Authors: Mustafa Emre, Servet Kavak, Hakki Unlugenc

Published in: Acta Diabetologica | Special Issue 1/2010

Login to get access

Abstract

The purpose of this study was to investigate the effects of telmisartan (5 × 10−5 M) on the mechanical response of left ventricular papillary muscle in rats with streptozotocin-induced diabetes mellitus. We studied 32 rats; 16 were rendered diabetic by a single intravenous injection of streptozotocin (45 mg kg−1 i.v.) and 16 formed a non-diabetic control group. Diabetic animals were divided into two groups: diabetic-telmisartan group and the diabetic-control group. Non-diabetic controls were further divided into the non-diabetic-telmisartan group and the non-diabetic-control group. We found: (1) Muscle twitch tension (P 0) and contraction and relaxation rates were significantly lower in diabetic controls than in the other groups. (2) Telmisartan significantly increased P 0 in both diabetic and non-diabetic rats. (3) Times to peak tension and half-relaxation were significantly greater in groups DC and DT than in the non-diabetics. In conclusion, our data suggest that telmisartan attenuates diabetes-induced impairment of diabetic rat papillary muscles, and may thus be able to reduce cardiac complications in diabetes.
Literature
1.
go back to reference Tschoepe D, Menart-Houtermans B (2002) Diabetes mellitus. In: Michelson AD (ed) Platelets. Academic Press, San Diego, pp 435–445 Tschoepe D, Menart-Houtermans B (2002) Diabetes mellitus. In: Michelson AD (ed) Platelets. Academic Press, San Diego, pp 435–445
2.
go back to reference Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234CrossRefPubMed Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234CrossRefPubMed
3.
go back to reference Kavak S, Emre M, Tetıker T, Kavak T, Kolcu Z, Günay İ (2008) Effects of rosiglitazone on altered electrical left ventricular papillary muscle activities of diabetic rat. Naunyn–Schmiedeberg’s Arch Pharmacol 376(6):415–421CrossRef Kavak S, Emre M, Tetıker T, Kavak T, Kolcu Z, Günay İ (2008) Effects of rosiglitazone on altered electrical left ventricular papillary muscle activities of diabetic rat. Naunyn–Schmiedeberg’s Arch Pharmacol 376(6):415–421CrossRef
4.
go back to reference Aomine M, Yamato T (2000) Electrophysiological properties of ventricular muscle obtained from spontaneously diabetic mice. Exp Anim 49(1):23–33CrossRefPubMed Aomine M, Yamato T (2000) Electrophysiological properties of ventricular muscle obtained from spontaneously diabetic mice. Exp Anim 49(1):23–33CrossRefPubMed
5.
go back to reference Makino N, Dhalla KS, Elimban V, Dhalla NS (1987) Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 253(2 Pt 1):E202–E207PubMed Makino N, Dhalla KS, Elimban V, Dhalla NS (1987) Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 253(2 Pt 1):E202–E207PubMed
6.
go back to reference Nobe S, Aomine M, Arita M, Ito S, Takaki R (1990) Chronic diabetes mellitus prolongs action potential duration of rat ventricular muscles: circumstantial evidence for impaired Ca2+ channel. Cardiovasc Res 24(5):381–389CrossRefPubMed Nobe S, Aomine M, Arita M, Ito S, Takaki R (1990) Chronic diabetes mellitus prolongs action potential duration of rat ventricular muscles: circumstantial evidence for impaired Ca2+ channel. Cardiovasc Res 24(5):381–389CrossRefPubMed
7.
go back to reference Wang DW, Kiyosue T, Shigematsu S, Arita M (1995) Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rat with chronic diabetes. Am J Physiol 269:HI288–HI296 Wang DW, Kiyosue T, Shigematsu S, Arita M (1995) Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rat with chronic diabetes. Am J Physiol 269:HI288–HI296
8.
go back to reference Yu Z, Tibbits GF, McNeill JH (1994) Cellular functions of diabetic cardiomyocytes: contractility, rapid-cooling contracture, and ryanodine binding. Am J Physiol 266(5 Pt 2):H2082–H2089PubMed Yu Z, Tibbits GF, McNeill JH (1994) Cellular functions of diabetic cardiomyocytes: contractility, rapid-cooling contracture, and ryanodine binding. Am J Physiol 266(5 Pt 2):H2082–H2089PubMed
9.
go back to reference Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567CrossRefPubMed Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567CrossRefPubMed
10.
