Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2014

01-10-2014 | Review Article

Visual electrophysiology in the clinical evaluation of optic neuritis, chiasmal tumours, achiasmia, and ocular albinism: an overview

Author: Jelka Brecelj

Published in: Documenta Ophthalmologica | Issue 2/2014

Login to get access

Abstract

Background and Methods In routine clinical evaluation of optic neuritis and chiasmal tumours, pattern electroretinography and visual evoked potentials (VEPs) to pattern-reversal stimulation are useful examinations. Similarly, in achiasmia and ocular albinism, VEPs to flash and pattern-onset stimulation provide relevant information. Results The role of visual electrophysiology in these diseases is to assess potential dysfunction of the visual pathway: (a) at the acute stage of optic neuritis, to determine the magnitude of conduction block of the optic nerve fibres; (b) at the clinical recovery stage of optic neuritis, to determine optic nerve conduction delay due to demyelination, and to follow possible remyelination; (c) at the recovery of optic neuritis when visual acuity does not normalise, to define loss of optic nerve fibres and retrograde degeneration of retinal ganglion cells; (d) in tumours at the chiasm, to detect abnormal conduction along the crossed and/or uncrossed fibres; and (e) in achiasmia or albinism, which are both congenital disorders associated with nystagmus, to detect achiasmia and absence of or reduced optic nerve fibre decussation at the chiasm, or to detect ocular albinism and excess of optic nerve fibre decussation at the chiasm. In optic neuritis, two recent examinations have been used to detect retrograde axonal degeneration: photopic negative response of the electroretinogram, to assess dysfunction of ganglion cell axons; and optic coherence tomography, to measure thinning of the retinal nerve fibre layer. In optic neuritis, multifocal VEPs provide a promising clinical examination, because this can show areas that are associated with normal or abnormal optic nerve fibre function. Conclusions Visual electrophysiology defines function of the visual pathway and is relevant: (1) in optic neuritis, when visual acuity does not recover well; (2) in tumours of the chiasm with normal visual fields, as in paediatric patients who cannot adequately perform perimetry; and (3) in children with congenital nystagmus and suspected achiasmia or ocular albinism.
Literature
1.
go back to reference Halliday AM, Mc Donald WI, Mushin J (1972) Delayed visual evoked response in optic neuritis. Lancet 1:982–985PubMedCrossRef Halliday AM, Mc Donald WI, Mushin J (1972) Delayed visual evoked response in optic neuritis. Lancet 1:982–985PubMedCrossRef
2.
go back to reference Halliday AM, McDonald WI, Mushin J (1973) Visual evoked response in diagnosis of multiple sclerosis. Br Med J 4:661–664CrossRef Halliday AM, McDonald WI, Mushin J (1973) Visual evoked response in diagnosis of multiple sclerosis. Br Med J 4:661–664CrossRef
3.
go back to reference Halliday AM, Halliday E, Kriss A, McDonald WI, Mushin J (1976) The pattern-evoked potential in compression of the anterior visual pathways. Brain 99:357–374PubMedCrossRef Halliday AM, Halliday E, Kriss A, McDonald WI, Mushin J (1976) The pattern-evoked potential in compression of the anterior visual pathways. Brain 99:357–374PubMedCrossRef
4.
go back to reference Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119PubMedCrossRef Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119PubMedCrossRef
5.
go back to reference Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG)—2012 update. Doc Ophthalmol 126:1–7CrossRef Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG)—2012 update. Doc Ophthalmol 126:1–7CrossRef
6.
go back to reference Holder GE, Celesia GG, Miyake Y, Tobimatsu S, Weleber RG (2010) International Federation of Clinical Neurophysiology: recommendations for visual system testing. Clin Neurophysiol 121:1393–1409PubMedCrossRef Holder GE, Celesia GG, Miyake Y, Tobimatsu S, Weleber RG (2010) International Federation of Clinical Neurophysiology: recommendations for visual system testing. Clin Neurophysiol 121:1393–1409PubMedCrossRef
7.
go back to reference Holder GE, Gale RP, Acheson JF, Robson AG (2009) Electrodiagnostic assessment in optic nerve disease. Curr Opin Neurol 22:3–10PubMedCrossRef Holder GE, Gale RP, Acheson JF, Robson AG (2009) Electrodiagnostic assessment in optic nerve disease. Curr Opin Neurol 22:3–10PubMedCrossRef
8.
go back to reference Holder GE (2001) The pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561PubMedCrossRef Holder GE (2001) The pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561PubMedCrossRef
9.
go back to reference Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522PubMed Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522PubMed
10.
go back to reference Sustar M, Cvenkel B, Brecelj J (2009) The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open-angle glaucoma patients. Doc Ophthalmol 118:167–177PubMedCrossRef Sustar M, Cvenkel B, Brecelj J (2009) The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open-angle glaucoma patients. Doc Ophthalmol 118:167–177PubMedCrossRef
11.
go back to reference Brecelj J, Cunningham K (1985) Occipital distribution of foveal half-field responses. Doc Ophthalmol 59:157–165PubMedCrossRef Brecelj J, Cunningham K (1985) Occipital distribution of foveal half-field responses. Doc Ophthalmol 59:157–165PubMedCrossRef
12.
go back to reference Brecelj J, Kakigi R, Koyama S, Hoshiyama M (1998) Visual evoked magnetic responses to central and peripheral stimulation: simultaneous VEP recordings. Brain Topogr 10:227–237PubMed Brecelj J, Kakigi R, Koyama S, Hoshiyama M (1998) Visual evoked magnetic responses to central and peripheral stimulation: simultaneous VEP recordings. Brain Topogr 10:227–237PubMed
13.
go back to reference Brecelj J (1991) Visual evoked potentials and the localization of visual pathway lesions. Spektrum Augenheilkd 5:114–122CrossRef Brecelj J (1991) Visual evoked potentials and the localization of visual pathway lesions. Spektrum Augenheilkd 5:114–122CrossRef
14.
go back to reference Fortune B, Hood DC (2003) Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. Invest Ophthalmol Vis Sci 44:1364–1375PubMedCrossRef Fortune B, Hood DC (2003) Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. Invest Ophthalmol Vis Sci 44:1364–1375PubMedCrossRef
16.
go back to reference Shams PN, Plant GT (2009) Optic neuritis: a review. Int MS J 16:82–89PubMed Shams PN, Plant GT (2009) Optic neuritis: a review. Int MS J 16:82–89PubMed
17.
go back to reference Kidd D, Burton B, Plant GT, Graham EM (2003) Chronic relapsing inflammatory optic neuropathy (CRION). Brain 126:276–284PubMedCrossRef Kidd D, Burton B, Plant GT, Graham EM (2003) Chronic relapsing inflammatory optic neuropathy (CRION). Brain 126:276–284PubMedCrossRef
18.
go back to reference Kriss A, Francis DA, Cuendet F, Halliday AM, Taylor DSI, Wilson J, Keast-Butler J, Batchelor JR, McDonald WI (1988) Recovery after optic neuritis in childhood. J Neurol Neurosurg Psychiatry 51:1253–1258PubMedCrossRefPubMedCentral Kriss A, Francis DA, Cuendet F, Halliday AM, Taylor DSI, Wilson J, Keast-Butler J, Batchelor JR, McDonald WI (1988) Recovery after optic neuritis in childhood. J Neurol Neurosurg Psychiatry 51:1253–1258PubMedCrossRefPubMedCentral
19.
go back to reference Wilejto M, Shroff M, Buncic JR, Kennedy J, Goia C, Banwell B (2006) The clinical features, MRI findings, and outcome of optic neuritis in children. Neurology 67:258–262PubMedCrossRef Wilejto M, Shroff M, Buncic JR, Kennedy J, Goia C, Banwell B (2006) The clinical features, MRI findings, and outcome of optic neuritis in children. Neurology 67:258–262PubMedCrossRef
20.
go back to reference Jones SJ, Brusa A (2003) Neurophysiological evidence for long-term repair of MS lesions: implications for axon protection. J Neurol Sci 206:193–198PubMedCrossRef Jones SJ, Brusa A (2003) Neurophysiological evidence for long-term repair of MS lesions: implications for axon protection. J Neurol Sci 206:193–198PubMedCrossRef
21.
go back to reference Brecelj J, Denišlič M, Prevec TS, Štrucl M (1981) Visual evoked potentials in the assessment of subclinical demyelinating lesions of the visual pathway (in Slovene). Zdrav Vestn 50:145–149 Brecelj J, Denišlič M, Prevec TS, Štrucl M (1981) Visual evoked potentials in the assessment of subclinical demyelinating lesions of the visual pathway (in Slovene). Zdrav Vestn 50:145–149
22.
go back to reference Brecelj J, Kriss A (1989) Pattern reversal VEPs in optic neuritis. Advantages of central and peripheral half-field stimulation. Neuro-Ophthalmology 9:55–63CrossRef Brecelj J, Kriss A (1989) Pattern reversal VEPs in optic neuritis. Advantages of central and peripheral half-field stimulation. Neuro-Ophthalmology 9:55–63CrossRef
23.
go back to reference Brecelj J, Štrucl M, Hawlina M (1990) Central fiber contribution to W-shaped visual evoked potentials in patients with optic neuritis. Doc Ophthalmol 75:155–163PubMedCrossRef Brecelj J, Štrucl M, Hawlina M (1990) Central fiber contribution to W-shaped visual evoked potentials in patients with optic neuritis. Doc Ophthalmol 75:155–163PubMedCrossRef
24.
go back to reference Brecelj J, Stirn-Kranjc B Tekavčič-Pompe M (1998) A VEP and PERG study in children with suspected optic neuritis. In: Hashimoto I, Kakigi R (eds) Recent advances in human neurophysiology: Proceedings of the 6th international evoked potentials symposium, Okazaki, Japan 21–25 March 1998. Elsevier, Amsterdam, pp 496–501 Brecelj J, Stirn-Kranjc B Tekavčič-Pompe M (1998) A VEP and PERG study in children with suspected optic neuritis. In: Hashimoto I, Kakigi R (eds) Recent advances in human neurophysiology: Proceedings of the 6th international evoked potentials symposium, Okazaki, Japan 21–25 March 1998. Elsevier, Amsterdam, pp 496–501
25.
go back to reference Tekavčič-Pompe M, Stirn-Kranjc B, Brecelj J (2003) Optic neuritis in children—clinical and electrophysiological follow-up. Doc Ophthalmol 107:261–270PubMedCrossRef Tekavčič-Pompe M, Stirn-Kranjc B, Brecelj J (2003) Optic neuritis in children—clinical and electrophysiological follow-up. Doc Ophthalmol 107:261–270PubMedCrossRef
26.
go back to reference Liščić RM, Brecelj J (2004) Visual evoked potentials in multiple sclerosis patients treated with interferon beta-1a. Croat Med J 45(3):323–327PubMed Liščić RM, Brecelj J (2004) Visual evoked potentials in multiple sclerosis patients treated with interferon beta-1a. Croat Med J 45(3):323–327PubMed
27.
go back to reference Holder GE (1991) The incidence of abnormal pattern electroretinography in optic nerve demyelination. Electroenceph Clin Neurophysiol 78:18–26PubMedCrossRef Holder GE (1991) The incidence of abnormal pattern electroretinography in optic nerve demyelination. Electroenceph Clin Neurophysiol 78:18–26PubMedCrossRef
28.
go back to reference Rinalduzzi S, Brusa A, Jones SJ (2001) Variation of visual evoked potential delay to stimulation of central, nasal, and temporal regions of the macula in optic neuritis. J Neurol Neurosurg Psychiatry 70:28–35PubMedCrossRefPubMedCentral Rinalduzzi S, Brusa A, Jones SJ (2001) Variation of visual evoked potential delay to stimulation of central, nasal, and temporal regions of the macula in optic neuritis. J Neurol Neurosurg Psychiatry 70:28–35PubMedCrossRefPubMedCentral
29.
go back to reference Brusa A, Jones SJ, Plant GT (2001) Long-term remyelination after optic neuritis. A 2-year visual evoked potential and psychophysical serial study. Brain 124:468–479PubMedCrossRef Brusa A, Jones SJ, Plant GT (2001) Long-term remyelination after optic neuritis. A 2-year visual evoked potential and psychophysical serial study. Brain 124:468–479PubMedCrossRef
30.
go back to reference Henderson APD, Trip SA, Schlottmann PG, Altmann DR, Garway-Heath DF, Plant GT, Miller DH (2008) An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131:277–287PubMed Henderson APD, Trip SA, Schlottmann PG, Altmann DR, Garway-Heath DF, Plant GT, Miller DH (2008) An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131:277–287PubMed
31.
go back to reference Trip SA, Schlottmann PG, Jones SJ, Altmann DR, Garway-Heath DF, Thompson AJ, Plant GP, Miller DH (2005) Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 58:383–391PubMedCrossRef Trip SA, Schlottmann PG, Jones SJ, Altmann DR, Garway-Heath DF, Thompson AJ, Plant GP, Miller DH (2005) Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 58:383–391PubMedCrossRef
32.
go back to reference Hokazono K, Raza AS, Oyamada MK, Hood DC, Monteiro ML (2013) Pattern electroretinogram in neuromyelitis optica and multiple sclerosis with or without optic neuritis and its correlation with FD-OCT and perimetry. Doc Ophthalmol 127:201–215PubMedCrossRef Hokazono K, Raza AS, Oyamada MK, Hood DC, Monteiro ML (2013) Pattern electroretinogram in neuromyelitis optica and multiple sclerosis with or without optic neuritis and its correlation with FD-OCT and perimetry. Doc Ophthalmol 127:201–215PubMedCrossRef
33.
go back to reference Wang J, Cheng H, Hu YS, Tang RA, Frishman LJ (2012) The photopic negative response of the flash electroretinogram in multiple sclerosis. Invest Ophthalmol Vis Sci 53:1315–1323 Wang J, Cheng H, Hu YS, Tang RA, Frishman LJ (2012) The photopic negative response of the flash electroretinogram in multiple sclerosis. Invest Ophthalmol Vis Sci 53:1315–1323
34.
go back to reference Klistorner A, Fraser C, Garrick R, Graham S, Arvind H (2008) Correlation between full-field and multifocal VEPs in optic neuritis. Doc Ophthalmol 116:19–27CrossRef Klistorner A, Fraser C, Garrick R, Graham S, Arvind H (2008) Correlation between full-field and multifocal VEPs in optic neuritis. Doc Ophthalmol 116:19–27CrossRef
35.
go back to reference Fraser CL, Klistorner A, Graham SL, Garrick R, Billson FA, Grigg JR (2006) Multifocal visual evoked potential analysis of inflammatory or demyelinating optic neuritis. Ophthalmology 113:315–323CrossRef Fraser CL, Klistorner A, Graham SL, Garrick R, Billson FA, Grigg JR (2006) Multifocal visual evoked potential analysis of inflammatory or demyelinating optic neuritis. Ophthalmology 113:315–323CrossRef
36.
go back to reference Yang EB, Hood DC, Rodarte C, Zhang X, Odel JG, Behrens MM (2007) Improvement in conduction velocity after optic neuritis measured with the multifocal VEP. Invest Ophthalmol Vis Sci 48:692–698PubMedCrossRef Yang EB, Hood DC, Rodarte C, Zhang X, Odel JG, Behrens MM (2007) Improvement in conduction velocity after optic neuritis measured with the multifocal VEP. Invest Ophthalmol Vis Sci 48:692–698PubMedCrossRef
37.
go back to reference Niklas A, Sebraoui H, Heß E, Wagner A, Bergh FT (2009) Outcome measures for trials of remyelinating agents in multiple sclerosis: retrospective longitudinal analysis of visual evoked potential latency. Mult Scler 15:68–74PubMedCrossRef Niklas A, Sebraoui H, Heß E, Wagner A, Bergh FT (2009) Outcome measures for trials of remyelinating agents in multiple sclerosis: retrospective longitudinal analysis of visual evoked potential latency. Mult Scler 15:68–74PubMedCrossRef
38.
go back to reference Holder GE (2006) Chiasmal and retrochiasmal lesions. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 857–865 Holder GE (2006) Chiasmal and retrochiasmal lesions. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 857–865
39.
go back to reference Halliday AM (1993) The visual evoked potential investigation of chiasmal and retrochiasmal lesions, field defects and systemic diseases. In: Halliday AM (ed) Evoked potentials in clinical testing. Churchill Livingstone, Edinburgh, pp 279–357 Halliday AM (1993) The visual evoked potential investigation of chiasmal and retrochiasmal lesions, field defects and systemic diseases. In: Halliday AM (ed) Evoked potentials in clinical testing. Churchill Livingstone, Edinburgh, pp 279–357
40.
go back to reference Brecelj J (1994) Electrodiagnostics of chiasmal compressive lesions. Int J Psychophysiol 16:263–272PubMedCrossRef Brecelj J (1994) Electrodiagnostics of chiasmal compressive lesions. Int J Psychophysiol 16:263–272PubMedCrossRef
41.
go back to reference Parmar DN, Sofat A, Bowman R, Bartlett JR, Holder GH (2000) Visual prognostic value of the pattern electroretinogram in chiasmal compression. Br J Ophthalmol 84:1024–1026PubMedCrossRefPubMedCentral Parmar DN, Sofat A, Bowman R, Bartlett JR, Holder GH (2000) Visual prognostic value of the pattern electroretinogram in chiasmal compression. Br J Ophthalmol 84:1024–1026PubMedCrossRefPubMedCentral
42.
go back to reference Brecelj J, Stirn-Kranjc B, Škrbec M (2000) Visual electrophysiology in children with tumours affecting the visual pathway. Doc Ophthamol 101:125–154CrossRef Brecelj J, Stirn-Kranjc B, Škrbec M (2000) Visual electrophysiology in children with tumours affecting the visual pathway. Doc Ophthamol 101:125–154CrossRef
43.
go back to reference Brecelj J (1992) A VEP study of the visual pathway function in compressive lesions of the optic chiasm. Full-field versus half-field stimulation. Electroenceph Clin Neurophysiol 84:209–218PubMedCrossRef Brecelj J (1992) A VEP study of the visual pathway function in compressive lesions of the optic chiasm. Full-field versus half-field stimulation. Electroenceph Clin Neurophysiol 84:209–218PubMedCrossRef
44.
go back to reference Brecelj J, Denišlič M, Škrbec M (1989) Visual evoked potential abnormalities in chiasmal lesions. Doc Ophthamol 73:139–148CrossRef Brecelj J, Denišlič M, Škrbec M (1989) Visual evoked potential abnormalities in chiasmal lesions. Doc Ophthamol 73:139–148CrossRef
45.
go back to reference Brecelj J, Denišlič M, Škrbec M (1992) Visual evoked potentials in compressive lesions of the optic chiasm. Neuro-Ophthalmology 12:207–214CrossRef Brecelj J, Denišlič M, Škrbec M (1992) Visual evoked potentials in compressive lesions of the optic chiasm. Neuro-Ophthalmology 12:207–214CrossRef
46.
go back to reference Brecelj J, Stirn-Kranjc B (1992) Electropysiologic evaluation of the visual pathway in children. Doc Ophthamol 79:313–323CrossRef Brecelj J, Stirn-Kranjc B (1992) Electropysiologic evaluation of the visual pathway in children. Doc Ophthamol 79:313–323CrossRef
47.
go back to reference Štrucl M, Brecelj J, Hawlina M (1997) Visual evoked potential abnormalities in compressive chiasmal lesions: the relevance of central visual field defects. Neuro-Ophthalmology 17:91–100CrossRef Štrucl M, Brecelj J, Hawlina M (1997) Visual evoked potential abnormalities in compressive chiasmal lesions: the relevance of central visual field defects. Neuro-Ophthalmology 17:91–100CrossRef
48.
go back to reference Mellow TB, Liasis A, Lyons R, Thompson D (2011) When do asymmetrical full-field pattern reversal visual evoked potentials indicate visual pathway dysfunction in children? Doc Ophthalmol 122:9–18PubMedCrossRef Mellow TB, Liasis A, Lyons R, Thompson D (2011) When do asymmetrical full-field pattern reversal visual evoked potentials indicate visual pathway dysfunction in children? Doc Ophthalmol 122:9–18PubMedCrossRef
49.
go back to reference Moradi P, Robson AG, Rose GE, Holder GE (2008) Electrophysiological monitoring in a patient with an optic nerve glioma. Doc Ophthalmol 117:171–174PubMedCrossRef Moradi P, Robson AG, Rose GE, Holder GE (2008) Electrophysiological monitoring in a patient with an optic nerve glioma. Doc Ophthalmol 117:171–174PubMedCrossRef
50.
go back to reference Mierlo CV, Spileers W, Legius E, Casteels I, Cassiman C (2013) Role of visual evoked potentials in the assessment and management of optic pathway gliomas in children. Doc Ophthamol 127:177–190 Mierlo CV, Spileers W, Legius E, Casteels I, Cassiman C (2013) Role of visual evoked potentials in the assessment and management of optic pathway gliomas in children. Doc Ophthamol 127:177–190
51.
go back to reference Hidajat RR, McLay JL, Goode DH, Hidayat JR (2006) The value of VEP in the diagnosis and post-operative monitoring of meningeoma. Doc Ophthalmol 113:165–169PubMedCrossRef Hidajat RR, McLay JL, Goode DH, Hidayat JR (2006) The value of VEP in the diagnosis and post-operative monitoring of meningeoma. Doc Ophthalmol 113:165–169PubMedCrossRef
52.
go back to reference Danesh-Meyer HV, Carroll SC, Gaskin BJ, Gao A, Gamble GD (2006) Correlation of the multifocal visual evoked potential and standard automated perimetry in compressive optic neuropathies. Invest Ophthalmol Vis Sci 47:1458–1463PubMedCrossRef Danesh-Meyer HV, Carroll SC, Gaskin BJ, Gao A, Gamble GD (2006) Correlation of the multifocal visual evoked potential and standard automated perimetry in compressive optic neuropathies. Invest Ophthalmol Vis Sci 47:1458–1463PubMedCrossRef
53.
go back to reference Kurent A, Stirn-Kranjc A, Brecelj J (2014) Eletroretinographic characteristics in children with infantile nystagmus syndrome and early onset retinal dystrophies. Eur J Ophthalmol (in press) Kurent A, Stirn-Kranjc A, Brecelj J (2014) Eletroretinographic characteristics in children with infantile nystagmus syndrome and early onset retinal dystrophies. Eur J Ophthalmol (in press)
54.
go back to reference Sami DA, Saunders D, Thompson DA, Russell-Eggitt IM, Nischal KK, Jeffery G, Dattani M, Clement RA, Liassis A, Taylor DS (2005) The achiasmia spectrum: congenitally reduced chiasmal decussation. Br J Ophthalmol 89:1311–1317PubMedCrossRefPubMedCentral Sami DA, Saunders D, Thompson DA, Russell-Eggitt IM, Nischal KK, Jeffery G, Dattani M, Clement RA, Liassis A, Taylor DS (2005) The achiasmia spectrum: congenitally reduced chiasmal decussation. Br J Ophthalmol 89:1311–1317PubMedCrossRefPubMedCentral
55.
go back to reference Thompson DA, Kriss A, Chong K, Harris C, Russell-Eggitt I, Shawat F, Neville BGR, Aclimandos W, Taylor DSI (1999) Visual evoked potential evidence of chiasmal hypoplasia. Ophthalmology 106:2354–2361PubMedCrossRef Thompson DA, Kriss A, Chong K, Harris C, Russell-Eggitt I, Shawat F, Neville BGR, Aclimandos W, Taylor DSI (1999) Visual evoked potential evidence of chiasmal hypoplasia. Ophthalmology 106:2354–2361PubMedCrossRef
56.
go back to reference Apkarian P, Bour LJ, Barth PG, Wenniger-Prick L, Verbeeten B (1995) Non-decussating retinal-fugal fibre syndrome. An inborn achiasmatic malformation associated with visuotopic misrouting, visual evoked potential ipsilateral asymmetry and nystagmus. Brain 118:1195–1216PubMedCrossRef Apkarian P, Bour LJ, Barth PG, Wenniger-Prick L, Verbeeten B (1995) Non-decussating retinal-fugal fibre syndrome. An inborn achiasmatic malformation associated with visuotopic misrouting, visual evoked potential ipsilateral asymmetry and nystagmus. Brain 118:1195–1216PubMedCrossRef
58.
go back to reference Apkarian P, Reits D, Spekreijse H, van Dorp D (1983) A decisive electrophysiological test for human albinism. Electroenceph Clin Neurophysiol 55:513–531PubMedCrossRef Apkarian P, Reits D, Spekreijse H, van Dorp D (1983) A decisive electrophysiological test for human albinism. Electroenceph Clin Neurophysiol 55:513–531PubMedCrossRef
59.
go back to reference Kriss A, Russell-Eggitt I, Taylor D (1990) Childhood albinism. Visual electrophysiological features. Ophthalmic Paediatr Genet 11:185–192PubMedCrossRef Kriss A, Russell-Eggitt I, Taylor D (1990) Childhood albinism. Visual electrophysiological features. Ophthalmic Paediatr Genet 11:185–192PubMedCrossRef
60.
go back to reference Kriss A, Russell-Eggitt I, Harris CM, Lloyd IC, Taylor D (1992) Aspects of albinism. Ophthalmic Paediatr Genet 13:89–100PubMedCrossRef Kriss A, Russell-Eggitt I, Harris CM, Lloyd IC, Taylor D (1992) Aspects of albinism. Ophthalmic Paediatr Genet 13:89–100PubMedCrossRef
61.
go back to reference Dorey SE, Neveu MM, Burton LC, Sloper JJ, Holder GE (2003) The clinical features of albinism and their correlation with visual evoked potentials. Br J Ophthalmol 87:767–772PubMedCrossRefPubMedCentral Dorey SE, Neveu MM, Burton LC, Sloper JJ, Holder GE (2003) The clinical features of albinism and their correlation with visual evoked potentials. Br J Ophthalmol 87:767–772PubMedCrossRefPubMedCentral
62.
go back to reference Apkarian P, Bour LJ (2006) Aberrant albino and achiasmat visual pathways: noninvasive electrophysiological assessment. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 369–397 Apkarian P, Bour LJ (2006) Aberrant albino and achiasmat visual pathways: noninvasive electrophysiological assessment. In: Heckenlively JR, Arden GB  (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 369–397
63.
go back to reference Brecelj J, Sustar M, Pečarič-Meglič N, Škrbec M, Stirn-Kranjc B (2012) VEP characteristics in children with achiasmia, in comparison to albino and healthy children. Doc Ophthalmol 124:109–123PubMedCrossRef Brecelj J, Sustar M, Pečarič-Meglič N, Škrbec M, Stirn-Kranjc B (2012) VEP characteristics in children with achiasmia, in comparison to albino and healthy children. Doc Ophthalmol 124:109–123PubMedCrossRef
64.
go back to reference Hoffmann MB, Seufert PS, Bach M (2004) Simulated nystagmus suppresses pattern-reversal but not pattern-onset visual evoked potentials. Clin Neurophysiol 115(11):2659–2665PubMedCrossRef Hoffmann MB, Seufert PS, Bach M (2004) Simulated nystagmus suppresses pattern-reversal but not pattern-onset visual evoked potentials. Clin Neurophysiol 115(11):2659–2665PubMedCrossRef
65.
go back to reference Brecelj J, Stirn-Kranjc B, Pečarič-Meglič N (2012) Achiasmia, electrodiagnosis, and clinical characteristics. In: Harris C, Gottlob I, Sanders J (eds) The challenge of nystagmus: Proceedings of the nystagmus network research workshop, Abingdon, UK, 2–5 September 2009. Nystagmus Network, pp 143–168 Brecelj J, Stirn-Kranjc B, Pečarič-Meglič N (2012) Achiasmia, electrodiagnosis, and clinical characteristics. In: Harris C, Gottlob I, Sanders J (eds) The challenge of nystagmus: Proceedings of the nystagmus network research workshop, Abingdon, UK, 2–5 September 2009. Nystagmus Network, pp 143–168
66.
go back to reference Brecelj J, Stirn-Kranjc B, Pečarič-Meglič N, Škrbec M (2007) VEP asymmetry with ophthalmological and MRI findings in two achiasmatic children. Doc Ophthalmol 114:53–65PubMedCrossRef Brecelj J, Stirn-Kranjc B, Pečarič-Meglič N, Škrbec M (2007) VEP asymmetry with ophthalmological and MRI findings in two achiasmatic children. Doc Ophthalmol 114:53–65PubMedCrossRef
67.
go back to reference Brown MC, Southern CL, Anbarasu A, Kaye SB, Fisher AC, Hagan RP, Newman WD (2006) Congenital absence of optic chiasm: demonstration of an uncrossed visual pathway using monocular flash visual evoked potentials. Doc Ophthalmol 113:1–4PubMedCrossRef Brown MC, Southern CL, Anbarasu A, Kaye SB, Fisher AC, Hagan RP, Newman WD (2006) Congenital absence of optic chiasm: demonstration of an uncrossed visual pathway using monocular flash visual evoked potentials. Doc Ophthalmol 113:1–4PubMedCrossRef
68.
go back to reference Kriss A (1996) Nystagmus and pediatric visual electrophysiology. In: Kimura J, Shibasaki H (eds) Recent advances in clinical neurophysiology: Proceedings of the Xth international congress of EMG and clinical neurophysiology, Kyoto, Japan 15–19 October 1995. Elsevier, Amsterdam, pp 480–487 Kriss A (1996) Nystagmus and pediatric visual electrophysiology. In: Kimura J, Shibasaki H (eds) Recent advances in clinical neurophysiology: Proceedings of the Xth international congress of EMG and clinical neurophysiology, Kyoto, Japan 15–19 October 1995. Elsevier, Amsterdam, pp 480–487
69.
go back to reference Pomeranz HD, Agadzi AK, Ekesten B (2006) Achiasmia and unilateral nerve hypoplasia in an otherwise healthy subject. Acta Ophthalmol Scand 84:140–144PubMedCrossRef Pomeranz HD, Agadzi AK, Ekesten B (2006) Achiasmia and unilateral nerve hypoplasia in an otherwise healthy subject. Acta Ophthalmol Scand 84:140–144PubMedCrossRef
70.
go back to reference Szanyi J, Kubová Z, Kremláček J, Langrová J, Vít F, Kuba M, Szanyi J, Plíšek S (2012) Pattern and motion-related visual-evoked potentials in neuroborreliosis: follow-up study. J Clin Neurophysiol 29:174–180PubMedCrossRef Szanyi J, Kubová Z, Kremláček J, Langrová J, Vít F, Kuba M, Szanyi J, Plíšek S (2012) Pattern and motion-related visual-evoked potentials in neuroborreliosis: follow-up study. J Clin Neurophysiol 29:174–180PubMedCrossRef
71.
go back to reference Tekavčič Pompe M, Stirn Kranjc B, Brecelj J (2014) Chromatic visual evoked potentials in paediatric population. Doc Ophthalmol 128:43–52CrossRef Tekavčič Pompe M, Stirn Kranjc B, Brecelj J (2014) Chromatic visual evoked potentials in paediatric population. Doc Ophthalmol 128:43–52CrossRef
Metadata
Title
Visual electrophysiology in the clinical evaluation of optic neuritis, chiasmal tumours, achiasmia, and ocular albinism: an overview
Author
Jelka Brecelj
Publication date
01-10-2014
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 2/2014
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-014-9448-8

Other articles of this Issue 2/2014

Documenta Ophthalmologica 2/2014 Go to the issue