Skip to main content
Top
Published in: Discover Oncology 1/2024

Open Access 01-12-2024 | Review

The application of plant-exosome-like nanovesicles as improved drug delivery systems for cancer vaccines

Author: Tatiana Hillman

Published in: Discover Oncology | Issue 1/2024

Login to get access

Abstract

The use of cancer immunotherapeutics is currently increasing. Cancer vaccines, as a form of immunotherapy, are gaining much attention in the medical community since specific tumor-antigens can activate immune cells to induce an anti-tumor immune response. However, the delivery of cancer vaccines presents many issues for research scientists when designing cancer treatments and requires further investigation. Nanoparticles, synthetic liposomes, bacterial vectors, viral particles, and mammalian exosomes have delivered cancer vaccines. In contrast, the use of many of these nanotechnologies produces many issues of cytotoxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system (MPS). Plant-exosome-like nanovesicles (PELNVs) can provide solutions for many of these challenges because they are innocuous and nonimmunogenic when delivering nanomedicines. Hence, this review will describe the potential use of PELNVs to deliver cancer vaccines. In this review, different approaches of cancer vaccine delivery will be detailed, the mechanism of oral vaccination for delivering cancer vaccines will be described, and the review will discuss the use of PELNVs as improved drug delivery systems for cancer vaccines via oral administration while also addressing the subsequent challenges for advancing their usage into the clinical setting.
Literature
5.
go back to reference M. Saxena, S. H. van der Burg, C. J. M. Melief and N. Bhardwaj. Nat Rev Cancer. 2021, 21; 360–378 647 M. Saxena, S. H. van der Burg, C. J. M. Melief and N. Bhardwaj. Nat Rev Cancer. 2021, 21; 360–378 647
7.
8.
go back to reference Saxena M, van der Burg SH, Melief CJ, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–78.PubMedCrossRef Saxena M, van der Burg SH, Melief CJ, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–78.PubMedCrossRef
10.
go back to reference Feng C, Tan P, Nie G, Zhu M. Biomimetic and bioinspired nano‐platforms for cancer vaccine development. In Exploration. 2023, p. 20210263. Feng C, Tan P, Nie G, Zhu M. Biomimetic and bioinspired nano‐platforms for cancer vaccine development. In Exploration. 2023, p. 20210263.
11.
go back to reference Kenter GG, Welters MJP, Valentijn ARPM, Lowik MJG, Berends-van der Meer DMA, Vloon APG, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. New Eng J Med. 2009;361(19):1838–47.PubMedCrossRef Kenter GG, Welters MJP, Valentijn ARPM, Lowik MJG, Berends-van der Meer DMA, Vloon APG, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. New Eng J Med. 2009;361(19):1838–47.PubMedCrossRef
12.
go back to reference Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y. Sipuleucel-T immunotherapy for castration- resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.PubMedCrossRef Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y. Sipuleucel-T immunotherapy for castration- resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.PubMedCrossRef
13.
go back to reference Neller MA, Alejandro Lopez J, Schmidt CW. Antigens for cancer immunotherapy. Semin Immunol. 2008;20(5):286–95.PubMedCrossRef Neller MA, Alejandro Lopez J, Schmidt CW. Antigens for cancer immunotherapy. Semin Immunol. 2008;20(5):286–95.PubMedCrossRef
14.
go back to reference Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol. 2018;39(14):14–21.PubMedCrossRef Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol. 2018;39(14):14–21.PubMedCrossRef
15.
go back to reference Lynn GM, Sedlik C, Baharom F, Zhu Y, Ramirez-Valdez RA, Coble VL, et al. Peptide– TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol. 2020;38(3):320–32.PubMedPubMedCentralCrossRef Lynn GM, Sedlik C, Baharom F, Zhu Y, Ramirez-Valdez RA, Coble VL, et al. Peptide– TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol. 2020;38(3):320–32.PubMedPubMedCentralCrossRef
16.
go back to reference van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16(4):219–33.PubMedCrossRef van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16(4):219–33.PubMedCrossRef
17.
go back to reference Wang J, Zhu M, Nie G. Biomembrane-based nanostructures for cancer targeting and therapy: from synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev. 2021;178(113974): 113974.PubMedCrossRef Wang J, Zhu M, Nie G. Biomembrane-based nanostructures for cancer targeting and therapy: from synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev. 2021;178(113974): 113974.PubMedCrossRef
18.
go back to reference Nie G, Zhu M, Zhao XL, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv Drug Delivery Rev. 2021;176(113889):113889–9. Nie G, Zhu M, Zhao XL, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv Drug Delivery Rev. 2021;176(113889):113889–9.
19.
go back to reference Du G, Sun X. Current advances in sustained release microneedles. Pharm Fronts. 2020;02(01):11–22.CrossRef Du G, Sun X. Current advances in sustained release microneedles. Pharm Fronts. 2020;02(01):11–22.CrossRef
20.
go back to reference Deng H, Song K, Zhao X, Li Y, Wang F, Zhang J, et al. Tumor microenvironment activated membrane fusogenic liposome with speedy antibody and doxorubicin delivery for synergistic treatment of metastatic tumors. ACS Appl Mater Interfaces. 2017;9(11):9315–26.PubMedCrossRef Deng H, Song K, Zhao X, Li Y, Wang F, Zhang J, et al. Tumor microenvironment activated membrane fusogenic liposome with speedy antibody and doxorubicin delivery for synergistic treatment of metastatic tumors. ACS Appl Mater Interfaces. 2017;9(11):9315–26.PubMedCrossRef
21.
go back to reference Sun L, Gao Y, Wang Y, Wei Q, Shi J, Chen N, et al. Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chem Sci. 2018;9(27):5967–75.PubMedPubMedCentralCrossRef Sun L, Gao Y, Wang Y, Wei Q, Shi J, Chen N, et al. Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chem Sci. 2018;9(27):5967–75.PubMedPubMedCentralCrossRef
22.
go back to reference Dutta DK, Pulsipher A, Luo W, Mak H, Yousaf MN. Engineering cell surfaces via liposome fusion. Bioconjugate Chem. 2011;22(12):2423–33.CrossRef Dutta DK, Pulsipher A, Luo W, Mak H, Yousaf MN. Engineering cell surfaces via liposome fusion. Bioconjugate Chem. 2011;22(12):2423–33.CrossRef
23.
go back to reference Kunisawa J. Pharmacotherapy by intracellular delivery of drugs using fusogenic liposomes: application to vaccine development. Adv Drug Deliv Rev. 2001;52(3):177–86.PubMedCrossRef Kunisawa J. Pharmacotherapy by intracellular delivery of drugs using fusogenic liposomes: application to vaccine development. Adv Drug Deliv Rev. 2001;52(3):177–86.PubMedCrossRef
24.
go back to reference Zhang H, You X, Wang X, Cui L, Wang Z, Xu F, et al. Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proceedings of the National Academy of Sciences of the United States of America. 2021; 118(6). Zhang H, You X, Wang X, Cui L, Wang Z, Xu F, et al. Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proceedings of the National Academy of Sciences of the United States of America. 2021; 118(6).
26.
go back to reference Krishnan N, Kubiatowicz LJ, Holay M, Zhou J, Fang RH, Zhang L. Bacterial membrane vesicles for vaccine applications. Adv Drug Deliv Rev. 2022;185(114294): 114294.PubMedCrossRef Krishnan N, Kubiatowicz LJ, Holay M, Zhou J, Fang RH, Zhang L. Bacterial membrane vesicles for vaccine applications. Adv Drug Deliv Rev. 2022;185(114294): 114294.PubMedCrossRef
27.
go back to reference Ma XY, Hill BD, Hoang T, Wen F. Virus-inspired strategies for cancer therapy. Sem Cancer Biol. 2021;86:1143.CrossRef Ma XY, Hill BD, Hoang T, Wen F. Virus-inspired strategies for cancer therapy. Sem Cancer Biol. 2021;86:1143.CrossRef
28.
29.
go back to reference Marasini N, Skwarczynski M, Toth I. Oral delivery of nanoparticle-based vaccines. Expert Rev Vaccines. 2014;13:1361–76.PubMedCrossRef Marasini N, Skwarczynski M, Toth I. Oral delivery of nanoparticle-based vaccines. Expert Rev Vaccines. 2014;13:1361–76.PubMedCrossRef
30.
go back to reference Taddio A, Ipp M, Thivakaran S, Jamal A, Parikh C, Smart S, Sovran J, Stephens D, Katz J. Survey of the prevalence of immunization noncompliance due to needle fears in children and adults. Vaccine. 2012;30:4807–12.PubMedCrossRef Taddio A, Ipp M, Thivakaran S, Jamal A, Parikh C, Smart S, Sovran J, Stephens D, Katz J. Survey of the prevalence of immunization noncompliance due to needle fears in children and adults. Vaccine. 2012;30:4807–12.PubMedCrossRef
31.
go back to reference Dubé E, Laberge C, Guay M, Bramadat P, Roy R, Bettinger JA. Vaccine hesitancy: an overview. Hum Vaccines Immunother. 2013;9:1763–73.CrossRef Dubé E, Laberge C, Guay M, Bramadat P, Roy R, Bettinger JA. Vaccine hesitancy: an overview. Hum Vaccines Immunother. 2013;9:1763–73.CrossRef
32.
go back to reference Kremsner PG, Mann P, Kroidl A, Leroux-Roels I, Schindler C, Gabor JJ, Schunk M, Leroux-Roels G, Bosch JJ, Fendel R. Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2. Wien Klin Wochenschr. 2021;133:931–41.PubMedPubMedCentralCrossRef Kremsner PG, Mann P, Kroidl A, Leroux-Roels I, Schindler C, Gabor JJ, Schunk M, Leroux-Roels G, Bosch JJ, Fendel R. Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2. Wien Klin Wochenschr. 2021;133:931–41.PubMedPubMedCentralCrossRef
33.
go back to reference Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29(1):13–31.PubMedCrossRef Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29(1):13–31.PubMedCrossRef
34.
go back to reference Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, Cao P, Rong Y, Yan J, Miller D, Zhang HG. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol Ther. 2016;24:96–105.PubMedCrossRef Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, Cao P, Rong Y, Yan J, Miller D, Zhang HG. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol Ther. 2016;24:96–105.PubMedCrossRef
35.
go back to reference Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae- mediated endocytosis drives robusts iRNA delivery of polymeric nanoparticles to macrophages. ACS Nano. 2021;15:8267–82.PubMedCrossRef Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae- mediated endocytosis drives robusts iRNA delivery of polymeric nanoparticles to macrophages. ACS Nano. 2021;15:8267–82.PubMedCrossRef
36.
go back to reference Fan W, Xia D, Zhu Q, Li X, He S, Zhu C, Guo S, Hovgaard L, Yang M, Gan Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oralinsulin delivery. Biomaterials. 2018;151:13–23.PubMedCrossRef Fan W, Xia D, Zhu Q, Li X, He S, Zhu C, Guo S, Hovgaard L, Yang M, Gan Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oralinsulin delivery. Biomaterials. 2018;151:13–23.PubMedCrossRef
37.
go back to reference Park J, Choi JU, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials. 2017;147:145–54.PubMedCrossRef Park J, Choi JU, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials. 2017;147:145–54.PubMedCrossRef
38.
go back to reference Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev. 2021;1(179): 113914.CrossRef Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev. 2021;1(179): 113914.CrossRef
39.
go back to reference Jiang H, Wang Q, Sun X. Lymph node targeting strategies to improve vaccination efficacy. J Control Release. 2017;10(267):47–56.CrossRef Jiang H, Wang Q, Sun X. Lymph node targeting strategies to improve vaccination efficacy. J Control Release. 2017;10(267):47–56.CrossRef
40.
go back to reference Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol. 2007;7:790–802.PubMedCrossRef Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol. 2007;7:790–802.PubMedCrossRef
41.
go back to reference Zhang L, Wu S, Qin Y, Fan F, Zhang Z, Huang C, Ji W, Lu L, Wang C, Sun H, Leng X. Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced cancer immunotherapy. Nano Lett. 2019;19(7):4237–49.PubMedCrossRef Zhang L, Wu S, Qin Y, Fan F, Zhang Z, Huang C, Ji W, Lu L, Wang C, Sun H, Leng X. Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced cancer immunotherapy. Nano Lett. 2019;19(7):4237–49.PubMedCrossRef
42.
go back to reference Wang H, Sobral MC, Zhang D, Cartwright ANR, Li AW, Dellacherie MO, et al. Metabolic labeling and targeted modulation of dendritic cells. Nat Mater. 2020;19(11):1244–52.PubMedPubMedCentralCrossRef Wang H, Sobral MC, Zhang D, Cartwright ANR, Li AW, Dellacherie MO, et al. Metabolic labeling and targeted modulation of dendritic cells. Nat Mater. 2020;19(11):1244–52.PubMedPubMedCentralCrossRef
43.
go back to reference Qin H, Zhao R, Qin Y, Zhu J, Chen LQ, Di C, et al. Development of a cancer vaccine using in vivo click-chemistry-mediated active lymph node accumulation for improved immunotherapy. Adv Mater. 2021;33(20):2006007–17.CrossRef Qin H, Zhao R, Qin Y, Zhu J, Chen LQ, Di C, et al. Development of a cancer vaccine using in vivo click-chemistry-mediated active lymph node accumulation for improved immunotherapy. Adv Mater. 2021;33(20):2006007–17.CrossRef
45.
go back to reference Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014;507(7493):519–22.PubMedPubMedCentralCrossRef Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014;507(7493):519–22.PubMedPubMedCentralCrossRef
46.
go back to reference Ma L, Dichwalkar T, Chang JYH, Cossette B, Garafola D, Zhang AQ, et al. Enhanced CAR–T-cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science. 2019;365(6449):162–8.PubMedPubMedCentralCrossRef Ma L, Dichwalkar T, Chang JYH, Cossette B, Garafola D, Zhang AQ, et al. Enhanced CAR–T-cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science. 2019;365(6449):162–8.PubMedPubMedCentralCrossRef
48.
go back to reference Patil AA, Rhee WJ. Exosomes: biogenesis, composition, functions, and their role in premetastatic niche formation. Biotechnol Bioprocess Eng. 2019;24:689–701.CrossRef Patil AA, Rhee WJ. Exosomes: biogenesis, composition, functions, and their role in premetastatic niche formation. Biotechnol Bioprocess Eng. 2019;24:689–701.CrossRef
49.
go back to reference Colombo M, Moita C, Van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126:5553–65.PubMed Colombo M, Moita C, Van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126:5553–65.PubMed
50.
go back to reference Xu J, Camfeld R, Gorski SM. The interplay between exosomes and autophagy–partners in crime. J Cell Sci. 2018;131:jcs215210.PubMedCrossRef Xu J, Camfeld R, Gorski SM. The interplay between exosomes and autophagy–partners in crime. J Cell Sci. 2018;131:jcs215210.PubMedCrossRef
51.
go back to reference Xing H, Tan J, Miao Y, Lv Y, Zhang Q. Crosstalk between exosomes and autophagy: a review of molecular mechanisms and therapies. J Cell Mol Med. 2021;25:2297–308.PubMedPubMedCentralCrossRef Xing H, Tan J, Miao Y, Lv Y, Zhang Q. Crosstalk between exosomes and autophagy: a review of molecular mechanisms and therapies. J Cell Mol Med. 2021;25:2297–308.PubMedPubMedCentralCrossRef
52.
go back to reference Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases. 2018;9:95–106.PubMedCrossRef Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases. 2018;9:95–106.PubMedCrossRef
54.
go back to reference Hassanpour M, Rezaie J, Darabi M, Hiradfar A, Rahbarghazi R, Nouri M. Autophagy modulation altered diferentiation capacity of CD146+ cells toward endothelial cells, pericytes, and cardiomyocytes. Stem Cell Res Ther. 2020;11:1–14.CrossRef Hassanpour M, Rezaie J, Darabi M, Hiradfar A, Rahbarghazi R, Nouri M. Autophagy modulation altered diferentiation capacity of CD146+ cells toward endothelial cells, pericytes, and cardiomyocytes. Stem Cell Res Ther. 2020;11:1–14.CrossRef
55.
go back to reference Abdyazdani N, Nourazarian A, Charoudeh HN, Kazemi M, Feizy N, Akbarzade M, Mehdizadeh A, Rezaie J, Rahbarghazi R. The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties. Neurosci Lett. 2017;636:205–12.PubMedCrossRef Abdyazdani N, Nourazarian A, Charoudeh HN, Kazemi M, Feizy N, Akbarzade M, Mehdizadeh A, Rezaie J, Rahbarghazi R. The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties. Neurosci Lett. 2017;636:205–12.PubMedCrossRef
56.
go back to reference Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641.CrossRef Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641.CrossRef
58.
go back to reference Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signaling. Cell Commun Signal. 2021;19:1–19.CrossRef Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signaling. Cell Commun Signal. 2021;19:1–19.CrossRef
59.
go back to reference Dominkuš PP, Stenovec M, Sitar S, Lasič E, Zorec R, Plemenitaš A, Žagar E, Kreft M, Lenassi M. PKH26 labeling of extracellular vesicles characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim et Biophys Acta BBA Biomembr. 2018;1860:1350–61.CrossRef Dominkuš PP, Stenovec M, Sitar S, Lasič E, Zorec R, Plemenitaš A, Žagar E, Kreft M, Lenassi M. PKH26 labeling of extracellular vesicles characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim et Biophys Acta BBA Biomembr. 2018;1860:1350–61.CrossRef
60.
go back to reference Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 2019;54:789–92.PubMedCrossRef Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 2019;54:789–92.PubMedCrossRef
62.
go back to reference Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol. 2018;16:1–13.CrossRef Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol. 2018;16:1–13.CrossRef
63.
go back to reference Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specifcities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17.PubMedCrossRef Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specifcities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17.PubMedCrossRef
64.
go back to reference Hoppstädter J, Dembek A, Linnenberger R, Dahlem C, Barghash A, Fecher-Trost C, Fuhrmann G, Koch M, Kraegeloh A, Huwer H. Toll-like receptor 2 release by macrophages: an anti-infammatory program induced by glucocorticoids and lipopolysaccharide. Front Immunol. 2019;10:1634.PubMedPubMedCentralCrossRef Hoppstädter J, Dembek A, Linnenberger R, Dahlem C, Barghash A, Fecher-Trost C, Fuhrmann G, Koch M, Kraegeloh A, Huwer H. Toll-like receptor 2 release by macrophages: an anti-infammatory program induced by glucocorticoids and lipopolysaccharide. Front Immunol. 2019;10:1634.PubMedPubMedCentralCrossRef
65.
go back to reference Kooijmans SAA, Fliervoet LAL, Van Der Meel R, Fens MHAM, Heijnen HFG, Henegouwen PVB, Vader PCVV, Schifelers RM. PEGylated and targeted extracellular vesicles display enhanced cell specifcity and circulation time. J Control Release. 2016;224:77–85.PubMedCrossRef Kooijmans SAA, Fliervoet LAL, Van Der Meel R, Fens MHAM, Heijnen HFG, Henegouwen PVB, Vader PCVV, Schifelers RM. PEGylated and targeted extracellular vesicles display enhanced cell specifcity and circulation time. J Control Release. 2016;224:77–85.PubMedCrossRef
67.
go back to reference Nunes, S.S., Fernandes, R.S., Cavalcante, C.H., da Costa César, I., Leite, E.A., Lopes, S.C.A., Ferretti, A., Rubello, D., Townsend, D.M., de Oliveira, M.C., et al. Influence of PEG coating on the biodistribution and tumor accumulation of pH valuesensitive liposomes. Drug Deliv Transl Res. 2019; 9: 123–130. Nunes, S.S., Fernandes, R.S., Cavalcante, C.H., da Costa César, I., Leite, E.A., Lopes, S.C.A., Ferretti, A., Rubello, D., Townsend, D.M., de Oliveira, M.C., et al. Influence of PEG coating on the biodistribution and tumor accumulation of pH valuesensitive liposomes. Drug Deliv Transl Res. 2019; 9: 123–130.
68.
go back to reference Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG- conjugated agents. Expert Opin Drug Deliv. 2012;9:1319–23.PubMedCrossRef Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG- conjugated agents. Expert Opin Drug Deliv. 2012;9:1319–23.PubMedCrossRef
69.
go back to reference Abu Lila AS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release. 2013;172:38–47.PubMedCrossRef Abu Lila AS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release. 2013;172:38–47.PubMedCrossRef
70.
go back to reference Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106(Pt A):148–56.PubMedCrossRef Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106(Pt A):148–56.PubMedCrossRef
71.
go back to reference Rupert DLM, Claudio V, Lässer C, and Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim. Biophys. Acta, Gen. Subj. 2017, 1861 (1 Pt A), 3164–3179. Rupert DLM, Claudio V, Lässer C, and Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim. Biophys. Acta, Gen. Subj. 2017, 1861 (1 Pt A), 3164–3179.
72.
go back to reference Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta. 2014;1838:2954–65.PubMedPubMedCentralCrossRef Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta. 2014;1838:2954–65.PubMedPubMedCentralCrossRef
73.
go back to reference Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res. 2019;210:80–98.PubMedCrossRef Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res. 2019;210:80–98.PubMedCrossRef
74.
go back to reference Wang Q, Zhuang X, Mu J, Deng Z-B, Jiang H, Zhang L, Xiang X, Wang B, Yan J, Miller D, Zhang HG. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 1867;2013:4. Wang Q, Zhuang X, Mu J, Deng Z-B, Jiang H, Zhang L, Xiang X, Wang B, Yan J, Miller D, Zhang HG. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 1867;2013:4.
75.
go back to reference Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang HG. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015;75:2520–9.PubMedPubMedCentralCrossRef Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang HG. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015;75:2520–9.PubMedPubMedCentralCrossRef
76.
go back to reference Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21:1345–57.PubMedPubMedCentralCrossRef Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21:1345–57.PubMedPubMedCentralCrossRef
78.
go back to reference Feng J, Xiu Q, Huang Y, et al. Plant derived vesicle-like nanoparticles as promising biotherapeutic tools: present and future. In: Advanced Materials. 2023. p. e2207826. 10.1002/ adma.202207826. Feng J, Xiu Q, Huang Y, et al. Plant derived vesicle-like nanoparticles as promising biotherapeutic tools: present and future. In: Advanced Materials. 2023. p. e2207826. 10.1002/ adma.202207826.
79.
go back to reference Wang B, Zhuang X, Deng Z-B, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22:522–34.PubMedPubMedCentralCrossRef Wang B, Zhuang X, Deng Z-B, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22:522–34.PubMedPubMedCentralCrossRef
80.
go back to reference Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med. 2020;15:1096–122.CrossRef Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med. 2020;15:1096–122.CrossRef
81.
go back to reference Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG. A novel nanoparticle drug delivery system: the anti- inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.PubMedPubMedCentralCrossRef Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG. A novel nanoparticle drug delivery system: the anti- inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.PubMedPubMedCentralCrossRef
82.
go back to reference Shandilya S, Rani P, Onteru SK, Singh D. Small interfering RNA in milk exosomes is resistant to digestion and crosses the intestinal barrier in vitro. J Agric Food Chem. 2017;65:9506–13.PubMedCrossRef Shandilya S, Rani P, Onteru SK, Singh D. Small interfering RNA in milk exosomes is resistant to digestion and crosses the intestinal barrier in vitro. J Agric Food Chem. 2017;65:9506–13.PubMedCrossRef
83.
go back to reference Osteikoetxea X, Sódar B, Németh A, Szabó-Taylor K, Pálóczi K, Vukman KV, Tamási V, Balogh A, Kittel Á, Pállinger É, Buzás EI. Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem. 2015;13:9775–82.PubMedCrossRef Osteikoetxea X, Sódar B, Németh A, Szabó-Taylor K, Pálóczi K, Vukman KV, Tamási V, Balogh A, Kittel Á, Pállinger É, Buzás EI. Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem. 2015;13:9775–82.PubMedCrossRef
84.
go back to reference Wang B, Zhuang X, Deng Z-B, