Skip to main content
Top
Published in: International Urology and Nephrology 2/2019

01-02-2019 | Nephrology - Review

The effect of chronic kidney disease on lipid metabolism

Authors: Neris Dincer, Tuncay Dagel, Baris Afsar, Adrian Covic, Alberto Ortiz, Mehmet Kanbay

Published in: International Urology and Nephrology | Issue 2/2019

Login to get access

Abstract

The major cause of death among chronic kidney disease patients is cardiovascular diseases. Cardiovascular and kidney disease are interrelated and increase the severity of each other. Dyslipidemia is one the major causes of cardiovascular disease among chronic kidney disease patients along with diabetes and hypertension. The relationship between dyslipidemia and chronic kidney disease is reciprocal. Dyslipidemia is known to be a risk factor for chronic kidney disease and chronic kidney disease causes major alterations on lipoprotein profile, defined as the “dyslipidemic profile” of chronic kidney disease patients. Increased triglyceride, very low density lipoprotein and oxidized low density lipoprotein as well as decreased high density lipoprotein and changes in the composition of lipoproteins contribute to the “dyslipidemic profile.” Treatment strategies targeting the “dyslipidemic profile” of chronic kidney disease could contribute to prevent cardiovascular diseases. Current therapy is based on the patient kidney function and consist mainly of statins. This review focuses on the effects of chronic kidney disease on the lipoprotein profile and how this may impact novel therapeutic approaches to cardiovascular risk.
Literature
3.
go back to reference Vanholder R et al (2016) Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diab Endocrinol 4(4):360–373CrossRef Vanholder R et al (2016) Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diab Endocrinol 4(4):360–373CrossRef
4.
go back to reference Ortiz A et al (2014) Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 383(9931):1831–1843CrossRefPubMed Ortiz A et al (2014) Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 383(9931):1831–1843CrossRefPubMed
5.
go back to reference Lamprea-Montealegre JA et al (2018) Coronary heart disease risk associated with the dyslipidaemia of chronic kidney disease. Heart Lamprea-Montealegre JA et al (2018) Coronary heart disease risk associated with the dyslipidaemia of chronic kidney disease. Heart
6.
go back to reference Bulbul MC et al (2018) Disorders of lipid metabolism in chronic kidney disease. Blood Purif 46(2):144–152CrossRefPubMed Bulbul MC et al (2018) Disorders of lipid metabolism in chronic kidney disease. Blood Purif 46(2):144–152CrossRefPubMed
7.
go back to reference Huang LH, Elvington A, Randolph GJ (2015) The role of the lymphatic system in cholesterol transport. Front Pharmacol 6:182PubMedPubMedCentral Huang LH, Elvington A, Randolph GJ (2015) The role of the lymphatic system in cholesterol transport. Front Pharmacol 6:182PubMedPubMedCentral
8.
go back to reference Ossoli A, Pavanello C, Calabresi L (2016) High-density lipoprotein, lecithin: cholesterol acyltransferase, and atherosclerosis. Endocrinol Metab (Seoul) 31(2):223–229CrossRef Ossoli A, Pavanello C, Calabresi L (2016) High-density lipoprotein, lecithin: cholesterol acyltransferase, and atherosclerosis. Endocrinol Metab (Seoul) 31(2):223–229CrossRef
9.
go back to reference Miida T et al (2003) LCAT-dependent conversion of prebeta1-HDL into alpha-migrating HDL is severely delayed in hemodialysis patients. J Am Soc Nephrol 14(3):732–738CrossRefPubMed Miida T et al (2003) LCAT-dependent conversion of prebeta1-HDL into alpha-migrating HDL is severely delayed in hemodialysis patients. J Am Soc Nephrol 14(3):732–738CrossRefPubMed
10.
go back to reference Speer T, Zewinger S, Fliser D (2013) Uraemic dyslipidaemia revisited: role of high-density lipoprotein. Nephrol Dial Transplant 28(10):2456–2463CrossRefPubMed Speer T, Zewinger S, Fliser D (2013) Uraemic dyslipidaemia revisited: role of high-density lipoprotein. Nephrol Dial Transplant 28(10):2456–2463CrossRefPubMed
11.
go back to reference Florvall G, Basu S, Larsson A (2006) Apolipoprotein A1 is a stronger prognostic marker than are HDL and LDL cholesterol for cardiovascular disease and mortality in elderly men. J Gerontol A Biol Sci Med Sci 61(12):1262–1266CrossRefPubMed Florvall G, Basu S, Larsson A (2006) Apolipoprotein A1 is a stronger prognostic marker than are HDL and LDL cholesterol for cardiovascular disease and mortality in elderly men. J Gerontol A Biol Sci Med Sci 61(12):1262–1266CrossRefPubMed
12.
go back to reference Moradi H et al (2009) Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res 153(2):77–85CrossRefPubMed Moradi H et al (2009) Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res 153(2):77–85CrossRefPubMed
13.
go back to reference Moradi H et al (2010) Increased monocyte adhesion-promoting capacity of plasma in end-stage renal disease—response to antioxidant therapy. Clin Nephrol 74(4):273–281CrossRefPubMed Moradi H et al (2010) Increased monocyte adhesion-promoting capacity of plasma in end-stage renal disease—response to antioxidant therapy. Clin Nephrol 74(4):273–281CrossRefPubMed
14.
go back to reference Goek ON et al (2012) Association of apolipoprotein A1 and B with kidney function and chronic kidney disease in two multiethnic population samples. Nephrol Dial Transplant 27(7):2839–2847CrossRefPubMedPubMedCentral Goek ON et al (2012) Association of apolipoprotein A1 and B with kidney function and chronic kidney disease in two multiethnic population samples. Nephrol Dial Transplant 27(7):2839–2847CrossRefPubMedPubMedCentral
15.
16.
go back to reference Lamprea-Montealegre JA et al (2014) Chronic kidney disease, lipids and apolipoproteins, and coronary heart disease: the ARIC study. Atherosclerosis 234(1):42–46CrossRefPubMed Lamprea-Montealegre JA et al (2014) Chronic kidney disease, lipids and apolipoproteins, and coronary heart disease: the ARIC study. Atherosclerosis 234(1):42–46CrossRefPubMed
17.
go back to reference Wolfrum C, Poy MN, Stoffel M (2005) Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat Med 11(4):418–422CrossRefPubMed Wolfrum C, Poy MN, Stoffel M (2005) Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat Med 11(4):418–422CrossRefPubMed
18.
go back to reference Sorensen IM et al (2018) Apolipoprotein M in patients with chronic kidney disease. Atherosclerosis 275:304–311CrossRefPubMed Sorensen IM et al (2018) Apolipoprotein M in patients with chronic kidney disease. Atherosclerosis 275:304–311CrossRefPubMed
19.
go back to reference Gluba-Brzozka A et al (2017) Do HDL and LDL subfractions play a role in atherosclerosis in end-stage renal disease (ESRD) patients? Int Urol Nephrol 49(1):155–164CrossRefPubMed Gluba-Brzozka A et al (2017) Do HDL and LDL subfractions play a role in atherosclerosis in end-stage renal disease (ESRD) patients? Int Urol Nephrol 49(1):155–164CrossRefPubMed
20.
go back to reference Rysz-Gorzynska M, Gluba-Brzozka A, Banach M (2017) High-density lipoprotein and low-density lipoprotein subfractions in patients with chronic kidney disease. Curr Vasc Pharmacol 15(2):144–151CrossRefPubMed Rysz-Gorzynska M, Gluba-Brzozka A, Banach M (2017) High-density lipoprotein and low-density lipoprotein subfractions in patients with chronic kidney disease. Curr Vasc Pharmacol 15(2):144–151CrossRefPubMed
21.
go back to reference Asztalos BF et al (2004) High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 24(11):2181–2187CrossRefPubMed Asztalos BF et al (2004) High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 24(11):2181–2187CrossRefPubMed
22.
go back to reference Kwiterovich PO Jr (2000) The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: a current review. Am J Cardiol 86(12A):5L–10LCrossRefPubMed Kwiterovich PO Jr (2000) The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: a current review. Am J Cardiol 86(12A):5L–10LCrossRefPubMed
23.
24.
25.
go back to reference Riwanto M et al (2013) Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation 127(8):891–904CrossRefPubMed Riwanto M et al (2013) Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation 127(8):891–904CrossRefPubMed
27.
28.
go back to reference Axelsson J et al (2009) Serum retinol-binding protein concentration and its association with components of the uremic metabolic syndrome in nondiabetic patients with chronic kidney disease stage 5. Am J Nephrol 29(5):447–453CrossRefPubMed Axelsson J et al (2009) Serum retinol-binding protein concentration and its association with components of the uremic metabolic syndrome in nondiabetic patients with chronic kidney disease stage 5. Am J Nephrol 29(5):447–453CrossRefPubMed
29.
go back to reference Wang K et al (2018) Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin J Am Soc Nephrol 13(8):1225–1233 Wang K et al (2018) Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin J Am Soc Nephrol 13(8):1225–1233
30.
go back to reference Sutter I et al (2015) Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL. Atherosclerosis 241(2):539–546CrossRefPubMed Sutter I et al (2015) Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL. Atherosclerosis 241(2):539–546CrossRefPubMed
31.
go back to reference Maeba R et al (2018) Association of cholesterol efflux capacity with plasmalogen levels of high-density lipoprotein: a cross-sectional study in chronic kidney disease patients. Atherosclerosis 270:102–109CrossRefPubMed Maeba R et al (2018) Association of cholesterol efflux capacity with plasmalogen levels of high-density lipoprotein: a cross-sectional study in chronic kidney disease patients. Atherosclerosis 270:102–109CrossRefPubMed
34.
go back to reference Prufer N, Kleuser B, van der Giet M (2015) The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality. Biol Chem 396(6–7):573–583PubMed Prufer N, Kleuser B, van der Giet M (2015) The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality. Biol Chem 396(6–7):573–583PubMed
35.
go back to reference Kimura T et al (2006) Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells. J Biol Chem 281(49):37457–37467CrossRefPubMed Kimura T et al (2006) Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells. J Biol Chem 281(49):37457–37467CrossRefPubMed
36.
go back to reference Sattler K, Levkau B (2009) Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res 82(2):201–211CrossRefPubMed Sattler K, Levkau B (2009) Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res 82(2):201–211CrossRefPubMed
37.
go back to reference Brinck JW et al (2018) High-density lipoprotein from end-stage renal disease patients exhibits superior cardioprotection and increase in sphingosine-1-phosphate. Eur J Clin Invest 48(2):e12866CrossRef Brinck JW et al (2018) High-density lipoprotein from end-stage renal disease patients exhibits superior cardioprotection and increase in sphingosine-1-phosphate. Eur J Clin Invest 48(2):e12866CrossRef
38.
go back to reference Vaziri ND, Liang K, Parks JS (2001) Down-regulation of hepatic lecithin: cholesterol acyltransferase gene expression in chronic renal failure. Kidney Int 59(6):2192–2196CrossRefPubMed Vaziri ND, Liang K, Parks JS (2001) Down-regulation of hepatic lecithin: cholesterol acyltransferase gene expression in chronic renal failure. Kidney Int 59(6):2192–2196CrossRefPubMed
39.
go back to reference Calabresi L et al (2015) Acquired lecithin:cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease. J Intern Med 277(5):552–561CrossRefPubMed Calabresi L et al (2015) Acquired lecithin:cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease. J Intern Med 277(5):552–561CrossRefPubMed
40.
go back to reference Miljkovic M et al (2018) Association of dyslipidemia, oxidative stress, and inflammation with redox status in VLDL, LDL, and HDL lipoproteins in patients with renal disease. Angiology 69(10):861–870CrossRefPubMed Miljkovic M et al (2018) Association of dyslipidemia, oxidative stress, and inflammation with redox status in VLDL, LDL, and HDL lipoproteins in patients with renal disease. Angiology 69(10):861–870CrossRefPubMed
42.
go back to reference Chistiakov DA et al (2017) Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie 132:19–27CrossRefPubMed Chistiakov DA et al (2017) Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie 132:19–27CrossRefPubMed
43.
go back to reference Umemoto T et al (2013) Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. Circ Res 112(10):1345–1354CrossRefPubMedPubMedCentral Umemoto T et al (2013) Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. Circ Res 112(10):1345–1354CrossRefPubMedPubMedCentral
44.
go back to reference Vaziri ND et al (2011) Salutary effects of hemodialysis on low-density lipoprotein proinflammatory and high-density lipoprotein anti-inflammatory properties in patient with end-stage renal disease. J Natl Med Assoc 103(6):524–533CrossRefPubMedPubMedCentral Vaziri ND et al (2011) Salutary effects of hemodialysis on low-density lipoprotein proinflammatory and high-density lipoprotein anti-inflammatory properties in patient with end-stage renal disease. J Natl Med Assoc 103(6):524–533CrossRefPubMedPubMedCentral
46.
go back to reference Tolle M et al (2012) High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A. Cardiovasc Res 94(1):154–162CrossRefPubMed Tolle M et al (2012) High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A. Cardiovasc Res 94(1):154–162CrossRefPubMed
47.
go back to reference Mao JY et al (2017) Serum amyloid A enrichment impairs the anti-inflammatory ability of HDL from diabetic nephropathy patients. J Diabetes Complications 31(10):1538–1543CrossRefPubMed Mao JY et al (2017) Serum amyloid A enrichment impairs the anti-inflammatory ability of HDL from diabetic nephropathy patients. J Diabetes Complications 31(10):1538–1543CrossRefPubMed
48.
go back to reference Heine GH et al (2012) Monocyte subpopulations and cardiovascular risk in chronic kidney disease. Nat Rev Nephrol 8(6):362–369CrossRefPubMed Heine GH et al (2012) Monocyte subpopulations and cardiovascular risk in chronic kidney disease. Nat Rev Nephrol 8(6):362–369CrossRefPubMed
49.
go back to reference Ganda A et al (2013) Mild renal dysfunction and metabolites tied to low HDL cholesterol are associated with monocytosis and atherosclerosis. Circulation 127(9):988–996CrossRefPubMedPubMedCentral Ganda A et al (2013) Mild renal dysfunction and metabolites tied to low HDL cholesterol are associated with monocytosis and atherosclerosis. Circulation 127(9):988–996CrossRefPubMedPubMedCentral
50.
go back to reference Rogacev KS et al (2014) Lower Apo A-I and lower HDL-C levels are associated with higher intermediate CD14 + + CD16 + monocyte counts that predict cardiovascular events in chronic kidney disease. Arterioscler Thromb Vasc Biol 34(9):2120–2127CrossRefPubMed Rogacev KS et al (2014) Lower Apo A-I and lower HDL-C levels are associated with higher intermediate CD14 + + CD16 + monocyte counts that predict cardiovascular events in chronic kidney disease. Arterioscler Thromb Vasc Biol 34(9):2120–2127CrossRefPubMed
51.
go back to reference Zhang Y et al (2016) Is monocyte to HDL ratio superior to monocyte count in predicting the cardiovascular outcomes: evidence from a large cohort of Chinese patients undergoing coronary angiography. Ann Med 48(5):305–312CrossRefPubMed Zhang Y et al (2016) Is monocyte to HDL ratio superior to monocyte count in predicting the cardiovascular outcomes: evidence from a large cohort of Chinese patients undergoing coronary angiography. Ann Med 48(5):305–312CrossRefPubMed
52.
go back to reference Cetin MS et al (2016) Monocyte to HDL cholesterol ratio predicts coronary artery disease severity and future major cardiovascular adverse events in acute coronary syndrome. Heart Lung Circ 25(11):1077–1086CrossRefPubMed Cetin MS et al (2016) Monocyte to HDL cholesterol ratio predicts coronary artery disease severity and future major cardiovascular adverse events in acute coronary syndrome. Heart Lung Circ 25(11):1077–1086CrossRefPubMed
53.
go back to reference Kanbay M et al (2014) Monocyte count/HDL cholesterol ratio and cardiovascular events in patients with chronic kidney disease. Int Urol Nephrol 46(8):1619–1625CrossRefPubMed Kanbay M et al (2014) Monocyte count/HDL cholesterol ratio and cardiovascular events in patients with chronic kidney disease. Int Urol Nephrol 46(8):1619–1625CrossRefPubMed
54.
go back to reference Speer T et al (2013) Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 38(4):754–768CrossRefPubMed Speer T et al (2013) Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 38(4):754–768CrossRefPubMed
55.
go back to reference Zewinger S et al (2017) Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur Heart J 38(20):1597–1607CrossRefPubMed Zewinger S et al (2017) Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur Heart J 38(20):1597–1607CrossRefPubMed
56.
go back to reference Shroff R et al (2014) HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol 25(11):2658–2668CrossRefPubMedPubMedCentral Shroff R et al (2014) HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol 25(11):2658–2668CrossRefPubMedPubMedCentral
57.
go back to reference Musliner TA, Michenfelder HJ, Krauss RM (1988) Interactions of high density lipoproteins with very low and low density lipoproteins during lipolysis. J Lipid Res 29(3):349–361PubMed Musliner TA, Michenfelder HJ, Krauss RM (1988) Interactions of high density lipoproteins with very low and low density lipoproteins during lipolysis. J Lipid Res 29(3):349–361PubMed
58.
go back to reference Cwiklinska A et al (2018) Progression of chronic kidney disease affects HDL impact on lipoprotein lipase (LPL)-mediated VLDL lipolysis efficiency. Kidney Blood Press Res 43(3):970–978CrossRefPubMed Cwiklinska A et al (2018) Progression of chronic kidney disease affects HDL impact on lipoprotein lipase (LPL)-mediated VLDL lipolysis efficiency. Kidney Blood Press Res 43(3):970–978CrossRefPubMed
59.
