Skip to main content
Top
Published in: Respiratory Research 1/2022

Open Access 01-12-2022 | Research

The association between regional transcriptome profiles and lung volumes in response to mechanical ventilation and lung injury

Authors: Yong Song, Seiha Yen, Melissa Preissner, Ellen Bennett, Stephen Dubsky, Andreas Fouras, Peter A. Dargaville, Graeme R. Zosky

Published in: Respiratory Research | Issue 1/2022

Login to get access

Abstract

Background

Lung inhomogeneity plays a pivotal role in the development of ventilator-induced lung injury (VILI), particularly in the context of pre-existing lung injury. The mechanisms that underlie this interaction are poorly understood. We aimed to elucidate the regional transcriptomic response to mechanical ventilation (MV), with or without pre-existing lung injury, and link this to the regional lung volume response to MV.

Methods

Adult female BALB/c mice were randomly assigned into one of four groups: Saline, MV, lipopolysaccharide (LPS) or LPS/MV. Lung volumes (tidal volume, Vt; end-expiratory volume, EEV) were measured at baseline or after 2 h of ventilation using four-dimensional computed tomography (4DCT). Regional lung tissue samples corresponding to specific imaging regions were analysed for the transcriptome response by RNA-Seq. Bioinformatics analyses were conducted and the regional expression of dysregulated gene clusters was then correlated with the lung volume response.

Results

MV in the absence of pre-existing lung injury was associated with regional variations in tidal stretch. The addition of LPS also caused regional increases in EEV. We identified 345, 141 and 184 region-specific differentially expressed genes in response to MV, LPS and LPS/MV, respectively. Amongst these candidate genes, up-regulation of genes related to immune responses were positively correlated with increased regional tidal stretch in the MV group, while dysregulation of genes associated with endothelial barrier related pathways were associated with increased regional EEV and Vt when MV was combined with LPS. Further protein–protein interaction analysis led to the identification of two protein clusters representing the PI3K/Akt and MEK/ERK signalling hubs which may explain the interaction between MV and LPS exposure.

Conclusion

The biological pathways associated with lung volume inhomogeneity during MV, and MV in the presence of pre-existing inflammation, differed. MV related tidal stretch induced up-regulation of immune response genes, while LPS combined with MV disrupted PI3K/Akt and MEK/ERK signalling.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dreyfuss D, Soler P, Saumon G. Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med. 1995;151:1568–75.CrossRef Dreyfuss D, Soler P, Saumon G. Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med. 1995;151:1568–75.CrossRef
2.
go back to reference Altemeier WA, McKinney S, Krueger M, Glenny RW. Effect of posture on regional gas exchange in pigs. J Appl Physiol. 1985;2004(97):2104–11. Altemeier WA, McKinney S, Krueger M, Glenny RW. Effect of posture on regional gas exchange in pigs. J Appl Physiol. 1985;2004(97):2104–11.
3.
go back to reference Cressoni M, Cadringher P, Chiurazzi C, Amini M, Gallazzi E, Marino A, Brioni M, Carlesso E, Chiumello D, Quintel M, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189:149–58.PubMed Cressoni M, Cadringher P, Chiurazzi C, Amini M, Gallazzi E, Marino A, Brioni M, Carlesso E, Chiumello D, Quintel M, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189:149–58.PubMed
4.
go back to reference Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Crit Care. 2017;21:312.CrossRef Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Crit Care. 2017;21:312.CrossRef
5.
go back to reference Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury. Clin Chest Med. 2016;37:633–46.CrossRef Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury. Clin Chest Med. 2016;37:633–46.CrossRef
6.
go back to reference Acute Respiratory Distress Syndrome N, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef Acute Respiratory Distress Syndrome N, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef
7.
go back to reference Oeckler RA, Hubmayr RD. Ventilator-associated lung injury: a search for better therapeutic targets. Eur Respir J. 2007;30:1216–26.CrossRef Oeckler RA, Hubmayr RD. Ventilator-associated lung injury: a search for better therapeutic targets. Eur Respir J. 2007;30:1216–26.CrossRef
8.
go back to reference Villar J, Blanco J, Kacmarek RM. Current incidence and outcome of the acute respiratory distress syndrome. Curr Opin Crit Care. 2016;22:1–6.CrossRef Villar J, Blanco J, Kacmarek RM. Current incidence and outcome of the acute respiratory distress syndrome. Curr Opin Crit Care. 2016;22:1–6.CrossRef
9.
go back to reference Kilpatrick B, Slinger P. Lung protective strategies in anaesthesia. Br J Anaesth. 2010;105(Suppl 1):i108-116.CrossRef Kilpatrick B, Slinger P. Lung protective strategies in anaesthesia. Br J Anaesth. 2010;105(Suppl 1):i108-116.CrossRef
10.
go back to reference Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377:1904–5.CrossRef Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377:1904–5.CrossRef
11.
go back to reference Cressoni M, Chiumello D, Chiurazzi C, Brioni M, Algieri I, Gotti M, Nikolla K, Massari D, Cammaroto A, Colombo A, et al. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome. Eur Respir J. 2016;47:233–42.CrossRef Cressoni M, Chiumello D, Chiurazzi C, Brioni M, Algieri I, Gotti M, Nikolla K, Massari D, Cammaroto A, Colombo A, et al. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome. Eur Respir J. 2016;47:233–42.CrossRef
12.
go back to reference Motta-Ribeiro GC, Hashimoto S, Winkler T, Baron RM, Grogg K, Paula L, Santos A, Zeng C, Hibbert K, Harris RS, et al. Deterioration of regional lung strain and inflammation during early lung injury. Am J Respir Crit Care Med. 2018;198:891–902.CrossRef Motta-Ribeiro GC, Hashimoto S, Winkler T, Baron RM, Grogg K, Paula L, Santos A, Zeng C, Hibbert K, Harris RS, et al. Deterioration of regional lung strain and inflammation during early lung injury. Am J Respir Crit Care Med. 2018;198:891–902.CrossRef
13.
go back to reference Yen S, Preissner M, Bennett E, Dubsky S, Carnibella R, Murrie R, Fouras A, Dargaville PA, Zosky GR. Interaction between regional lung volumes and ventilator-induced lung injury in the normal and endotoxemic lung. Am J Physiol Lung Cell Mol Physiol. 2020;318:L494–9.CrossRef Yen S, Preissner M, Bennett E, Dubsky S, Carnibella R, Murrie R, Fouras A, Dargaville PA, Zosky GR. Interaction between regional lung volumes and ventilator-induced lung injury in the normal and endotoxemic lung. Am J Physiol Lung Cell Mol Physiol. 2020;318:L494–9.CrossRef
14.
go back to reference Yen S, Preissner M, Bennett E, Dubsky S, Carnibella R, O’Toole R, Roddam L, Jones H, Dargaville PA, Fouras A, Zosky GR. The link between regional tidal stretch and lung injury during mechanical ventilation. Am J Respir Cell Mol Biol. 2019;60:569–77.CrossRef Yen S, Preissner M, Bennett E, Dubsky S, Carnibella R, O’Toole R, Roddam L, Jones H, Dargaville PA, Fouras A, Zosky GR. The link between regional tidal stretch and lung injury during mechanical ventilation. Am J Respir Cell Mol Biol. 2019;60:569–77.CrossRef
15.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CrossRef Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CrossRef
16.
go back to reference Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47:W234–41.CrossRef Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47:W234–41.CrossRef
17.
go back to reference da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef
18.
go back to reference Yen S, Song Y, Preissner M, Bennett E, Wilson R, Pavez M, Dubsky S, Dargaville PA, Fouras A, Zosky GR. The proteomic response is linked to regional lung volumes in ventilator-induced lung injury. J Appl Physiol. 1985;2020(129):837–45. Yen S, Song Y, Preissner M, Bennett E, Wilson R, Pavez M, Dubsky S, Dargaville PA, Fouras A, Zosky GR. The proteomic response is linked to regional lung volumes in ventilator-induced lung injury. J Appl Physiol. 1985;2020(129):837–45.
19.
go back to reference Acosta-Herrera M, Lorenzo-Diaz F, Pino-Yanes M, Corrales A, Valladares F, Klassert TE, Valladares B, Slevogt H, Ma SF, Villar J, Flores C. Lung transcriptomics during protective ventilatory support in sepsis-induced acute lung injury. PLoS One. 2015;10:e0132296.CrossRef Acosta-Herrera M, Lorenzo-Diaz F, Pino-Yanes M, Corrales A, Valladares F, Klassert TE, Valladares B, Slevogt H, Ma SF, Villar J, Flores C. Lung transcriptomics during protective ventilatory support in sepsis-induced acute lung injury. PLoS One. 2015;10:e0132296.CrossRef
20.
go back to reference Altemeier WA, Matute-Bello G, Gharib SA, Glenny RW, Martin TR, Liles WC. Modulation of lipopolysaccharide-induced gene transcription and promotion of lung injury by mechanical ventilation. J Immunol. 2005;175:3369–76.CrossRef Altemeier WA, Matute-Bello G, Gharib SA, Glenny RW, Martin TR, Liles WC. Modulation of lipopolysaccharide-induced gene transcription and promotion of lung injury by mechanical ventilation. J Immunol. 2005;175:3369–76.CrossRef
21.
go back to reference Ng CS, Wan S, Ho AM, Underwood MJ. Gene expression changes with a “non-injurious” ventilation strategy. Crit Care. 2009;13:403.CrossRef Ng CS, Wan S, Ho AM, Underwood MJ. Gene expression changes with a “non-injurious” ventilation strategy. Crit Care. 2009;13:403.CrossRef
22.
go back to reference Gharib SA, Liles WC, Klaff LS, Altemeier WA. Noninjurious mechanical ventilation activates a proinflammatory transcriptional program in the lung. Physiol Genomics. 2009;37:239–48.CrossRef Gharib SA, Liles WC, Klaff LS, Altemeier WA. Noninjurious mechanical ventilation activates a proinflammatory transcriptional program in the lung. Physiol Genomics. 2009;37:239–48.CrossRef
23.
go back to reference Wolthuis EK, Vlaar AP, Choi G, Roelofs JJ, Juffermans NP, Schultz MJ. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit Care. 2009;13:R1.CrossRef Wolthuis EK, Vlaar AP, Choi G, Roelofs JJ, Juffermans NP, Schultz MJ. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit Care. 2009;13:R1.CrossRef
24.
go back to reference Plotz FB, Vreugdenhil HA, Slutsky AS, Zijlstra J, Heijnen CJ, van Vught H. Mechanical ventilation alters the immune response in children without lung pathology. Intensive Care Med. 2002;28:486–92.CrossRef Plotz FB, Vreugdenhil HA, Slutsky AS, Zijlstra J, Heijnen CJ, van Vught H. Mechanical ventilation alters the immune response in children without lung pathology. Intensive Care Med. 2002;28:486–92.CrossRef
25.
go back to reference Altemeier WA, Matute-Bello G, Frevert CW, Kawata Y, Kajikawa O, Martin TR, Glenny RW. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am J Physiol Lung Cell Mol Physiol. 2004;287:L533-542.CrossRef Altemeier WA, Matute-Bello G, Frevert CW, Kawata Y, Kajikawa O, Martin TR, Glenny RW. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am J Physiol Lung Cell Mol Physiol. 2004;287:L533-542.CrossRef
26.
go back to reference Vergadi E, Vaporidi K, Tsatsanis C. Regulation of endotoxin tolerance and compensatory anti-inflammatory response syndrome by non-coding RNAs. Front Immunol. 2018;9:2705.CrossRef Vergadi E, Vaporidi K, Tsatsanis C. Regulation of endotoxin tolerance and compensatory anti-inflammatory response syndrome by non-coding RNAs. Front Immunol. 2018;9:2705.CrossRef
27.
go back to reference Schmidt EP, Damarla M, Rentsendorj O, Servinsky LE, Zhu B, Moldobaeva A, Gonzalez A, Hassoun PM, Pearse DB. Soluble guanylyl cyclase contributes to ventilator-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2008;295:L1056-1065.CrossRef Schmidt EP, Damarla M, Rentsendorj O, Servinsky LE, Zhu B, Moldobaeva A, Gonzalez A, Hassoun PM, Pearse DB. Soluble guanylyl cyclase contributes to ventilator-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2008;295:L1056-1065.CrossRef
28.
go back to reference Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JX, Garcia JG, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol. 2017;312:L452–76.CrossRef Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JX, Garcia JG, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol. 2017;312:L452–76.CrossRef
29.
go back to reference Suryadevara V, Fu P, Ebenezer DL, Berdyshev E, Bronova IA, Huang LS, Harijith A, Natarajan V. Sphingolipids in ventilator induced lung injury: role of sphingosine-1-phosphate lyase. Int J Mol Sci. 2018;19:114.CrossRef Suryadevara V, Fu P, Ebenezer DL, Berdyshev E, Bronova IA, Huang LS, Harijith A, Natarajan V. Sphingolipids in ventilator induced lung injury: role of sphingosine-1-phosphate lyase. Int J Mol Sci. 2018;19:114.CrossRef
30.
go back to reference Wurfel MM. Microarray-based analysis of ventilator-induced lung injury. Proc Am Thorac Soc. 2007;4:77–84.CrossRef Wurfel MM. Microarray-based analysis of ventilator-induced lung injury. Proc Am Thorac Soc. 2007;4:77–84.CrossRef
Metadata
Title
The association between regional transcriptome profiles and lung volumes in response to mechanical ventilation and lung injury
Authors
Yong Song
Seiha Yen
Melissa Preissner
Ellen Bennett
Stephen Dubsky
Andreas Fouras
Peter A. Dargaville
Graeme R. Zosky
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2022
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-022-01958-2

Other articles of this Issue 1/2022

Respiratory Research 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.