Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2014

Open Access 01-12-2014 | Original investigation

The compensatory enrichment of sphingosine -1- phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus

Authors: Xunliang Tong, Pu Lv, Anna V Mathew, Donghui Liu, Chenguang Niu, Yan Wang, Liang Ji, Jizhao Li, Zhiwei Fu, Bing Pan, Subramaniam Pennathur, Lemin Zheng, Yining Huang

Published in: Cardiovascular Diabetology | Issue 1/2014

Login to get access

Abstract

Background

Glycation of high-density lipoprotein (HDL) decreases its ability to induce cyclooxygenase-2 (COX-2) expression and prostacyclin I-2 (PGI-2) release in endothelial cells. Whether lipid content of HDL, especially sphingosine-1-phosphate (S1P), plays any specific role in restoring the protective function of HDL in type 2 diabetes mellitus (T2DM) is still unknown.

Methods and results

Immunochemical techniques demonstrated that glycated HDL loses its protective function of regulating COX-2 expression compared with diabetic HDL. We proved that the lipid content, especially phospholipid content differed between diabetic HDL and glycated HDL. Levels of HDL-c-bound S1P were increased in T2DM compared with control subjects as detected by UPLC-MS/MS (HDL-c-bound S1P in control subjects vs. T2DM: 309.1 ± 13.71 pmol/mg vs. 382.1 ± 24.45 pmol/mg, P < 0.05). Additionally, mRNA levels of S1P lyase enzymes and S1P phosphatase 1/2 were decreased in peripheral blood by real-time PCR. Antagonist of S1P receptor 1 and 3 (S1PR1/3) diminished the functional difference between apoHDL&PL (HDL containing the protein components and phospholipids) and diabetic apoHDL&PL (diabetic HDL containing the protein components and phospholipids). With different doses of S1P reconstituted on glycated HDL, its function in inducing the COX-2 expression was restored to the same level as diabetic HDL. The mechanism of S1P reconstituted HDL (rHDL) in the process of regulating COX-2 expression involved the phosphorylation of ERK/MAPK-CREB signal pathway.

Conclusion/Significance

S1P harbored on HDL is the main factor which restores its protective function in endothelial cells in T2DM. S1P and its receptors are potential therapeutic targets in ameliorating the vascular dysfunction in T2DM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Strojek K: Features of macrovascular complications in type 2 diabetic patients. Acta Diabetol. 2003, 40 (Suppl 2): S334-S337.CrossRefPubMed Strojek K: Features of macrovascular complications in type 2 diabetic patients. Acta Diabetol. 2003, 40 (Suppl 2): S334-S337.CrossRefPubMed
2.
go back to reference Plutzky J, Viberti G, Haffner S: Atherosclerosis in type 2 diabetes mellitus and insulin resistance: mechanistic links and therapeutic targets. J Diabetes Complications. 2002, 16 (6): 401-415. 10.1016/S1056-8727(02)00202-7.CrossRefPubMed Plutzky J, Viberti G, Haffner S: Atherosclerosis in type 2 diabetes mellitus and insulin resistance: mechanistic links and therapeutic targets. J Diabetes Complications. 2002, 16 (6): 401-415. 10.1016/S1056-8727(02)00202-7.CrossRefPubMed
3.
go back to reference Neeli H, Gadi R, Rader DJ: Managing diabetic dyslipidemia: beyond statin therapy. Curr Diab Rep. 2009, 9 (1): 11-17. 10.1007/s11892-009-0004-y.CrossRefPubMed Neeli H, Gadi R, Rader DJ: Managing diabetic dyslipidemia: beyond statin therapy. Curr Diab Rep. 2009, 9 (1): 11-17. 10.1007/s11892-009-0004-y.CrossRefPubMed
4.
go back to reference Drew BG, Rye KA, Duffy SJ, Barter P, Kingwell BA: The emerging role of HDL in glucose metabolism. Nat Rev Endocrinol. 2012, 8 (4): 237-245. 10.1038/nrendo.2011.235.CrossRefPubMed Drew BG, Rye KA, Duffy SJ, Barter P, Kingwell BA: The emerging role of HDL in glucose metabolism. Nat Rev Endocrinol. 2012, 8 (4): 237-245. 10.1038/nrendo.2011.235.CrossRefPubMed
5.
go back to reference Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, Kastelein JJ, Bittner V, Fruchart JC: HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007, 357 (13): 1301-1310. 10.1056/NEJMoa064278.CrossRefPubMed Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, Kastelein JJ, Bittner V, Fruchart JC: HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007, 357 (13): 1301-1310. 10.1056/NEJMoa064278.CrossRefPubMed
6.
go back to reference Mooradian AD: Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009, 5 (3): 150-159. 10.1038/ncpendmet1066.CrossRefPubMed Mooradian AD: Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009, 5 (3): 150-159. 10.1038/ncpendmet1066.CrossRefPubMed
7.
go back to reference Cipollone F, Cicolini G, Bucci M: Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives. Pharmacol Ther. 2008, 118 (2): 161-180. 10.1016/j.pharmthera.2008.01.002.CrossRefPubMed Cipollone F, Cicolini G, Bucci M: Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives. Pharmacol Ther. 2008, 118 (2): 161-180. 10.1016/j.pharmthera.2008.01.002.CrossRefPubMed
8.
go back to reference Karaoglu A, Tunc T, Aydemir G, Onguru O, Uysal B, Kul M, Aydinoz S, Oztas E, Sarici U: Role of cyclooxygenase 2 and endothelial nitric oxide synthetase in preclinical atherosclerosis. Fetal Pediatr Pathol. 2012, 31 (6): 432-438. 10.3109/15513815.2012.659408.CrossRefPubMed Karaoglu A, Tunc T, Aydemir G, Onguru O, Uysal B, Kul M, Aydinoz S, Oztas E, Sarici U: Role of cyclooxygenase 2 and endothelial nitric oxide synthetase in preclinical atherosclerosis. Fetal Pediatr Pathol. 2012, 31 (6): 432-438. 10.3109/15513815.2012.659408.CrossRefPubMed
9.
go back to reference Damirin A, Tomura H, Komachi M, Tobo M, Sato K, Mogi C, Nochi H, Tamoto K, Okajima F: Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells. Mol Pharmacol. 2005, 67 (4): 1177-1185. 10.1124/mol.104.004317.CrossRefPubMed Damirin A, Tomura H, Komachi M, Tobo M, Sato K, Mogi C, Nochi H, Tamoto K, Okajima F: Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells. Mol Pharmacol. 2005, 67 (4): 1177-1185. 10.1124/mol.104.004317.CrossRefPubMed
10.
go back to reference Rodriguez C, Gonzalez-Diez M, Badimon L, Martinez-Gonzalez J: Sphingosine-1-phosphate: a bioactive lipid that confers high-density lipoprotein with vasculoprotection mediated by nitric oxide and prostacyclin. Thromb Haemost. 2009, 101 (4): 665-673.PubMed Rodriguez C, Gonzalez-Diez M, Badimon L, Martinez-Gonzalez J: Sphingosine-1-phosphate: a bioactive lipid that confers high-density lipoprotein with vasculoprotection mediated by nitric oxide and prostacyclin. Thromb Haemost. 2009, 101 (4): 665-673.PubMed
11.
go back to reference Argraves KM, Argraves WS: HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res. 2007, 48 (11): 2325-2333. 10.1194/jlr.R700011-JLR200.CrossRefPubMed Argraves KM, Argraves WS: HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res. 2007, 48 (11): 2325-2333. 10.1194/jlr.R700011-JLR200.CrossRefPubMed
12.
go back to reference Bourquin F, Capitani G, Grutter MG: PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci. 2011, 20 (9): 1492-1508. 10.1002/pro.679.PubMedCentralCrossRefPubMed Bourquin F, Capitani G, Grutter MG: PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci. 2011, 20 (9): 1492-1508. 10.1002/pro.679.PubMedCentralCrossRefPubMed
13.
go back to reference Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL: The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem. 2004, 279 (28): 29367-29373. 10.1074/jbc.M403937200.CrossRefPubMed Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL: The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem. 2004, 279 (28): 29367-29373. 10.1074/jbc.M403937200.CrossRefPubMed
14.
15.
go back to reference Serra M, Saba JD: Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv Enzyme Regul. 2010, 50 (1): 349-362. 10.1016/j.advenzreg.2009.10.024.PubMedCentralCrossRefPubMed Serra M, Saba JD: Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv Enzyme Regul. 2010, 50 (1): 349-362. 10.1016/j.advenzreg.2009.10.024.PubMedCentralCrossRefPubMed
16.
go back to reference Matsuki K, Tamasawa N, Yamashita M, Tanabe J, Murakami H, Matsui J, Imaizumi T, Satoh K, Suda T: Metformin restores impaired HDL-mediated cholesterol efflux due to glycation. Atherosclerosis. 2009, 206 (2): 434-438. 10.1016/j.atherosclerosis.2009.03.003.CrossRefPubMed Matsuki K, Tamasawa N, Yamashita M, Tanabe J, Murakami H, Matsui J, Imaizumi T, Satoh K, Suda T: Metformin restores impaired HDL-mediated cholesterol efflux due to glycation. Atherosclerosis. 2009, 206 (2): 434-438. 10.1016/j.atherosclerosis.2009.03.003.CrossRefPubMed
17.
go back to reference Nobecourt E, Zeng J, Davies MJ, Brown BE, Yadav S, Barter PJ, Rye KA: Effects of cross-link breakers, glycation inhibitors and insulin sensitisers on HDL function and the non-enzymatic glycation of apolipoprotein A-I. Diabetologia. 2008, 51 (6): 1008-1017. 10.1007/s00125-008-0986-z.CrossRefPubMed Nobecourt E, Zeng J, Davies MJ, Brown BE, Yadav S, Barter PJ, Rye KA: Effects of cross-link breakers, glycation inhibitors and insulin sensitisers on HDL function and the non-enzymatic glycation of apolipoprotein A-I. Diabetologia. 2008, 51 (6): 1008-1017. 10.1007/s00125-008-0986-z.CrossRefPubMed
18.
go back to reference Liu D, Ji L, Zhang D, Tong X, Pan B, Liu P, Zhang Y, Huang Y, Su J, Willard B, Zheng L: Nonenzymatic glycation of high-density lipoprotein impairs its anti-inflammatory effects in innate immunity. Diabetes Metab Res Rev. 2012, 28 (2): 186-195. 10.1002/dmrr.1297.CrossRefPubMed Liu D, Ji L, Zhang D, Tong X, Pan B, Liu P, Zhang Y, Huang Y, Su J, Willard B, Zheng L: Nonenzymatic glycation of high-density lipoprotein impairs its anti-inflammatory effects in innate immunity. Diabetes Metab Res Rev. 2012, 28 (2): 186-195. 10.1002/dmrr.1297.CrossRefPubMed
19.
go back to reference Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, Schmitt D, Fu X, Thomson L, Fox PL, Ischiropoulos H, Smith JD, Kinter M, Hazen SL: Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004, 114 (4): 529-541. 10.1172/JCI200421109.PubMedCentralCrossRefPubMed Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, Schmitt D, Fu X, Thomson L, Fox PL, Ischiropoulos H, Smith JD, Kinter M, Hazen SL: Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004, 114 (4): 529-541. 10.1172/JCI200421109.PubMedCentralCrossRefPubMed
20.
go back to reference Zheng L, Settle M, Brubaker G, Schmitt D, Hazen SL, Smith JD, Kinter M: Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J Biol Chem. 2005, 280 (1): 38-47.CrossRefPubMed Zheng L, Settle M, Brubaker G, Schmitt D, Hazen SL, Smith JD, Kinter M: Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J Biol Chem. 2005, 280 (1): 38-47.CrossRefPubMed
21.
go back to reference Pan B, Ma Y, Ren H, He Y, Wang Y, Lv X, Liu D, Ji L, Yu B, Wang Y, Chen YE, Pennathur S, Smith JD, Liu G, Zheng L: Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression. PLoS One. 2012, 7 (11): e48530-10.1371/journal.pone.0048530.PubMedCentralCrossRefPubMed Pan B, Ma Y, Ren H, He Y, Wang Y, Lv X, Liu D, Ji L, Yu B, Wang Y, Chen YE, Pennathur S, Smith JD, Liu G, Zheng L: Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression. PLoS One. 2012, 7 (11): e48530-10.1371/journal.pone.0048530.PubMedCentralCrossRefPubMed
22.
go back to reference Baranowski M, Blachnio-Zabielska A, Hirnle T, Harasiuk D, Matlak K, Knapp M, Zabielski P, Gorski J: Myocardium of type 2 diabetic and obese patients is characterized by alterations in sphingolipid metabolic enzymes but not by accumulation of ceramide. J Lipid Res. 2010, 51 (1): 74-80. 10.1194/jlr.M900002-JLR200.PubMedCentralCrossRefPubMed Baranowski M, Blachnio-Zabielska A, Hirnle T, Harasiuk D, Matlak K, Knapp M, Zabielski P, Gorski J: Myocardium of type 2 diabetic and obese patients is characterized by alterations in sphingolipid metabolic enzymes but not by accumulation of ceramide. J Lipid Res. 2010, 51 (1): 74-80. 10.1194/jlr.M900002-JLR200.PubMedCentralCrossRefPubMed
23.
go back to reference Saba JD, Hla T: Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res. 2004, 94 (6): 724-734. 10.1161/01.RES.0000122383.60368.24.CrossRefPubMed Saba JD, Hla T: Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res. 2004, 94 (6): 724-734. 10.1161/01.RES.0000122383.60368.24.CrossRefPubMed
24.
go back to reference Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008, 9 (2): 139-150. 10.1038/nrm2329.CrossRefPubMed Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008, 9 (2): 139-150. 10.1038/nrm2329.CrossRefPubMed
25.
go back to reference Tong X, Peng H, Liu D, Ji L, Niu C, Ren J, Pan B, Hu J, Zheng L, Huang Y: High-density lipoprotein of patients with Type 2 Diabetes Mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: relationship with HDL-associated sphingosine-1-phosphate. Cardiovasc Diabetol. 2013, 12 (1): 27-10.1186/1475-2840-12-27.PubMedCentralCrossRefPubMed Tong X, Peng H, Liu D, Ji L, Niu C, Ren J, Pan B, Hu J, Zheng L, Huang Y: High-density lipoprotein of patients with Type 2 Diabetes Mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: relationship with HDL-associated sphingosine-1-phosphate. Cardiovasc Diabetol. 2013, 12 (1): 27-10.1186/1475-2840-12-27.PubMedCentralCrossRefPubMed
26.
go back to reference Jaffe EA, Nachman RL, Becker CG, Minick CR: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973, 52 (11): 2745-2756. 10.1172/JCI107470.PubMedCentralCrossRefPubMed Jaffe EA, Nachman RL, Becker CG, Minick CR: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973, 52 (11): 2745-2756. 10.1172/JCI107470.PubMedCentralCrossRefPubMed
27.
go back to reference Chung BH, Wilkinson T, Geer JC, Segrest JP: Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res. 1980, 21 (3): 284-291.PubMed Chung BH, Wilkinson T, Geer JC, Segrest JP: Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res. 1980, 21 (3): 284-291.PubMed
28.
go back to reference Cham BE, Knowles BR:A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res. 1976, 17 (2): 176-181.PubMed Cham BE, Knowles BR:A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res. 1976, 17 (2): 176-181.PubMed
29.
go back to reference Lee MH, Hammad SM, Semler AJ, Luttrell LM, Lopes-Virella MF, Klein RL: HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes: the role of sphingosine-1-phosphate. J Lipid Res. 2010, 51 (9): 2619-2628. 10.1194/jlr.M003988.PubMedCentralCrossRefPubMed Lee MH, Hammad SM, Semler AJ, Luttrell LM, Lopes-Virella MF, Klein RL: HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes: the role of sphingosine-1-phosphate. J Lipid Res. 2010, 51 (9): 2619-2628. 10.1194/jlr.M003988.PubMedCentralCrossRefPubMed
30.
go back to reference Liu D, Ji L, Tong X, Pan B, Han JY, Huang Y, Chen YE, Pennathur S, Zhang Y, Zheng L: Human apolipoprotein A-I induces cyclooxygenase-2 expression and prostaglandin I-2 release in endothelial cells through ATP-binding cassette transporter A1. Am J Physiol Cell Physiol. 2011, 301 (3): 739-748. 10.1152/ajpcell.00055.2011.CrossRef Liu D, Ji L, Tong X, Pan B, Han JY, Huang Y, Chen YE, Pennathur S, Zhang Y, Zheng L: Human apolipoprotein A-I induces cyclooxygenase-2 expression and prostaglandin I-2 release in endothelial cells through ATP-binding cassette transporter A1. Am J Physiol Cell Physiol. 2011, 301 (3): 739-748. 10.1152/ajpcell.00055.2011.CrossRef
31.
go back to reference Burnette WN: "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981, 112 (2): 195-203. 10.1016/0003-2697(81)90281-5.CrossRefPubMed Burnette WN: "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981, 112 (2): 195-203. 10.1016/0003-2697(81)90281-5.CrossRefPubMed
32.
go back to reference Read JT, Cheng H, Hendy SC, Nelson CC, Rennie PS: Receptor-DNA interactions: EMSA and footprinting. Methods Mol Biol. 2009, 505: 97-122. 10.1007/978-1-60327-575-0_6.CrossRefPubMed Read JT, Cheng H, Hendy SC, Nelson CC, Rennie PS: Receptor-DNA interactions: EMSA and footprinting. Methods Mol Biol. 2009, 505: 97-122. 10.1007/978-1-60327-575-0_6.CrossRefPubMed
33.
go back to reference Verges B: New insight into the pathophysiology of lipid abnormalities in type 2 diabetes. Diabetes Metab. 2005, 31 (5): 429-439. 10.1016/S1262-3636(07)70213-6.CrossRefPubMed Verges B: New insight into the pathophysiology of lipid abnormalities in type 2 diabetes. Diabetes Metab. 2005, 31 (5): 429-439. 10.1016/S1262-3636(07)70213-6.CrossRefPubMed
34.
35.
go back to reference Kontush A, Therond P, Zerrad A, Couturier M, Negre-Salvayre A, de Souza JA, Chantepie S, Chapman MJ: Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Biol. 2007, 27 (8): 1843-1849. 10.1161/ATVBAHA.107.145672.CrossRefPubMed Kontush A, Therond P, Zerrad A, Couturier M, Negre-Salvayre A, de Souza JA, Chantepie S, Chapman MJ: Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Biol. 2007, 27 (8): 1843-1849. 10.1161/ATVBAHA.107.145672.CrossRefPubMed
36.
go back to reference Keul P, Lucke S, von Wnuck LK, Bode C, Graler M, Heusch G, Levkau B: Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res. 2011, 108 (3): 314-323. 10.1161/CIRCRESAHA.110.235028.CrossRefPubMed Keul P, Lucke S, von Wnuck LK, Bode C, Graler M, Heusch G, Levkau B: Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res. 2011, 108 (3): 314-323. 10.1161/CIRCRESAHA.110.235028.CrossRefPubMed
37.
go back to reference Whetzel AM, Bolick DT, Srinivasan S, Macdonald TL, Morris MA, Ley K, Hedrick CC: Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. Circ Res. 2006, 99 (7): 731-739. 10.1161/01.RES.0000244088.33375.52.CrossRefPubMed Whetzel AM, Bolick DT, Srinivasan S, Macdonald TL, Morris MA, Ley K, Hedrick CC: Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. Circ Res. 2006, 99 (7): 731-739. 10.1161/01.RES.0000244088.33375.52.CrossRefPubMed
Metadata
Title
The compensatory enrichment of sphingosine -1- phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus
Authors
Xunliang Tong
Pu Lv
Anna V Mathew
Donghui Liu
Chenguang Niu
Yan Wang
Liang Ji
Jizhao Li
Zhiwei Fu
Bing Pan
Subramaniam Pennathur
Lemin Zheng
Yining Huang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2014
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-13-82

Other articles of this Issue 1/2014

Cardiovascular Diabetology 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine