Skip to main content
Top
Published in: Calcified Tissue International 5/2017

01-05-2017 | Review

The Central Nervous System and Bone Metabolism: An Evolving Story

Authors: Paul Dimitri, Cliff Rosen

Published in: Calcified Tissue International | Issue 5/2017

Login to get access

Abstract

Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.
Literature
1.
go back to reference Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432PubMedCrossRef Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432PubMedCrossRef
2.
go back to reference Halaas JL et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546PubMedCrossRef Halaas JL et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546PubMedCrossRef
3.
4.
go back to reference Thomas T et al (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140(4):1630–1638PubMed Thomas T et al (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140(4):1630–1638PubMed
5.
go back to reference Cornish J et al (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175(2):405–415PubMedCrossRef Cornish J et al (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175(2):405–415PubMedCrossRef
6.
go back to reference Gordeladze JO et al (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85(4):825–836PubMedCrossRef Gordeladze JO et al (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85(4):825–836PubMedCrossRef
7.
8.
go back to reference Ducy P et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100(2):197–207PubMedCrossRef Ducy P et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100(2):197–207PubMedCrossRef
9.
go back to reference Tartaglia LA et al (1995) Identification and expression cloning of a leptin receptor. OB-R. Cell 83(7):1263–1271PubMedCrossRef Tartaglia LA et al (1995) Identification and expression cloning of a leptin receptor. OB-R. Cell 83(7):1263–1271PubMedCrossRef
10.
go back to reference Takeda S et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111(3):305–317PubMedCrossRef Takeda S et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111(3):305–317PubMedCrossRef
11.
go back to reference Walther DJ et al (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299(5603):76PubMedCrossRef Walther DJ et al (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299(5603):76PubMedCrossRef
12.
go back to reference Schmitt JA et al (2006) Serotonin and human cognitive performance. Curr Pharm Des 12(20):2473–2486PubMedCrossRef Schmitt JA et al (2006) Serotonin and human cognitive performance. Curr Pharm Des 12(20):2473–2486PubMedCrossRef
13.
go back to reference Alenina N, Klempin F (2015) The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res 277:49–57PubMedCrossRef Alenina N, Klempin F (2015) The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res 277:49–57PubMedCrossRef
14.
go back to reference Kode A et al (2014) Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nat Med 20(11):1228–1229PubMedCrossRef Kode A et al (2014) Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nat Med 20(11):1228–1229PubMedCrossRef
16.
go back to reference Gong Y et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523PubMedCrossRef Gong Y et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523PubMedCrossRef
17.
go back to reference Feuer AJ et al (2015) Use of selective serotonin reuptake inhibitors and bone mass in adolescents: an NHANES study. Bone 78:28–33PubMedCrossRef Feuer AJ et al (2015) Use of selective serotonin reuptake inhibitors and bone mass in adolescents: an NHANES study. Bone 78:28–33PubMedCrossRef
18.
go back to reference Sheu YH et al (2015) SSRI use and risk of fractures among perimenopausal women without mental disorders. Inj Prev 21(6):397–403PubMedCrossRef Sheu YH et al (2015) SSRI use and risk of fractures among perimenopausal women without mental disorders. Inj Prev 21(6):397–403PubMedCrossRef
19.
go back to reference Rauma PH et al (2016) Effects of antidepressants on postmenopausal bone loss—A 5 year longitudinal study from the OSTPRE cohort. Bone 89:25–31PubMedCrossRef Rauma PH et al (2016) Effects of antidepressants on postmenopausal bone loss—A 5 year longitudinal study from the OSTPRE cohort. Bone 89:25–31PubMedCrossRef
21.
go back to reference Cui Y et al (2014) Reply to Lrp5 regulation of bone mass and gut serotonin synthesis. Nat Med 20(11):1229–1230PubMedCrossRef Cui Y et al (2014) Reply to Lrp5 regulation of bone mass and gut serotonin synthesis. Nat Med 20(11):1229–1230PubMedCrossRef
22.
go back to reference Kode A et al (2014) Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nat Med 20(11):1228–1229PubMedCrossRef Kode A et al (2014) Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nat Med 20(11):1228–1229PubMedCrossRef
23.
go back to reference Yadav VK et al (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138(5):976–989PubMedPubMedCentralCrossRef Yadav VK et al (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138(5):976–989PubMedPubMedCentralCrossRef
24.
go back to reference Oury F et al (2010) CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev 24(20):2330–2342PubMedPubMedCentralCrossRef Oury F et al (2010) CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev 24(20):2330–2342PubMedPubMedCentralCrossRef
25.
go back to reference Yadav VK et al (2011) Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. J Exp Med 208(1):41–52PubMedPubMedCentralCrossRef Yadav VK et al (2011) Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. J Exp Med 208(1):41–52PubMedPubMedCentralCrossRef
26.
go back to reference Sandhu HS, Herskovits MS, Singh IJ (1987) Effect of surgical sympathectomy on bone remodeling at rat incisor and molar root sockets. Anat Rec 219(1):32–38PubMedCrossRef Sandhu HS, Herskovits MS, Singh IJ (1987) Effect of surgical sympathectomy on bone remodeling at rat incisor and molar root sockets. Anat Rec 219(1):32–38PubMedCrossRef
27.
go back to reference Schwartzman RJ (2000) New treatments for reflex sympathetic dystrophy. N Engl J Med 343(9):654–656PubMedCrossRef Schwartzman RJ (2000) New treatments for reflex sympathetic dystrophy. N Engl J Med 343(9):654–656PubMedCrossRef
28.
go back to reference Mano T, Nishimura N, Iwase S (2010) Sympathetic neural influence on bone metabolism in microgravity. Acta Physiol Hung 97(4):354–361PubMedCrossRef Mano T, Nishimura N, Iwase S (2010) Sympathetic neural influence on bone metabolism in microgravity. Acta Physiol Hung 97(4):354–361PubMedCrossRef
29.
30.
go back to reference Vignaux G et al (2013) Bone remodeling is regulated by inner ear vestibular signals. J Bone Miner Res 28(10):2136–2144PubMedCrossRef Vignaux G et al (2013) Bone remodeling is regulated by inner ear vestibular signals. J Bone Miner Res 28(10):2136–2144PubMedCrossRef
31.
go back to reference Elefteriou F et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434(7032):514–520PubMedCrossRef Elefteriou F et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434(7032):514–520PubMedCrossRef
32.
go back to reference Kondo H, Togari A (2011) Continuous treatment with a low-dose beta-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int 88(1):23–32PubMedCrossRef Kondo H, Togari A (2011) Continuous treatment with a low-dose beta-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int 88(1):23–32PubMedCrossRef
34.
35.
go back to reference Stanley BG et al (1986) Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7(6):1189–1192PubMedCrossRef Stanley BG et al (1986) Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7(6):1189–1192PubMedCrossRef
36.
go back to reference Erickson JC, Hollopeter G, Palmiter RD (1996) Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274(5293):1704–1707PubMedCrossRef Erickson JC, Hollopeter G, Palmiter RD (1996) Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274(5293):1704–1707PubMedCrossRef
37.
go back to reference Baldock PA et al (2005) Hypothalamic control of bone formation: distinct actions of leptin and Y2 receptor pathways. J Bone Miner Res 20(10):1851–1857PubMedCrossRef Baldock PA et al (2005) Hypothalamic control of bone formation: distinct actions of leptin and Y2 receptor pathways. J Bone Miner Res 20(10):1851–1857PubMedCrossRef
38.
go back to reference Baldock PA et al (2009) Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One 4(12):e8415PubMedPubMedCentralCrossRef Baldock PA et al (2009) Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One 4(12):e8415PubMedPubMedCentralCrossRef
39.
go back to reference Baldock PA et al (2006) Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res 21(10):1600–1607PubMedCrossRef Baldock PA et al (2006) Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res 21(10):1600–1607PubMedCrossRef
40.
go back to reference Sainsbury A et al (2003) Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Mol Cell Biol 23(15):5225–5233PubMedPubMedCentralCrossRef Sainsbury A et al (2003) Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Mol Cell Biol 23(15):5225–5233PubMedPubMedCentralCrossRef
41.
go back to reference Shi YC, Baldock PA (2012) Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 50(2):430–436PubMedCrossRef Shi YC, Baldock PA (2012) Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 50(2):430–436PubMedCrossRef
42.
go back to reference Shao P, Ohtsuka-Isoya M, Shinoda H (2003) Circadian rhythms in serum bone markers and their relation to the effect of etidronate in rats. Chronobiol Int 20(2):325–336PubMedCrossRef Shao P, Ohtsuka-Isoya M, Shinoda H (2003) Circadian rhythms in serum bone markers and their relation to the effect of etidronate in rats. Chronobiol Int 20(2):325–336PubMedCrossRef
43.
go back to reference Buijs FN et al (2016) The circadian system: a regulatory feedback network of periphery and brain. Physiology (Bethesda) 31(3):170–181 Buijs FN et al (2016) The circadian system: a regulatory feedback network of periphery and brain. Physiology (Bethesda) 31(3):170–181
44.
go back to reference Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941PubMedCrossRef Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941PubMedCrossRef
45.
46.
go back to reference Fu L et al (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122(5):803–815PubMedCrossRef Fu L et al (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122(5):803–815PubMedCrossRef
47.
48.
go back to reference Xu C et al (2016) Circadian clock regulates bone resorption in mice. J Bone Miner Res 31(7):1344–1355PubMedCrossRef Xu C et al (2016) Circadian clock regulates bone resorption in mice. J Bone Miner Res 31(7):1344–1355PubMedCrossRef
49.
go back to reference Boucher H et al (2016) Circadian clock genes modulate human bone marrow mesenchymal stem cell differentiation, migration and cell cycle. PLoS One 11(1):e0146674PubMedPubMedCentralCrossRef Boucher H et al (2016) Circadian clock genes modulate human bone marrow mesenchymal stem cell differentiation, migration and cell cycle. PLoS One 11(1):e0146674PubMedPubMedCentralCrossRef
51.
52.
53.
go back to reference Kristensen P et al (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393(6680):72–76PubMedCrossRef Kristensen P et al (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393(6680):72–76PubMedCrossRef
54.
go back to reference Ahn JD et al (2006) Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology 147(7):3196–3202PubMedCrossRef Ahn JD et al (2006) Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology 147(7):3196–3202PubMedCrossRef
55.
go back to reference Singh MK, Elefteriou F, Karsenty G (2008) Cocaine and amphetamine-regulated transcript may regulate bone remodeling as a circulating molecule. Endocrinology 149(8):3933–3941PubMedPubMedCentralCrossRef Singh MK, Elefteriou F, Karsenty G (2008) Cocaine and amphetamine-regulated transcript may regulate bone remodeling as a circulating molecule. Endocrinology 149(8):3933–3941PubMedPubMedCentralCrossRef
56.
go back to reference Tien D et al (2003) Vagal afferents are necessary for the establishment but not the maintenance of kainic acid-induced hyperalgesia in mice. Pain 102(1–2):39–49PubMedCrossRef Tien D et al (2003) Vagal afferents are necessary for the establishment but not the maintenance of kainic acid-induced hyperalgesia in mice. Pain 102(1–2):39–49PubMedCrossRef
57.
go back to reference Shi Y et al (2010) Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 11(3):231–238PubMedPubMedCentralCrossRef Shi Y et al (2010) Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 11(3):231–238PubMedPubMedCentralCrossRef
58.
go back to reference Bajayo A et al (2012) Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci USA 109(38):15455–15460PubMedPubMedCentralCrossRef Bajayo A et al (2012) Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci USA 109(38):15455–15460PubMedPubMedCentralCrossRef
59.
go back to reference Eimar H et al (2013) Cholinergic regulation of bone. J Musculoskelet Neuronal Interact 13(2):124–132PubMed Eimar H et al (2013) Cholinergic regulation of bone. J Musculoskelet Neuronal Interact 13(2):124–132PubMed
60.
go back to reference Offley SC et al (2005) Capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. J Bone Miner Res 20(2):257–267PubMedCrossRef Offley SC et al (2005) Capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. J Bone Miner Res 20(2):257–267PubMedCrossRef
61.
go back to reference Ding Y et al (2010) Effects of capsaicin-induced sensory denervation on bone metabolism in adult rats. Bone 46(6):1591–1596PubMedCrossRef Ding Y et al (2010) Effects of capsaicin-induced sensory denervation on bone metabolism in adult rats. Bone 46(6):1591–1596PubMedCrossRef
62.
go back to reference Cornish J et al (2001) Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone 29(2):162–168PubMedCrossRef Cornish J et al (2001) Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone 29(2):162–168PubMedCrossRef
63.
go back to reference Ishizuka K et al (2005) Inhibitory effect of CGRP on osteoclast formation by mouse bone marrow cells treated with isoproterenol. Neurosci Lett 379(1):47–51PubMedCrossRef Ishizuka K et al (2005) Inhibitory effect of CGRP on osteoclast formation by mouse bone marrow cells treated with isoproterenol. Neurosci Lett 379(1):47–51PubMedCrossRef
64.
go back to reference Wang L et al (2010) Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone 46(5):1369–1379PubMedCrossRef Wang L et al (2010) Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone 46(5):1369–1379PubMedCrossRef
65.
go back to reference Okajima K et al (2004) Activation of capsaicin-sensitive sensory neurons by carvedilol, a nonselective beta-blocker, in spontaneous hypertensive rats. J Pharmacol Exp Ther 309(2):684–691PubMedCrossRef Okajima K et al (2004) Activation of capsaicin-sensitive sensory neurons by carvedilol, a nonselective beta-blocker, in spontaneous hypertensive rats. J Pharmacol Exp Ther 309(2):684–691PubMedCrossRef
66.
go back to reference Cherruau M et al (2003) Chemical sympathectomy-induced changes in TH-, VIP-, and CGRP-immunoreactive fibers in the rat mandible periosteum: influence on bone resorption. J Cell Physiol 194(3):341–348PubMedCrossRef Cherruau M et al (2003) Chemical sympathectomy-induced changes in TH-, VIP-, and CGRP-immunoreactive fibers in the rat mandible periosteum: influence on bone resorption. J Cell Physiol 194(3):341–348PubMedCrossRef
67.
go back to reference Brighton PJ, Szekeres PG, Willars GB (2004) Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev 56(2):231–248PubMedCrossRef Brighton PJ, Szekeres PG, Willars GB (2004) Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev 56(2):231–248PubMedCrossRef
68.
go back to reference Vigo E et al (2007) Novel role of the anorexigenic peptide neuromedin U in the control of LH secretion and its regulation by gonadal hormones and photoperiod. Am J Physiol Endocrinol Metab 293(5):E1265–E1273PubMedCrossRef Vigo E et al (2007) Novel role of the anorexigenic peptide neuromedin U in the control of LH secretion and its regulation by gonadal hormones and photoperiod. Am J Physiol Endocrinol Metab 293(5):E1265–E1273PubMedCrossRef
69.
70.
go back to reference Redman J, Armstrong S, Ng KT (1983) Free-running activity rhythms in the rat: entrainment by melatonin. Science 219(4588):1089–1091PubMedCrossRef Redman J, Armstrong S, Ng KT (1983) Free-running activity rhythms in the rat: entrainment by melatonin. Science 219(4588):1089–1091PubMedCrossRef
71.
go back to reference Grossman E, Laudon M, Zisapel N (2011) Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vasc Health Risk Manag 7:577–584PubMedPubMedCentral Grossman E, Laudon M, Zisapel N (2011) Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vasc Health Risk Manag 7:577–584PubMedPubMedCentral
72.
go back to reference Cagnacci A, Elliott JA, Yen SS (1992) Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab 75(2):447–452PubMed Cagnacci A, Elliott JA, Yen SS (1992) Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab 75(2):447–452PubMed
73.
74.
go back to reference Radio NM, Doctor JS, Witt-Enderby PA (2006) Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 40(4):332–342PubMedCrossRef Radio NM, Doctor JS, Witt-Enderby PA (2006) Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 40(4):332–342PubMedCrossRef
75.
go back to reference Zhang L et al (2010) Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression. J Pineal Res 49(4):364–372PubMedCrossRef Zhang L et al (2010) Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression. J Pineal Res 49(4):364–372PubMedCrossRef
76.
go back to reference Park KH et al (2011) Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 51(2):187–194PubMedCrossRef Park KH et al (2011) Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 51(2):187–194PubMedCrossRef
77.
go back to reference Ostrowska Z et al (2002) The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions. Neuro Endocrinol Lett 23(5–6):417–425PubMed Ostrowska Z et al (2002) The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions. Neuro Endocrinol Lett 23(5–6):417–425PubMed
78.
go back to reference Koyama H et al (2002) Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 17(7):1219–1229PubMedCrossRef Koyama H et al (2002) Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 17(7):1219–1229PubMedCrossRef
79.
go back to reference Uslu S et al (2007) Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats. Anal Quant Cytol Histol 29(5):317–325PubMed Uslu S et al (2007) Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats. Anal Quant Cytol Histol 29(5):317–325PubMed
80.
81.
go back to reference Witt-Enderby PA et al (2012) Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res 53(4):374–384PubMedCrossRef Witt-Enderby PA et al (2012) Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res 53(4):374–384PubMedCrossRef
82.
go back to reference Ladizesky MG et al (2001) Effect of melatonin on bone metabolism in ovariectomized rats. Life Sci 70(5):557–565PubMedCrossRef Ladizesky MG et al (2001) Effect of melatonin on bone metabolism in ovariectomized rats. Life Sci 70(5):557–565PubMedCrossRef
83.
go back to reference Cardinali DP et al (2003) Melatonin effects on bone: experimental facts and clinical perspectives. J Pineal Res 34(2):81–87PubMedCrossRef Cardinali DP et al (2003) Melatonin effects on bone: experimental facts and clinical perspectives. J Pineal Res 34(2):81–87PubMedCrossRef
84.
go back to reference Amstrup AK et al (2015) Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial. J Pineal Res 59(2):221–229PubMedCrossRef Amstrup AK et al (2015) Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial. J Pineal Res 59(2):221–229PubMedCrossRef
85.
86.
go back to reference Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids 66(2–3):101–121PubMedCrossRef Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids 66(2–3):101–121PubMedCrossRef
88.
go back to reference Ishac EJ et al (1996) Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol 118:2023–2028PubMedPubMedCentralCrossRef Ishac EJ et al (1996) Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol 118:2023–2028PubMedPubMedCentralCrossRef
90.
go back to reference Idris AI et al (2009) Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab 10(2):139–147PubMedCrossRef Idris AI et al (2009) Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab 10(2):139–147PubMedCrossRef
91.
go back to reference Tam J et al (2006) Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 70(3):786–792PubMedCrossRef Tam J et al (2006) Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 70(3):786–792PubMedCrossRef
92.
go back to reference Tam J et al (2008) The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J. 22(1):285–294PubMedCrossRef Tam J et al (2008) The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J. 22(1):285–294PubMedCrossRef
93.
go back to reference Idris AI et al (2008) Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149(11):5619–5626PubMedCrossRef Idris AI et al (2008) Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149(11):5619–5626PubMedCrossRef
94.
96.
go back to reference Ofek O et al (2011) CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J Bone Miner Res 26(2):308–316PubMedCrossRef Ofek O et al (2011) CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J Bone Miner Res 26(2):308–316PubMedCrossRef
97.
go back to reference Sophocleous A et al (2011) The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology 152(6):2141–2149PubMedCrossRef Sophocleous A et al (2011) The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology 152(6):2141–2149PubMedCrossRef
98.
go back to reference Idris AI, Ralston SH (2012) Role of cannabinoids in the regulation of bone remodeling. Front Endocrinol (Lausanne) 3:136 Idris AI, Ralston SH (2012) Role of cannabinoids in the regulation of bone remodeling. Front Endocrinol (Lausanne) 3:136
99.
go back to reference Stefan N, Stumvoll M (2002) Adiponectin–its role in metabolism and beyond. Horm Metab Res 34(9):469–474PubMedCrossRef Stefan N, Stumvoll M (2002) Adiponectin–its role in metabolism and beyond. Horm Metab Res 34(9):469–474PubMedCrossRef
100.
go back to reference Wu Y et al (2014) Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice. Am J Physiol Endocrinol Metab 306(12):E1418–E1430PubMedPubMedCentralCrossRef Wu Y et al (2014) Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice. Am J Physiol Endocrinol Metab 306(12):E1418–E1430PubMedPubMedCentralCrossRef
101.
go back to reference Kajimura D et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell 17(6):901–915 Kajimura D et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell 17(6):901–915
Metadata
Title
The Central Nervous System and Bone Metabolism: An Evolving Story
Authors
Paul Dimitri
Cliff Rosen
Publication date
01-05-2017
Publisher
Springer US
Published in
Calcified Tissue International / Issue 5/2017
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-016-0179-6

Other articles of this Issue 5/2017

Calcified Tissue International 5/2017 Go to the issue