Skip to main content
Top
Published in: Documenta Ophthalmologica 1/2017

Open Access 01-08-2017 | Original Research Article

The changing shape of the ISCEV standard pattern onset VEP

Authors: Dorothy A. Thompson, Dennis M. Fritsch, Sharon E. Hardy, The POW Study Group

Published in: Documenta Ophthalmologica | Issue 1/2017

Login to get access

Abstract

Purpose

Pattern onset VEPs do not always show distinct C1–C2–C3 peaks and troughs. Our purpose was to study changes in pattern onset VEP with age to determine when the illustrated ISCEV standard onset VEP waveform can be reliably recorded.

Methods

We recorded pattern onset VEPs from an Oz electrode referred to mid-frontal electrode according to ISCEV standards by presenting checks of 60′ and 15′ side length in a 15° field. Twenty-four adults aged 20–63 years participated. Amplitudes and latencies were collated. Pattern onset adult VEP shapes were compared to the waveform published in the ISCEV VEP standard and to paediatric pattern onset VEP waveforms recorded from 16 infants aged 7 months.

Results

The shape of the pattern onset VEP changed gradually with age. The C1–C2–C3 morphology of the ISCEV standard pattern onset VEP becomes apparent consistently after 40 years to 60′ check stimulation. As age increases a negative trough, C2 is more frequently seen; however, the broad positive peak which characterises infant onset VEPs may still be recorded at 20 years. The group median measurements of onset VEPs to 60′ were C1 7 µV@ 88 ms (range 67–110 ms), C2 9 µV@109 ms (range 89–158 ms) and C3 13 µV@121–246 ms. To smaller 15′ checks, peak latencies were earlier and C2 became more obvious. The group median measures of onset VEPs to 15′ were C1 2 µV@69 ms (55–108 ms), C2 10 µV@90 ms (77–145 ms) and C3 14 µV@122 ms (99–200 ms).

Conclusion

The ISCEV standard onset VEP best describes the waveform configuration and latency of the onset VEP produced by 60′ checks in adults of more than 40 years of age. The onset VEP waveform produced by 15′ checks is distinguished by more prominent negative C2 and earlier C1 and C2 latencies.
Literature
2.
go back to reference McCulloch DL, Skarf B (1991) Development of the human visual system: monocular and binocular pattern VEP latency. Invest Ophthalmol Vis Sci 32(8):2372–2381PubMed McCulloch DL, Skarf B (1991) Development of the human visual system: monocular and binocular pattern VEP latency. Invest Ophthalmol Vis Sci 32(8):2372–2381PubMed
4.
go back to reference Kriss A, Russell-Eggitt I, Taylor D (1990) Childhood albinism. Visual electrophysiological features. Ophthalmic Paediatr Genet 11(3):185–192CrossRefPubMed Kriss A, Russell-Eggitt I, Taylor D (1990) Childhood albinism. Visual electrophysiological features. Ophthalmic Paediatr Genet 11(3):185–192CrossRefPubMed
5.
go back to reference Apkarian P, Reits D, Spekreijse H, Van Dorp D (1983) A decisive electrophysiological test for human albinism. Electroencephalogr Clin Neurophysiol 55(5):513–531CrossRefPubMed Apkarian P, Reits D, Spekreijse H, Van Dorp D (1983) A decisive electrophysiological test for human albinism. Electroencephalogr Clin Neurophysiol 55(5):513–531CrossRefPubMed
6.
go back to reference Creel D, Spekreijse H, Reits D (1981) Evoked potentials in albinos: efficacy of pattern stimuli in detecting misrouted optic fibers. Electroencephalogr Clin Neurophysiol 52(6):595–603CrossRefPubMed Creel D, Spekreijse H, Reits D (1981) Evoked potentials in albinos: efficacy of pattern stimuli in detecting misrouted optic fibers. Electroencephalogr Clin Neurophysiol 52(6):595–603CrossRefPubMed
8.
go back to reference Kriss A, Spekreijse H, Verduyn Lunel HFE, Braamhaar I, de Waal BJ, Barrett G (1984) A comparison of pattern onset, offset and reversal responses: effects of age, gender and check size. In: Nodar R, Barber C (eds) Evoked potentials ll. Butterworths, New york, pp 553–561 Kriss A, Spekreijse H, Verduyn Lunel HFE, Braamhaar I, de Waal BJ, Barrett G (1984) A comparison of pattern onset, offset and reversal responses: effects of age, gender and check size. In: Nodar R, Barber C (eds) Evoked potentials ll. Butterworths, New york, pp 553–561
9.
go back to reference Apkarian P, Tijssen R (1992) Detection and maturation of VEP albino asymmetry: an overview and a longitudinal study from birth to 54 weeks. Behav Brain Res 49(1):57–67CrossRefPubMed Apkarian P, Tijssen R (1992) Detection and maturation of VEP albino asymmetry: an overview and a longitudinal study from birth to 54 weeks. Behav Brain Res 49(1):57–67CrossRefPubMed
10.
go back to reference Jeffreys DA, Axford JG (1972) Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp Brain Res 16(1):22–40PubMed Jeffreys DA, Axford JG (1972) Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp Brain Res 16(1):22–40PubMed
11.
go back to reference Apkarian P, Reits D, Spekreijse H (1984) Component specificity in albino VEP asymmetry: maturation of the visual pathway anomaly. Exp Brain Res 53(2):285–294CrossRefPubMed Apkarian P, Reits D, Spekreijse H (1984) Component specificity in albino VEP asymmetry: maturation of the visual pathway anomaly. Exp Brain Res 53(2):285–294CrossRefPubMed
12.
go back to reference Shawkat FS, Kriss A (1998) Sequential pattern-onset, -reversal and -offset VEPs: comparison of effects of checksize. Ophthalmic Physiol Opt 18(6):495–503CrossRefPubMed Shawkat FS, Kriss A (1998) Sequential pattern-onset, -reversal and -offset VEPs: comparison of effects of checksize. Ophthalmic Physiol Opt 18(6):495–503CrossRefPubMed
13.
go back to reference Fahle M, Bach M (2006) Origin of visual evoked potentials. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT Press, Cambridge, pp 207–234 Fahle M, Bach M (2006) Origin of visual evoked potentials. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT Press, Cambridge, pp 207–234
14.
go back to reference Maier J, Dagnelie G, Spekreijse H, van Dijk BW (1987) Principal components analysis for source localization of VEPs in man. Vis Res 27(2):165–177CrossRefPubMed Maier J, Dagnelie G, Spekreijse H, van Dijk BW (1987) Principal components analysis for source localization of VEPs in man. Vis Res 27(2):165–177CrossRefPubMed
15.
go back to reference Manahilov V, Riemslag FC, Spekreijse H (1992) The Laplacian analysis of the pattern onset response in man. Electroencephalogr Clin Neurophysiol 82(3):220–224CrossRefPubMed Manahilov V, Riemslag FC, Spekreijse H (1992) The Laplacian analysis of the pattern onset response in man. Electroencephalogr Clin Neurophysiol 82(3):220–224CrossRefPubMed
16.
go back to reference Ossenblok P, Reits D, Spekreijse H (1994) Check size dependency of the sources of the hemifield-onset evoked potential. Doc Ophthalmol 88(1):77–88CrossRefPubMed Ossenblok P, Reits D, Spekreijse H (1994) Check size dependency of the sources of the hemifield-onset evoked potential. Doc Ophthalmol 88(1):77–88CrossRefPubMed
17.
go back to reference Jeffreys DA, Axford JG (1972) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16(1):1–21PubMed Jeffreys DA, Axford JG (1972) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16(1):1–21PubMed
18.
go back to reference Spekreijse H, van der Tweel LH (1972) System analysis of linear and nonlinear processes in electrophysiology of the visual system II. Proc K Ned Akad Wet C 75(2):92–105PubMed Spekreijse H, van der Tweel LH (1972) System analysis of linear and nonlinear processes in electrophysiology of the visual system II. Proc K Ned Akad Wet C 75(2):92–105PubMed
21.
go back to reference Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111CrossRefPubMed Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111CrossRefPubMed
23.
go back to reference De Vries-Khoe L, Spekreijse H (1982) Maturation of luminance and pattern EPs in man. Doc Ophthalmol Proc Ser 31:461–475 De Vries-Khoe L, Spekreijse H (1982) Maturation of luminance and pattern EPs in man. Doc Ophthalmol Proc Ser 31:461–475
24.
go back to reference Ossenblok P, Reits D, Spekreijse H (1992) Analysis of striate activity underlying the pattern onset EP of children. Vis Res 32(10):1829–1835CrossRefPubMed Ossenblok P, Reits D, Spekreijse H (1992) Analysis of striate activity underlying the pattern onset EP of children. Vis Res 32(10):1829–1835CrossRefPubMed
30.
go back to reference Sieving PA, Murayama K, Naarendorp F (1994) Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11(3):519–532CrossRefPubMed Sieving PA, Murayama K, Naarendorp F (1994) Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11(3):519–532CrossRefPubMed
31.
go back to reference Sieving PA (1993) Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc. 91:701–773 Sieving PA (1993) Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc. 91:701–773
Metadata
Title
The changing shape of the ISCEV standard pattern onset VEP
Authors
Dorothy A. Thompson
Dennis M. Fritsch
Sharon E. Hardy
The POW Study Group
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 1/2017
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-017-9596-8

Other articles of this Issue 1/2017

Documenta Ophthalmologica 1/2017 Go to the issue