Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 5/2021

01-09-2021 | Original Article

The effect of aging on the nanostructure of murine alveolar bone and dentin

Authors: Chika Akabane, Silvia Pabisch, Wolfgang Wagermaier, Andreas Roschger, Norio Tobori, Tomomichi Okano, Shinya Murakami, Peter Fratzl, Richard Weinkamer

Published in: Journal of Bone and Mineral Metabolism | Issue 5/2021

Login to get access

Abstract

Introduction

Alveolar bone, dentin, and cementum provide a striking example of structurally different collagen-based mineralized tissues separated only by periodontal ligament. While alveolar bone is strongly remodeled, this does not hold for dentin and cementum. However, additional dentin can be deposited on the inner surface of the pulp chamber also in older age. By investigating alveolar bone and molar of mice, the aim of our study is to detect changes in the mineral nanostructure with aging.

Materials and methods

Buccal-lingual sections of the mandible and first molar from C57BL/6 mice of three different age groups (young 5 weeks, adult 22 weeks and old 23 months) were characterized using synchrotron small and wide-angle X-ray scattering. Local average thickness and length of the apatite particles were mapped with several line scans covering the alveolar bone and the tooth.

Results

In alveolar bone, a spatial gradient was seen to develop with age with the thickest and longest particles in the distal part of the bone. The mineral particles in dentin were found to be become thicker, but then decrease of average length from adult to old animals. The mineral particle characteristics of dentin close to the pulp chamber were not only different to the rest of the tooth, but also when comparing the different age groups and even between individual animals in the same age group.

Conclusions

These results indicated that mineral particle characteristics were found to evolve differently between molar and alveolar bone as a function of age.
Appendix
Available only for authorised users
Literature
1.
go back to reference Naveh GRS, Chattah NLT, Zaslansky P, Shahar R, Weiner S (2012) Tooth-PDL-bone complex: response to compressive loads encountered during mastication—a review. Arch Oral Biol 57:1575–1584PubMedCrossRef Naveh GRS, Chattah NLT, Zaslansky P, Shahar R, Weiner S (2012) Tooth-PDL-bone complex: response to compressive loads encountered during mastication—a review. Arch Oral Biol 57:1575–1584PubMedCrossRef
2.
go back to reference Dunlop JW, Weinkamer R, Fratzl P (2011) Artful interfaces within biological materials. Mater Today 14:70–78CrossRef Dunlop JW, Weinkamer R, Fratzl P (2011) Artful interfaces within biological materials. Mater Today 14:70–78CrossRef
3.
go back to reference Ho SP, Marshall SJ, Ryder MI, Marshall GW (2007) The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. Biomaterials 28:5238–5245PubMedPubMedCentralCrossRef Ho SP, Marshall SJ, Ryder MI, Marshall GW (2007) The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. Biomaterials 28:5238–5245PubMedPubMedCentralCrossRef
4.
go back to reference Ho SP, Kurylo MP, Fong TK, Lee SS, Wagner HD, Ryder MI, Marshall GW (2010) The biomechanical characteristics of the bone-periodontal ligament–cementum complex. Biomaterials 31:6635–6646PubMedPubMedCentralCrossRef Ho SP, Kurylo MP, Fong TK, Lee SS, Wagner HD, Ryder MI, Marshall GW (2010) The biomechanical characteristics of the bone-periodontal ligament–cementum complex. Biomaterials 31:6635–6646PubMedPubMedCentralCrossRef
5.
go back to reference Naveh GR, Foster JE, Santisteban TMS, Yang X, Olsen BR (2018) Nonuniformity in ligaments is a structural strategy for optimizing functionality. Proc Natl Acad Sci 115:9008–9013PubMedPubMedCentralCrossRef Naveh GR, Foster JE, Santisteban TMS, Yang X, Olsen BR (2018) Nonuniformity in ligaments is a structural strategy for optimizing functionality. Proc Natl Acad Sci 115:9008–9013PubMedPubMedCentralCrossRef
6.
go back to reference Nikolaus A, Currey JD, Lindtner T, Fleck C, Zaslansky P (2017) Importance of the variable periodontal ligament geometry for whole tooth mechanical function: a validated numerical study. J Mech Behav Biomed 67:61–73CrossRef Nikolaus A, Currey JD, Lindtner T, Fleck C, Zaslansky P (2017) Importance of the variable periodontal ligament geometry for whole tooth mechanical function: a validated numerical study. J Mech Behav Biomed 67:61–73CrossRef
7.
go back to reference Ho SP, Kurylo MP, Grandfield K, Hurng J, Herber R-P, Ryder MI, Altoe V, Aloni S, Feng JQ, Webb S (2013) The plastic nature of the human bone–periodontal ligament–tooth fibrous joint. Bone 57:455–467PubMedPubMedCentralCrossRef Ho SP, Kurylo MP, Grandfield K, Hurng J, Herber R-P, Ryder MI, Altoe V, Aloni S, Feng JQ, Webb S (2013) The plastic nature of the human bone–periodontal ligament–tooth fibrous joint. Bone 57:455–467PubMedPubMedCentralCrossRef
8.
go back to reference Weinkamer R, Fratzl P (2011) Mechanical adaptation of biological materials—the examples of bone and wood. Mater Sci Eng C 31:1164–1173CrossRef Weinkamer R, Fratzl P (2011) Mechanical adaptation of biological materials—the examples of bone and wood. Mater Sci Eng C 31:1164–1173CrossRef
9.
go back to reference Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240PubMedCrossRef Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240PubMedCrossRef
10.
go back to reference Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed) 3:711CrossRef Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed) 3:711CrossRef
11.
go back to reference Tjäderhane L, Carrilho MR, Breschi L, Tay FR, Pashley DH (2009) Dentin basic structure and composition—an overview. Endod Top 20:3–29CrossRef Tjäderhane L, Carrilho MR, Breschi L, Tay FR, Pashley DH (2009) Dentin basic structure and composition—an overview. Endod Top 20:3–29CrossRef
12.
go back to reference Tjäderhane L, Haapasalo M (2012) The dentin–pulp border: a dynamic interface between hard and soft tissues. Endod Top 20:52–84CrossRef Tjäderhane L, Haapasalo M (2012) The dentin–pulp border: a dynamic interface between hard and soft tissues. Endod Top 20:52–84CrossRef
13.
go back to reference Tziafas D (2007) Dentinogenic potential of the dental pulp: facts and hypotheses. Endod Top 17:42–64CrossRef Tziafas D (2007) Dentinogenic potential of the dental pulp: facts and hypotheses. Endod Top 17:42–64CrossRef
14.
go back to reference Montoya C, Arango-Santander S, Peláez-Vargas A, Arola D, Ossa E (2015) Effect of aging on the microstructure, hardness and chemical composition of dentin. Arch Oral Biol 60:1811–1820PubMedCrossRef Montoya C, Arango-Santander S, Peláez-Vargas A, Arola D, Ossa E (2015) Effect of aging on the microstructure, hardness and chemical composition of dentin. Arch Oral Biol 60:1811–1820PubMedCrossRef
15.
go back to reference Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2004) Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone 35:1240–1246PubMedCrossRef Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2004) Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone 35:1240–1246PubMedCrossRef
17.
go back to reference Zioupos P, Currey J (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22:57–66PubMedCrossRef Zioupos P, Currey J (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22:57–66PubMedCrossRef
18.
go back to reference Ager JW III, Nalla RK, Balooch G, Kim G, Pugach M, Habelitz S, Marshall GW, Kinney JH, Ritchie RO (2006) On the increasing fragility of human teeth with age: a deep-UV resonance Raman study. J Bone Miner Res 21:1879–1887PubMedCrossRef Ager JW III, Nalla RK, Balooch G, Kim G, Pugach M, Habelitz S, Marshall GW, Kinney JH, Ritchie RO (2006) On the increasing fragility of human teeth with age: a deep-UV resonance Raman study. J Bone Miner Res 21:1879–1887PubMedCrossRef
19.
go back to reference Nazari A, Bajaj D, Zhang D, Romberg E, Arola D (2009) Aging and the reduction in fracture toughness of human dentin. J Mech Behav Biomed 2:550–559CrossRef Nazari A, Bajaj D, Zhang D, Romberg E, Arola D (2009) Aging and the reduction in fracture toughness of human dentin. J Mech Behav Biomed 2:550–559CrossRef
20.
go back to reference Montoya C, Arola D, Ossa EA (2018) Deformation behaviour of aged coronal dentin. Gerodontology 35:95–100PubMedCrossRef Montoya C, Arola D, Ossa EA (2018) Deformation behaviour of aged coronal dentin. Gerodontology 35:95–100PubMedCrossRef
21.
go back to reference Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporosis Int 21:195–214CrossRef Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporosis Int 21:195–214CrossRef
22.
go back to reference Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453PubMedCrossRef Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453PubMedCrossRef
23.
24.
go back to reference Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol 141:208–217PubMedCrossRef Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol 141:208–217PubMedCrossRef
25.
go back to reference Tang T, Wagermaier W, Schuetz R, Wang Q, Eltit F, Fratzl P, Wang R (2019) Hypermineralization in the femoral neck of the elderly. Acta Biomater 89:330–342PubMedCrossRef Tang T, Wagermaier W, Schuetz R, Wang Q, Eltit F, Fratzl P, Wang R (2019) Hypermineralization in the femoral neck of the elderly. Acta Biomater 89:330–342PubMedCrossRef
26.
go back to reference Chatterji S, Wall JC, Jeffery JW (1981) Age-related changes in the orientation and particle size of the mineral phase in human femoral cortical bone. Calcif Tissue Int 33:567–574PubMedCrossRef Chatterji S, Wall JC, Jeffery JW (1981) Age-related changes in the orientation and particle size of the mineral phase in human femoral cortical bone. Calcif Tissue Int 33:567–574PubMedCrossRef
27.
go back to reference Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123CrossRef Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123CrossRef
28.
go back to reference Razi H, Birkhold AI, Weinkamer R, Duda GN, Willie BM, Checa S (2015) Aging leads to a dysregulation in mechanically driven bone formation and resorption. J Bone Miner Res 30:1864–1873PubMedCrossRef Razi H, Birkhold AI, Weinkamer R, Duda GN, Willie BM, Checa S (2015) Aging leads to a dysregulation in mechanically driven bone formation and resorption. J Bone Miner Res 30:1864–1873PubMedCrossRef
29.
go back to reference Pabisch S, Wagermaier W, Zander T, Li CH, Fratzl P (2013) Imaging the nanostructure of bone and dentin through small- and wide-angle X-ray scattering. Method Enzymol 532:391–413CrossRef Pabisch S, Wagermaier W, Zander T, Li CH, Fratzl P (2013) Imaging the nanostructure of bone and dentin through small- and wide-angle X-ray scattering. Method Enzymol 532:391–413CrossRef
30.
go back to reference Pabisch S, Akabane C, Wagermaier W, Roschger A, Ogura T, Hyodo R, Kataoka S, Tobori N, Okano T, Murakami S, Fratzl P, Weinkamer R (2016) The nanostructure of murine alveolar bone and its changes due to type 2 diabetes. J Struct Biol 196:223–231PubMedCrossRef Pabisch S, Akabane C, Wagermaier W, Roschger A, Ogura T, Hyodo R, Kataoka S, Tobori N, Okano T, Murakami S, Fratzl P, Weinkamer R (2016) The nanostructure of murine alveolar bone and its changes due to type 2 diabetes. J Struct Biol 196:223–231PubMedCrossRef
31.
go back to reference Märten A, Fratzl P, Paris O, Zaslansky P (2010) On the mineral in collagen of human crown dentine. Biomaterials 31:5479–5490PubMedCrossRef Märten A, Fratzl P, Paris O, Zaslansky P (2010) On the mineral in collagen of human crown dentine. Biomaterials 31:5479–5490PubMedCrossRef
32.
go back to reference Sui T, Sandholzer MA, Le Bourhis E, Baimpas N, Landini G, Korsunsky AM (2014) Structure-mechanical function relations at nano-scale in heat-affected human dental tissue. J Mech Behav Biomed Mater 32:113–124PubMedCrossRef Sui T, Sandholzer MA, Le Bourhis E, Baimpas N, Landini G, Korsunsky AM (2014) Structure-mechanical function relations at nano-scale in heat-affected human dental tissue. J Mech Behav Biomed Mater 32:113–124PubMedCrossRef
33.
go back to reference Tesch W, Eidelman N, Roschger P, Goldenberg F, Klaushofer K, Fratzl P (2001) Graded microstructure and mechanical properties of human crown dentin. Calcified Tissue Int 69:147–157CrossRef Tesch W, Eidelman N, Roschger P, Goldenberg F, Klaushofer K, Fratzl P (2001) Graded microstructure and mechanical properties of human crown dentin. Calcified Tissue Int 69:147–157CrossRef