60.
go back to reference Moradi H et al (2014) Elevated high-density lipoprotein cholesterol and cardiovascular mortality in maintenance hemodialysis patients. Nephrol Dial Transplant 29(8):1554–1562CrossRefPubMedPubMedCentral Moradi H et al (2014) Elevated high-density lipoprotein cholesterol and cardiovascular mortality in maintenance hemodialysis patients. Nephrol Dial Transplant 29(8):1554–1562CrossRefPubMedPubMedCentral
61.
go back to reference Bowe B et al (2016) High density lipoprotein cholesterol and the risk of all-cause mortality among U.S. veterans. Clin J Am Soc Nephrol 11(10):1784–1793CrossRefPubMedPubMedCentral Bowe B et al (2016) High density lipoprotein cholesterol and the risk of all-cause mortality among U.S. veterans. Clin J Am Soc Nephrol 11(10):1784–1793CrossRefPubMedPubMedCentral
62.
go back to reference Chang TI et al. (2018) Inverse association between serum non-high-density lipoprotein cholesterol levels and mortality in patients undergoing incident hemodialysis. J Am Heart Assoc 7(12):e009096 Chang TI et al. (2018) Inverse association between serum non-high-density lipoprotein cholesterol levels and mortality in patients undergoing incident hemodialysis. J Am Heart Assoc 7(12):e009096
63.
go back to reference Zewinger S et al (2015) Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk. Eur Heart J 36(43):3007–3016PubMed Zewinger S et al (2015) Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk. Eur Heart J 36(43):3007–3016PubMed
64.
go back to reference Feingold KR, Grunfeld C (2000) Introduction to lipids and lipoproteins. In: De Groot LJ et al (eds) Endotext. MDText.com, Inc., South Dartmouth (MA) Feingold KR, Grunfeld C (2000) Introduction to lipids and lipoproteins. In: De Groot LJ et al (eds) Endotext. MDText.com, Inc., South Dartmouth (MA)
65.
go back to reference Shiffman D et al (2017) LDL subfractions are associated with incident cardiovascular disease in the Malmo Prevention Project Study. Atherosclerosis 263:287–292CrossRefPubMed Shiffman D et al (2017) LDL subfractions are associated with incident cardiovascular disease in the Malmo Prevention Project Study. Atherosclerosis 263:287–292CrossRefPubMed
66.
go back to reference Hager MR, Narla AD, Tannock LR (2017) Dyslipidemia in patients with chronic kidney disease. Rev Endocr Metab Disord 18(1):29–40CrossRef Hager MR, Narla AD, Tannock LR (2017) Dyslipidemia in patients with chronic kidney disease. Rev Endocr Metab Disord 18(1):29–40CrossRef
67.
go back to reference Chang KC et al (2015) Increased LDL electronegativity in chronic kidney disease disrupts calcium homeostasis resulting in cardiac dysfunction. J Mol Cell Cardiol 84:36–44CrossRefPubMed Chang KC et al (2015) Increased LDL electronegativity in chronic kidney disease disrupts calcium homeostasis resulting in cardiac dysfunction. J Mol Cell Cardiol 84:36–44CrossRefPubMed
68.
go back to reference Yang TC, Chang PY, Lu SC (2017) L5-LDL from ST-elevation myocardial infarction patients induces IL-1beta production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Physiol Heart Circ Physiol 312(2):H265–H274CrossRefPubMed Yang TC, Chang PY, Lu SC (2017) L5-LDL from ST-elevation myocardial infarction patients induces IL-1beta production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Physiol Heart Circ Physiol 312(2):H265–H274CrossRefPubMed
69.
go back to reference Li D, Mehta JL (2005) Oxidized LDL, a critical factor in atherogenesis. Cardiovasc Res 68(3):353–354CrossRefPubMed Li D, Mehta JL (2005) Oxidized LDL, a critical factor in atherogenesis. Cardiovasc Res 68(3):353–354CrossRefPubMed
70.
go back to reference Napoli C et al (2000) Mildly oxidized low density lipoprotein activates multiple apoptotic signaling pathways in human coronary cells. FASEB J 14(13):1996–2007CrossRefPubMed Napoli C et al (2000) Mildly oxidized low density lipoprotein activates multiple apoptotic signaling pathways in human coronary cells. FASEB J 14(13):1996–2007CrossRefPubMed
72.
go back to reference Tavridou A et al (2015) Association of plasma adiponectin and oxidized low-density lipoprotein with carotid intima-media thickness in diabetic nephropathy. J Diabetes Res 2015:507265CrossRefPubMedPubMedCentral Tavridou A et al (2015) Association of plasma adiponectin and oxidized low-density lipoprotein with carotid intima-media thickness in diabetic nephropathy. J Diabetes Res 2015:507265CrossRefPubMedPubMedCentral
73.
go back to reference Samouilidou EC et al (2012) Lipid abnormalities and oxidized LDL in chronic kidney disease patients on hemodialysis and peritoneal dialysis. Ren Fail 34(2):160–164CrossRefPubMed Samouilidou EC et al (2012) Lipid abnormalities and oxidized LDL in chronic kidney disease patients on hemodialysis and peritoneal dialysis. Ren Fail 34(2):160–164CrossRefPubMed
74.
go back to reference Ribeiro S et al (2012) Oxidized low-density lipoprotein and lipoprotein(a) levels in chronic kidney disease patients under hemodialysis: influence of adiponectin and of a polymorphism in the apolipoprotein(a) gene. Hemodial Int 16(4):481–490CrossRefPubMed Ribeiro S et al (2012) Oxidized low-density lipoprotein and lipoprotein(a) levels in chronic kidney disease patients under hemodialysis: influence of adiponectin and of a polymorphism in the apolipoprotein(a) gene. Hemodial Int 16(4):481–490CrossRefPubMed
75.
go back to reference Anber V et al (1996) Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis 124(2):261–271CrossRefPubMed Anber V et al (1996) Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis 124(2):261–271CrossRefPubMed
76.
go back to reference Mohty D et al (2008) Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. Arterioscler Thromb Vasc Biol 28(1):187–193CrossRefPubMed Mohty D et al (2008) Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. Arterioscler Thromb Vasc Biol 28(1):187–193CrossRefPubMed
77.
go back to reference Hoogeveen RC et al (2014) Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 34(5):1069–1077CrossRefPubMedPubMedCentral Hoogeveen RC et al (2014) Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 34(5):1069–1077CrossRefPubMedPubMedCentral
79.
go back to reference Shen H et al (2016) Small dense low-density lipoprotein cholesterol was associated with future cardiovascular events in chronic kidney disease patients. BMC Nephrol 17(1):143CrossRefPubMedPubMedCentral Shen H et al (2016) Small dense low-density lipoprotein cholesterol was associated with future cardiovascular events in chronic kidney disease patients. BMC Nephrol 17(1):143CrossRefPubMedPubMedCentral
80.
go back to reference Sonmez D et al (2014) Is there a relationship between small, dense LDL and lipoprotein–associated phospholipase A2 mass in dialysis patients? Clin Lab 60(9):1431–1437PubMed Sonmez D et al (2014) Is there a relationship between small, dense LDL and lipoprotein–associated phospholipase A2 mass in dialysis patients? Clin Lab 60(9):1431–1437PubMed
81.
go back to reference Berneis KK, Krauss RM (2002) Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 43(9):1363–1379CrossRefPubMed Berneis KK, Krauss RM (2002) Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 43(9):1363–1379CrossRefPubMed
82.
go back to reference Sharma GS, Kumar T, Singh LR (2014) N-homocysteinylation induces different structural and functional consequences on acidic and basic proteins. PLoS ONE 9(12):e116386CrossRefPubMedPubMedCentral Sharma GS, Kumar T, Singh LR (2014) N-homocysteinylation induces different structural and functional consequences on acidic and basic proteins. PLoS ONE 9(12):e116386CrossRefPubMedPubMedCentral
83.
go back to reference Ferretti G et al (2004) Effect of homocysteinylation of low density lipoproteins on lipid peroxidation of human endothelial cells. J Cell Biochem 92(2):351–360CrossRefPubMed Ferretti G et al (2004) Effect of homocysteinylation of low density lipoproteins on lipid peroxidation of human endothelial cells. J Cell Biochem 92(2):351–360CrossRefPubMed
84.
go back to reference Ferretti G et al (2006) Homocysteinylation of low-density lipoproteins (LDL) from subjects with Type 1 diabetes: effect on oxidative damage of human endothelial cells. Diabet Med 23(7):808–813CrossRefPubMed Ferretti G et al (2006) Homocysteinylation of low-density lipoproteins (LDL) from subjects with Type 1 diabetes: effect on oxidative damage of human endothelial cells. Diabet Med 23(7):808–813CrossRefPubMed
85.
go back to reference Zinellu A et al (2010) Increased low-density lipoprotein S-homocysteinylation in chronic kidney disease. Am J Nephrol 32(3):242–248CrossRefPubMed Zinellu A et al (2010) Increased low-density lipoprotein S-homocysteinylation in chronic kidney disease. Am J Nephrol 32(3):242–248CrossRefPubMed
86.
go back to reference Zinellu A et al (2012) LDL S-homocysteinylation decrease in chronic kidney disease patients undergone lipid lowering therapy. Eur J Pharm Sci 47(1):117–123CrossRefPubMed Zinellu A et al (2012) LDL S-homocysteinylation decrease in chronic kidney disease patients undergone lipid lowering therapy. Eur J Pharm Sci 47(1):117–123CrossRefPubMed
87.
go back to reference De Nicola L et al (2015) Prognostic role of LDL cholesterol in non-dialysis chronic kidney disease: multicenter prospective study in Italy. Nutr Metab Cardiovasc Dis 25(8):756–762CrossRefPubMed De Nicola L et al (2015) Prognostic role of LDL cholesterol in non-dialysis chronic kidney disease: multicenter prospective study in Italy. Nutr Metab Cardiovasc Dis 25(8):756–762CrossRefPubMed
88.
go back to reference Visconti L et al (2016) Lipid disorders in patients with renal failure: role in cardiovascular events and progression of chronic kidney disease. J Clin Transl Endocrinol 6:8–14PubMedPubMedCentral Visconti L et al (2016) Lipid disorders in patients with renal failure: role in cardiovascular events and progression of chronic kidney disease. J Clin Transl Endocrinol 6:8–14PubMedPubMedCentral
89.
go back to reference Bowden RG et al (2011) Reverse epidemiology of lipid-death associations in a cohort of end-stage renal disease patients. Nephron Clin Pract 119(3):c214–9CrossRefPubMed Bowden RG et al (2011) Reverse epidemiology of lipid-death associations in a cohort of end-stage renal disease patients. Nephron Clin Pract 119(3):c214–9CrossRefPubMed
90.
go back to reference Wanner C, Tonelli M, Improving global outcomes lipid guideline Development Work Group (2014) KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int 85(6):1303–1309CrossRefPubMed Wanner C, Tonelli M, Improving global outcomes lipid guideline Development Work Group (2014) KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int 85(6):1303–1309CrossRefPubMed
91.
go back to reference Phukan RR, Goswami RK (2017) Unusual dyslipidemia in patients with chronic kidney diseases. J Clin Diagn Res 11(1):BC01–BC04PubMedPubMedCentral Phukan RR, Goswami RK (2017) Unusual dyslipidemia in patients with chronic kidney diseases. J Clin Diagn Res 11(1):BC01–BC04PubMedPubMedCentral
92.
go back to reference Shoji T et al (2001) Atherogenic lipoproteins in end-stage renal disease. Am J Kidney Dis 38(4 Suppl 1):S30–S33CrossRefPubMed Shoji T et al (2001) Atherogenic lipoproteins in end-stage renal disease. Am J Kidney Dis 38(4 Suppl 1):S30–S33CrossRefPubMed
93.
go back to reference Vaziri ND et al (2012) Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression. Clin Exp Nephrol 16(2):238–243CrossRefPubMed Vaziri ND et al (2012) Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression. Clin Exp Nephrol 16(2):238–243CrossRefPubMed
95.
96.
go back to reference Xie X et al (2017) Association of very low-density lipoprotein cholesterol with all-cause and cardiovascular mortality in peritoneal dialysis. Kidney Blood Press Res 42(1):52–61CrossRefPubMed Xie X et al (2017) Association of very low-density lipoprotein cholesterol with all-cause and cardiovascular mortality in peritoneal dialysis. Kidney Blood Press Res 42(1):52–61CrossRefPubMed
98.
go back to reference Kohan AB (2015) Apolipoprotein C-III: a potent modulator of hypertriglyceridemia and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes 22(2):119–125CrossRefPubMedPubMedCentral Kohan AB (2015) Apolipoprotein C-III: a potent modulator of hypertriglyceridemia and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes 22(2):119–125CrossRefPubMedPubMedCentral
99.
go back to reference Rocha NA et al (2017) ApoCIII as a cardiovascular risk factor and modulation by the novel lipid-lowering agent volanesorsen. Curr Atheroscler Rep 19(12):62CrossRefPubMed Rocha NA et al (2017) ApoCIII as a cardiovascular risk factor and modulation by the novel lipid-lowering agent volanesorsen. Curr Atheroscler Rep 19(12):62CrossRefPubMed
100.
go back to reference GA K (2006) Dyslipidemia in chronic kidney disease: causes and consequences. Kidney Int 70:S55–S58 GA K (2006) Dyslipidemia in chronic kidney disease: causes and consequences. Kidney Int 70:S55–S58
101.
go back to reference Selmeci L et al (2005) Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique. Clin Chem Lab Med 43(3):294–297CrossRefPubMed Selmeci L et al (2005) Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique. Clin Chem Lab Med 43(3):294–297CrossRefPubMed
102.
go back to reference Skvarilova M et al (2005) Increased level of advanced oxidation products (AOPP) as a marker of oxidative stress in patients with acute coronary syndrome. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149(1):83–87CrossRefPubMed Skvarilova M et al (2005) Increased level of advanced oxidation products (AOPP) as a marker of oxidative stress in patients with acute coronary syndrome. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149(1):83–87CrossRefPubMed
103.
go back to reference Vaziri ND (2006) Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol 290(2):F262–F272CrossRefPubMed Vaziri ND (2006) Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol 290(2):F262–F272CrossRefPubMed
104.
105.
go back to reference Hirano T et al (2003) Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: comparison with apoprotein CIII. Kidney Int 63(6):2171–2177CrossRefPubMed Hirano T et al (2003) Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: comparison with apoprotein CIII. Kidney Int 63(6):2171–2177CrossRefPubMed
106.
go back to reference Turak O et al (2016) The Role of plasma triglyceride/high-density lipoprotein cholesterol ratio to predict new cardiovascular events in essential hypertensive patients. J Clin Hypertens (Greenwich) 18(8):772–777CrossRef Turak O et al (2016) The Role of plasma triglyceride/high-density lipoprotein cholesterol ratio to predict new cardiovascular events in essential hypertensive patients. J Clin Hypertens (Greenwich) 18(8):772–777CrossRef
107.
go back to reference Benjannet S et al (2004) NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 279(47):48865–48875CrossRefPubMed Benjannet S et al (2004) NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 279(47):48865–48875CrossRefPubMed
108.
go back to reference Abifadel M et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156CrossRefPubMed Abifadel M et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156CrossRefPubMed
109.
go back to reference Morena M et al (2017) Plasma PCSK9 concentrations during the course of nondiabetic chronic kidney disease: relationship with glomerular filtration rate and lipid metabolism. J Clin Lipidol 11(1):87–93CrossRefPubMed Morena M et al (2017) Plasma PCSK9 concentrations during the course of nondiabetic chronic kidney disease: relationship with glomerular filtration rate and lipid metabolism. J Clin Lipidol 11(1):87–93CrossRefPubMed
112.
113.
go back to reference Lin J et al (2014) Plasma lipoprotein(a) levels are associated with mild renal impairment in type 2 diabetics independent of albuminuria. PLoS ONE 9(12):e114397CrossRefPubMedPubMedCentral Lin J et al (2014) Plasma lipoprotein(a) levels are associated with mild renal impairment in type 2 diabetics independent of albuminuria. PLoS ONE 9(12):e114397CrossRefPubMedPubMedCentral
114.
go back to reference Konishi H et al (2016) Plasma lipoprotein(a) predicts major cardiovascular events in patients with chronic kidney disease who undergo percutaneous coronary intervention. Int J Cardiol 205:50–53CrossRefPubMed Konishi H et al (2016) Plasma lipoprotein(a) predicts major cardiovascular events in patients with chronic kidney disease who undergo percutaneous coronary intervention. Int J Cardiol 205:50–53CrossRefPubMed
115.
go back to reference Guerraty MA et al (2015) Relation of aortic valve calcium to chronic kidney disease (from the Chronic Renal Insufficiency Cohort Study). Am J Cardiol 115(9):1281–1286CrossRefPubMedPubMedCentral Guerraty MA et al (2015) Relation of aortic valve calcium to chronic kidney disease (from the Chronic Renal Insufficiency Cohort Study). Am J Cardiol 115(9):1281–1286CrossRefPubMedPubMedCentral
116.
go back to reference Toth PP et al (2018) Efficacy and safety of lipid lowering by alirocumab in chronic kidney disease. Kidney Int 93(6):1397–1408CrossRefPubMed Toth PP et al (2018) Efficacy and safety of lipid lowering by alirocumab in chronic kidney disease. Kidney Int 93(6):1397–1408CrossRefPubMed
117.
go back to reference Kanbay M et al (2009) Statin treatment for dyslipidemia in chronic kidney disease and renal transplantation: a review of the evidence. J Nephrol 22(5):598–609PubMed Kanbay M et al (2009) Statin treatment for dyslipidemia in chronic kidney disease and renal transplantation: a review of the evidence. J Nephrol 22(5):598–609PubMed
118.
go back to reference Trialists CT (2016) C., et al., Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol 4(10):829–839CrossRef Trialists CT (2016) C., et al., Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol 4(10):829–839CrossRef
119.
go back to reference Ferro CJ et al. (2018) Lipid management in patients with chronic kidney disease. Nat Rev Nephrol Ferro CJ et al. (2018) Lipid management in patients with chronic kidney disease. Nat Rev Nephrol
120.
go back to reference Baigent C et al (2011) The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377(9784):2181–2192CrossRefPubMedPubMedCentral Baigent C et al (2011) The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377(9784):2181–2192CrossRefPubMedPubMedCentral
121.
go back to reference Fukumoto Y (2018) Impact of statin-ezetimibe combination in chronic kidney disease. Int J Cardiol 268:36–37CrossRefPubMed Fukumoto Y (2018) Impact of statin-ezetimibe combination in chronic kidney disease. Int J Cardiol 268:36–37CrossRefPubMed
122.
go back to reference Yan YL et al (2015) High-intensity statin therapy in patients with chronic kidney disease: a systematic review and meta-analysis. BMJ Open 5(5):e006886CrossRefPubMedPubMedCentral Yan YL et al (2015) High-intensity statin therapy in patients with chronic kidney disease: a systematic review and meta-analysis. BMJ Open 5(5):e006886CrossRefPubMedPubMedCentral
123.
go back to reference Chung CM et al (2017) Effects of statin therapy on cerebrovascular and renal outcomes in patients with predialysis advanced chronic kidney disease and dyslipidemia. J Clin Lipidol 11(2):422–431 e2CrossRefPubMed Chung CM et al (2017) Effects of statin therapy on cerebrovascular and renal outcomes in patients with predialysis advanced chronic kidney disease and dyslipidemia. J Clin Lipidol 11(2):422–431 e2CrossRefPubMed
125.
go back to reference Wanner C et al (2005) Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353(3):238–248CrossRefPubMed Wanner C et al (2005) Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353(3):238–248CrossRefPubMed
126.
go back to reference Chan KE et al (2010) Modeling the 4D Study: statins and cardiovascular outcomes in long-term hemodialysis patients with diabetes. Clin J Am Soc Nephrol 5(5):856–866CrossRefPubMedPubMedCentral Chan KE et al (2010) Modeling the 4D Study: statins and cardiovascular outcomes in long-term hemodialysis patients with diabetes. Clin J Am Soc Nephrol 5(5):856–866CrossRefPubMedPubMedCentral
127.
go back to reference Fellstrom B et al (2005) Effect of rosuvastatin on outcomes in chronic haemodialysis patients—design and rationale of the AURORA study. Curr Control Trials Cardiovasc Med 6(1):9CrossRefPubMedPubMedCentral Fellstrom B et al (2005) Effect of rosuvastatin on outcomes in chronic haemodialysis patients—design and rationale of the AURORA study. Curr Control Trials Cardiovasc Med 6(1):9CrossRefPubMedPubMedCentral
128.
go back to reference Athyros VG et al (2009) Statins and cardiovascular events in patients with end-stage renal disease on hemodialysis. The AURORA results suggest the need for earlier intervention. Curr Vasc Pharmacol 7(3):264–266CrossRefPubMed Athyros VG et al (2009) Statins and cardiovascular events in patients with end-stage renal disease on hemodialysis. The AURORA results suggest the need for earlier intervention. Curr Vasc Pharmacol 7(3):264–266CrossRefPubMed
130.
131.
go back to reference Balk EM et al (2003) Effects of statins on nonlipid serum markers associated with cardiovascular disease: a systematic review. Ann Intern Med 139(8):670–682CrossRefPubMed Balk EM et al (2003) Effects of statins on nonlipid serum markers associated with cardiovascular disease: a systematic review. Ann Intern Med 139(8):670–682CrossRefPubMed
132.
go back to reference Hottelart C et al (2002) Fenofibrate increases creatininemia by increasing metabolic production of creatinine. Nephron 92(3):536–541CrossRefPubMed Hottelart C et al (2002) Fenofibrate increases creatininemia by increasing metabolic production of creatinine. Nephron 92(3):536–541CrossRefPubMed
133.
go back to reference McPherson R et al (2006) Canadian Cardiovascular Society position statement–recommendations for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease. Can J Cardiol 22(11):913–927CrossRefPubMedPubMedCentral McPherson R et al (2006) Canadian Cardiovascular Society position statement–recommendations for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease. Can J Cardiol 22(11):913–927CrossRefPubMedPubMedCentral
134.
go back to reference Jun M et al (2012) Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol 60(20):2061–2071CrossRefPubMed Jun M et al (2012) Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol 60(20):2061–2071CrossRefPubMed
135.
go back to reference Weinstein DL et al (2013) A randomized, double-blind study of fenofibric acid plus rosuvastatin compared with rosuvastatin alone in stage 3 chronic kidney disease. Clin Ther 35(8):1186–1198CrossRefPubMed Weinstein DL et al (2013) A randomized, double-blind study of fenofibric acid plus rosuvastatin compared with rosuvastatin alone in stage 3 chronic kidney disease. Clin Ther 35(8):1186–1198CrossRefPubMed
136.
go back to reference Kasiske B et al (2004) Clinical practice guidelines for managing dyslipidemias in kidney transplant patients: a report from the Managing Dyslipidemias in Chronic Kidney Disease Work Group of the National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Am J Transplant 4(Suppl 7):13–53CrossRefPubMed Kasiske B et al (2004) Clinical practice guidelines for managing dyslipidemias in kidney transplant patients: a report from the Managing Dyslipidemias in Chronic Kidney Disease Work Group of the National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Am J Transplant 4(Suppl 7):13–53CrossRefPubMed
137.
go back to reference Vanholder R et al. (2018) Deleting death and dialysis: conservative care of cardio-vascular risk and kidney function loss in chronic kidney disease (CKD). Toxins (Basel). 10(6):237CrossRef Vanholder R et al. (2018) Deleting death and dialysis: conservative care of cardio-vascular risk and kidney function loss in chronic kidney disease (CKD). Toxins (Basel). 10(6):237CrossRef
138.
go back to reference Hassan KS et al (2010) Effects of omega-3 on lipid profile and inflammation markers in peritoneal dialysis patients. Ren Fail 32(9):1031–1035CrossRefPubMed Hassan KS et al (2010) Effects of omega-3 on lipid profile and inflammation markers in peritoneal dialysis patients. Ren Fail 32(9):1031–1035CrossRefPubMed
139.
go back to reference Tannock L (2000) Dyslipidemia in chronic kidney disease. In: De Groot LJ et al (eds) Endotext. MDText.com, Inc., South Dartmouth (MA) Tannock L (2000) Dyslipidemia in chronic kidney disease. In: De Groot LJ et al (eds) Endotext. MDText.com, Inc., South Dartmouth (MA)
140.
go back to reference Jin Kang H et al (2013) Effects of low-dose niacin on dyslipidemia and serum phosphorus in patients with chronic kidney disease. Kidney Res Clin Pract 32(1):21–26CrossRefPubMed Jin Kang H et al (2013) Effects of low-dose niacin on dyslipidemia and serum phosphorus in patients with chronic kidney disease. Kidney Res Clin Pract 32(1):21–26CrossRefPubMed
141.
go back to reference Ix JH et al (2011) Sustained hypophosphatemic effect of once-daily niacin/laropiprant in dyslipidemic CKD stage 3 patients. Am J Kidney Dis 57(6):963–965PubMed Ix JH et al (2011) Sustained hypophosphatemic effect of once-daily niacin/laropiprant in dyslipidemic CKD stage 3 patients. Am J Kidney Dis 57(6):963–965PubMed
142.
go back to reference Malhotra R et al (2018) The effect of extended release niacin on markers of mineral metabolism in CKD. Clin J Am Soc Nephrol 13(1):36–44CrossRefPubMed Malhotra R et al (2018) The effect of extended release niacin on markers of mineral metabolism in CKD. Clin J Am Soc Nephrol 13(1):36–44CrossRefPubMed
143.
go back to reference Harper CR, Jacobson TA (2008) Managing dyslipidemia in chronic kidney disease. J Am Coll Cardiol 51(25):2375–2384CrossRefPubMed Harper CR, Jacobson TA (2008) Managing dyslipidemia in chronic kidney disease. J Am Coll Cardiol 51(25):2375–2384CrossRefPubMed
144.
go back to reference Kalil RS et al (2015) Effect of extended-release niacin on cardiovascular events and kidney function in chronic kidney disease: a post hoc analysis of the AIM-HIGH trial. Kidney Int 87(6):1250–1257CrossRefPubMedPubMedCentral Kalil RS et al (2015) Effect of extended-release niacin on cardiovascular events and kidney function in chronic kidney disease: a post hoc analysis of the AIM-HIGH trial. Kidney Int 87(6):1250–1257CrossRefPubMedPubMedCentral
146.
go back to reference Zheng-Lin B, Ortiz A (2018) Lipid management in Chronic Kidney Disease: systematic review of PCSK9 targeting. Drugs 78(2):215–229CrossRefPubMed Zheng-Lin B, Ortiz A (2018) Lipid management in Chronic Kidney Disease: systematic review of PCSK9 targeting. Drugs 78(2):215–229CrossRefPubMed
147.
go back to reference Toth PP et al (2016) Effect of alirocumab on specific lipoprotein non-high-density lipoprotein cholesterol and subfractions as measured by the vertical auto profile method: analysis of 3 randomized trials versus placebo. Lipids Health Dis 15:28CrossRefPubMedPubMedCentral Toth PP et al (2016) Effect of alirocumab on specific lipoprotein non-high-density lipoprotein cholesterol and subfractions as measured by the vertical auto profile method: analysis of 3 randomized trials versus placebo. Lipids Health Dis 15:28CrossRefPubMedPubMedCentral
148.
go back to reference Mafham M, Haynes R (2018) PCSK9 inhibition: ready for prime time in CKD? Kidney Int 93(6):1267–1269CrossRefPubMed Mafham M, Haynes R (2018) PCSK9 inhibition: ready for prime time in CKD? Kidney Int 93(6):1267–1269CrossRefPubMed
149.
150.
151.
go back to reference Miele EM et al (2017) High-density lipoprotein particle pattern and overall lipid responses to a short-term moderate-intensity aerobic exercise training intervention in patients with chronic kidney disease. Clin Kidney J 10(4):524–531CrossRefPubMedPubMedCentral Miele EM et al (2017) High-density lipoprotein particle pattern and overall lipid responses to a short-term moderate-intensity aerobic exercise training intervention in patients with chronic kidney disease. Clin Kidney J 10(4):524–531CrossRefPubMedPubMedCentral
153.
Metadata
Title
The effect of chronic kidney disease on lipid metabolism
Authors
Neris Dincer
Tuncay Dagel
Baris Afsar
Adrian Covic
Alberto Ortiz
Mehmet Kanbay
Publication date
01-02-2019
Publisher
Springer Netherlands
Published in
International Urology and Nephrology / Issue 2/2019
Print ISSN: 0301-1623
Electronic ISSN: 1573-2584
DOI
https://doi.org/10.1007/s11255-018-2047-y

Other articles of this Issue 2/2019

International Urology and Nephrology 2/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.