go back to reference Galderisi M, Anderson KM, Wilson PW, Levy D (1991) Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 68(1):85–89CrossRefPubMed Galderisi M, Anderson KM, Wilson PW, Levy D (1991) Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 68(1):85–89CrossRefPubMed
11.
go back to reference Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J (2003) AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT 1 receptor and NADPH oxidase. Hypertension 42:206–212CrossRefPubMed Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J (2003) AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT 1 receptor and NADPH oxidase. Hypertension 42:206–212CrossRefPubMed
12.
go back to reference Wienen W, Hauel N, van Meel JC, Narr B, Ries U, Entzeroth M (1993) Pharmacological characterization of the novel nonpeptide angiotensin II receptor antagonist, BIBR 277. Br J Pharmacol 110:245–252PubMed Wienen W, Hauel N, van Meel JC, Narr B, Ries U, Entzeroth M (1993) Pharmacological characterization of the novel nonpeptide angiotensin II receptor antagonist, BIBR 277. Br J Pharmacol 110:245–252PubMed
13.
go back to reference Pershadsingh HA, Kurtz TW (2004) Insulin-sensitizing effects of telmisartan: implications for treating insulin-resistant hypertension and cardiovascular disease. Diabetes Care 27:1015CrossRefPubMed Pershadsingh HA, Kurtz TW (2004) Insulin-sensitizing effects of telmisartan: implications for treating insulin-resistant hypertension and cardiovascular disease. Diabetes Care 27:1015CrossRefPubMed
14.
go back to reference Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPAR-c-modulating activity. Hypertension 43:993–1002CrossRefPubMed Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPAR-c-modulating activity. Hypertension 43:993–1002CrossRefPubMed
15.
go back to reference Böhm M, Lee M, Kreutz R et al (1995) Angiotensin II receptor blockade in TGR(mREN2)27: effects of renin-angiotensin system gene expression and cardiovascular functions. Hypertension 13:891–899CrossRef Böhm M, Lee M, Kreutz R et al (1995) Angiotensin II receptor blockade in TGR(mREN2)27: effects of renin-angiotensin system gene expression and cardiovascular functions. Hypertension 13:891–899CrossRef
16.
go back to reference Böhm M, Lippoldt A, Wienen W, Ganten D, Bader M (1996) Reduction of cardiac hypertrophy in TGR(mREN2) 27 by angiotensin II receptor blockade. Mol Cell Biochem 163/164:217–221CrossRef Böhm M, Lippoldt A, Wienen W, Ganten D, Bader M (1996) Reduction of cardiac hypertrophy in TGR(mREN2) 27 by angiotensin II receptor blockade. Mol Cell Biochem 163/164:217–221CrossRef
17.
go back to reference Wagner J, Drab M, Bohlender J, Amann K, Wienen W, Ganten D (1998) Effects of AT1 receptor blockade on blood pressure and the renin-angiotensin system in spontaneously hypertensive rats of the stroke prone strain. Clin Exp Hypertens 20:205–221CrossRefPubMed Wagner J, Drab M, Bohlender J, Amann K, Wienen W, Ganten D (1998) Effects of AT1 receptor blockade on blood pressure and the renin-angiotensin system in spontaneously hypertensive rats of the stroke prone strain. Clin Exp Hypertens 20:205–221CrossRefPubMed
18.
go back to reference Bonnevie-Nielsen V, Steffes MW, Lernmark A (1981) A major loss in islet mass and B-cell function precedes hyperglycemia in mice given multiple low doses of streptozotocin. Diabetes 30:424–429CrossRefPubMed Bonnevie-Nielsen V, Steffes MW, Lernmark A (1981) A major loss in islet mass and B-cell function precedes hyperglycemia in mice given multiple low doses of streptozotocin. Diabetes 30:424–429CrossRefPubMed
19.
go back to reference Ramesh B, Pugalendi KV (2007) Influence of umbelliferone on membrane-bound ATPases in streptozotocin-induced diabetic rats. Pharmacol Rep 59:349–358 Ramesh B, Pugalendi KV (2007) Influence of umbelliferone on membrane-bound ATPases in streptozotocin-induced diabetic rats. Pharmacol Rep 59:349–358
20.
go back to reference Bracken N, Howarth FC, Sıngh J (2006) Effects of streptozotocin-induced diabetes on contraction and calcium transport in rat ventricular cardiomyocytes. Ann NY Acad Sci 1084:208–222CrossRefPubMed Bracken N, Howarth FC, Sıngh J (2006) Effects of streptozotocin-induced diabetes on contraction and calcium transport in rat ventricular cardiomyocytes. Ann NY Acad Sci 1084:208–222CrossRefPubMed
21.
go back to reference Brown RA, Lee MM, Sundareson AM, Woodbury DJ, Savage AO (1996) Influence of calcium channel blocker treatment on the mechanical properties of diabetic rat myocardium. Acta Diabetol 33:7–14CrossRefPubMed Brown RA, Lee MM, Sundareson AM, Woodbury DJ, Savage AO (1996) Influence of calcium channel blocker treatment on the mechanical properties of diabetic rat myocardium. Acta Diabetol 33:7–14CrossRefPubMed
22.
go back to reference Ren J, Walsh MF, Sowers JR, Brown RA (1999) Augmentation of the inotropic response to insulin in diabetic rat hearts. Life Sci 65:369–380CrossRefPubMed Ren J, Walsh MF, Sowers JR, Brown RA (1999) Augmentation of the inotropic response to insulin in diabetic rat hearts. Life Sci 65:369–380CrossRefPubMed
23.
go back to reference Morimoto S, Yano Y, Maki K, Sawada K (2006) Renal and vascular protective effects of telmisartan in patients with essential hypertension. Hypertens Res 29:567–572CrossRefPubMed Morimoto S, Yano Y, Maki K, Sawada K (2006) Renal and vascular protective effects of telmisartan in patients with essential hypertension. Hypertens Res 29:567–572CrossRefPubMed
24.
go back to reference Remuzzi A, Remuzzi G (2006) Potential protective effects of telmisartan on renal function deterioration. JRAAS 7:185–191PubMed Remuzzi A, Remuzzi G (2006) Potential protective effects of telmisartan on renal function deterioration. JRAAS 7:185–191PubMed
25.
go back to reference Schafer A, Flierl U, Vogt C, Menninger S, Tas P, Ertl G, Bauersachs J (2007) Telmisartan improves vascular function and reduces platelet activation in rats with streptozotocin-induced diabetes mellitus. Pharmacol Res 56:217–223CrossRefPubMed Schafer A, Flierl U, Vogt C, Menninger S, Tas P, Ertl G, Bauersachs J (2007) Telmisartan improves vascular function and reduces platelet activation in rats with streptozotocin-induced diabetes mellitus. Pharmacol Res 56:217–223CrossRefPubMed
26.
go back to reference Wienen W, Richard S, Champeroux P, Audeval-Gerard C (2001) Comparative antihypertensive and renoprotective effects of telmisartan and lisinopril after long-term treatment in hypertensive diabetic rats. JRAAS 2:31–36PubMed Wienen W, Richard S, Champeroux P, Audeval-Gerard C (2001) Comparative antihypertensive and renoprotective effects of telmisartan and lisinopril after long-term treatment in hypertensive diabetic rats. JRAAS 2:31–36PubMed
27.
go back to reference Cheetham C, O’Driscoll G, Stanton K et al (2001) Losartan, an angiotensin type I receptor antagonist, improves conduit vessel endothelial function in type II diabetes. Clin Sci (Lond) 100:13–17CrossRef Cheetham C, O’Driscoll G, Stanton K et al (2001) Losartan, an angiotensin type I receptor antagonist, improves conduit vessel endothelial function in type II diabetes. Clin Sci (Lond) 100:13–17CrossRef
28.
go back to reference Ohmura T, Tsunenari I, Seidler R, Chachin M, Hayashi T, Konomi A, Matsumaru T, Sumida T, Hayashi N, Horie Y (2007) Renoprotective effects of telmisartan on renal injury in obese Zucker rats. Acta Diabetol. Nov 16 Ohmura T, Tsunenari I, Seidler R, Chachin M, Hayashi T, Konomi A, Matsumaru T, Sumida T, Hayashi N, Horie Y (2007) Renoprotective effects of telmisartan on renal injury in obese Zucker rats. Acta Diabetol. Nov 16
29.
go back to reference Horie Y (2007) Renoprotective effects of telmisartan in the 5/6 nephrectomised rats. J Renin Angiotensin Aldosterone Syst 8(2):93–100CrossRefPubMed Horie Y (2007) Renoprotective effects of telmisartan in the 5/6 nephrectomised rats. J Renin Angiotensin Aldosterone Syst 8(2):93–100CrossRefPubMed
30.
go back to reference Brenner BM, Cooper ME, de Zeeuw D et al (2001) Effects of losartan on renal and cardio-vascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869CrossRefPubMed Brenner BM, Cooper ME, de Zeeuw D et al (2001) Effects of losartan on renal and cardio-vascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869CrossRefPubMed
31.
go back to reference Sechi LA, Griffin CA, Schambelan M (1994) The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes 43:e1180–e1184CrossRef Sechi LA, Griffin CA, Schambelan M (1994) The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes 43:e1180–e1184CrossRef
32.
go back to reference Ren J, Davidoff AJ (1997) Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol Heart Circ Physiol 272:H148–H158 Ren J, Davidoff AJ (1997) Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol Heart Circ Physiol 272:H148–H158
33.
go back to reference Dutta K, Podolin DA, Davidson MB, Davidoff AJ (2001) Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Diabetes 50:1186–1192CrossRefPubMed Dutta K, Podolin DA, Davidson MB, Davidoff AJ (2001) Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Diabetes 50:1186–1192CrossRefPubMed
34.
go back to reference Wold LE, Relling DP, Colligan PB, Scott GI, Hintz KK, Ren BH, Epstein PN, Ren J (2001) Characterization of contractile function in diabetic hypertensive cardiomyopathy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:1719–1726CrossRefPubMed Wold LE, Relling DP, Colligan PB, Scott GI, Hintz KK, Ren BH, Epstein PN, Ren J (2001) Characterization of contractile function in diabetic hypertensive cardiomyopathy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:1719–1726CrossRefPubMed
35.
go back to reference Zolk O, Flesch M, Nickenig G, Schnabel P, Böhm M (1998) Alteration of intracellular Ca2+-handling and receptor regulation in hypertensive cardiac hypertrophy: insights from Ren2-transgenic rats. Cardiovasc Res 39(1):242–256CrossRefPubMed Zolk O, Flesch M, Nickenig G, Schnabel P, Böhm M (1998) Alteration of intracellular Ca2+-handling and receptor regulation in hypertensive cardiac hypertrophy: insights from Ren2-transgenic rats. Cardiovasc Res 39(1):242–256CrossRefPubMed
36.
go back to reference Ozdemir S, Ugur M, Gürdal H, Turan B (2005) Treatment with AT1 receptor blocker restores diabetes-induced alterations in intracellular Ca2+ transients and contractile function of rat myocardium. Arch Biochem Biophys 435:166–174CrossRefPubMed Ozdemir S, Ugur M, Gürdal H, Turan B (2005) Treatment with AT1 receptor blocker restores diabetes-induced alterations in intracellular Ca2+ transients and contractile function of rat myocardium. Arch Biochem Biophys 435:166–174CrossRefPubMed
37.
go back to reference Ishikawa T, Kajiwara H, Kurihara S (1999) Am J Physiol 277: H2185–H2194 Ishikawa T, Kajiwara H, Kurihara S (1999) Am J Physiol 277: H2185–H2194
38.
go back to reference Satoh N, Sato T, Shimada M, Yamada K, Kitada Y (2001) J Pharm Exp Ther 298: 1161–1166 Satoh N, Sato T, Shimada M, Yamada K, Kitada Y (2001) J Pharm Exp Ther 298: 1161–1166
39.
go back to reference Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH (2002) Diabetes 51: 1166–1171 Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH (2002) Diabetes 51: 1166–1171
40.
go back to reference Lagadic-Gossmann D, Buckler KJ, Le Prigent K, Feuvray D (1996) Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol 270:H1529–H1537PubMed Lagadic-Gossmann D, Buckler KJ, Le Prigent K, Feuvray D (1996) Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol 270:H1529–H1537PubMed
41.
go back to reference Makino N, Dhalla KS, Elimban V, Dhalla NS (1987) Sarcolemmal transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 253 (Endocrinol Metab 16): E202–E207 Makino N, Dhalla KS, Elimban V, Dhalla NS (1987) Sarcolemmal transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 253 (Endocrinol Metab 16): E202–E207
42.
go back to reference Penpargkul S, Fein F, Sonnenblick EH, Scheuer J (1981) Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 13:303–309CrossRefPubMed Penpargkul S, Fein F, Sonnenblick EH, Scheuer J (1981) Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 13:303–309CrossRefPubMed
Metadata
Title
The effects of telmisartan on mechanical responses of left ventricular papillary muscle in rats with streptozotocin-induced diabetes mellitus
Authors
Mustafa Emre
Servet Kavak
Hakki Unlugenc
Publication date
01-12-2010
Publisher
Springer Milan
Published in
Acta Diabetologica / Issue Special Issue 1/2010
Print ISSN: 0940-5429
Electronic ISSN: 1432-5233
DOI
https://doi.org/10.1007/s00592-009-0156-x

Other articles of this Special Issue 1/2010

Acta Diabetologica 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.