34.
go back to reference Sandholzer MA, Sui T, Korsunsky AM, Walmsley AD, Lumley PJ, Landini G (2014) X-ray scattering evaluation of ultrastructural changes in human dental tissues with thermal treatment. J Forensic Sci 59:769–774PubMedCrossRef Sandholzer MA, Sui T, Korsunsky AM, Walmsley AD, Lumley PJ, Landini G (2014) X-ray scattering evaluation of ultrastructural changes in human dental tissues with thermal treatment. J Forensic Sci 59:769–774PubMedCrossRef
35.
go back to reference Kinney JH, Nalla RK, Pople JA, Breunig TM, Ritchie RO (2005) Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials 26:3363–3376PubMedCrossRef Kinney JH, Nalla RK, Pople JA, Breunig TM, Ritchie RO (2005) Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials 26:3363–3376PubMedCrossRef
36.
go back to reference Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326PubMedCrossRef Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326PubMedCrossRef
37.
go back to reference Bloebaum RD, Skedros JG, Vajda EG, Bachus KN, Constantz BR (1997) Determining mineral content variations in bone using backscattered electron imaging. Bone 20:485–490PubMedCrossRef Bloebaum RD, Skedros JG, Vajda EG, Bachus KN, Constantz BR (1997) Determining mineral content variations in bone using backscattered electron imaging. Bone 20:485–490PubMedCrossRef
38.
go back to reference Paris O, Li CH, Siegel S, Weseloh G, Emmerling F, Riesemeier H, Erko A, Fratzl P (2007) A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY II. J Appl Crystallogr 40:S466–S470CrossRef Paris O, Li CH, Siegel S, Weseloh G, Emmerling F, Riesemeier H, Erko A, Fratzl P (2007) A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY II. J Appl Crystallogr 40:S466–S470CrossRef
39.
go back to reference Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 35:9–16 Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 35:9–16
40.
go back to reference Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray-scattering. Calcified Tissue Int 48:407–413CrossRef Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray-scattering. Calcified Tissue Int 48:407–413CrossRef
41.
go back to reference Benecke G, Wagermaier W, Li C, Schwartzkopf M, Flucke G, Hoerth R, Zizak I, Burghammer M, Metwalli E, Müller-Buschbaum P (2014) A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J Appl Crystallogr 47:1797–1803PubMedPubMedCentralCrossRef Benecke G, Wagermaier W, Li C, Schwartzkopf M, Flucke G, Hoerth R, Zizak I, Burghammer M, Metwalli E, Müller-Buschbaum P (2014) A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J Appl Crystallogr 47:1797–1803PubMedPubMedCentralCrossRef
42.
go back to reference Maria R, Ben-Zvi Y, Rechav K, Klein E, Shahar R, Weiner S (2019) An unusual disordered alveolar bone material in the upper furcation region of minipig mandibles: a 3D hierarchical structural study. J Struct Biol 206:128–137PubMedCrossRef Maria R, Ben-Zvi Y, Rechav K, Klein E, Shahar R, Weiner S (2019) An unusual disordered alveolar bone material in the upper furcation region of minipig mandibles: a 3D hierarchical structural study. J Struct Biol 206:128–137PubMedCrossRef
43.
go back to reference Johannessen L (1961) Dentine apposition in the mandibular first molars of albino rats. Arch Oral Biol 5:81–91PubMedCrossRef Johannessen L (1961) Dentine apposition in the mandibular first molars of albino rats. Arch Oral Biol 5:81–91PubMedCrossRef
44.
go back to reference Porter AE, Nalla RK, Minor A, Jinschek JR, Kisielowski C, Radmilovic V, Kinney JH, Tomsia AP, Ritchie RO (2005) A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials 26:7650–7660PubMedCrossRef Porter AE, Nalla RK, Minor A, Jinschek JR, Kisielowski C, Radmilovic V, Kinney JH, Tomsia AP, Ritchie RO (2005) A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials 26:7650–7660PubMedCrossRef
45.
go back to reference Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591CrossRef Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591CrossRef
46.
go back to reference Rao A, Cölfen H (2017) Mineralization schemes in the living world: mesocrystals. New perspectives on mineral nucleation and growth. Springer, pp 155–183CrossRef Rao A, Cölfen H (2017) Mineralization schemes in the living world: mesocrystals. New perspectives on mineral nucleation and growth. Springer, pp 155–183CrossRef
47.
go back to reference Bar-On B, Wagner DH (2013) Structural motifs and elastic properties of hierarchical biological tissues—a review. J Struct Biol 183:149–164PubMedCrossRef Bar-On B, Wagner DH (2013) Structural motifs and elastic properties of hierarchical biological tissues—a review. J Struct Biol 183:149–164PubMedCrossRef
Metadata
Title
The effect of aging on the nanostructure of murine alveolar bone and dentin
Authors
Chika Akabane
Silvia Pabisch
Wolfgang Wagermaier
Andreas Roschger
Norio Tobori
Tomomichi Okano
Shinya Murakami
Peter Fratzl
Richard Weinkamer
Publication date
01-09-2021
Publisher
Springer Singapore
Published in
Journal of Bone and Mineral Metabolism / Issue 5/2021
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-021-01227-0

Other articles of this Issue 5/2021

Journal of Bone and Mineral Metabolism 5/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.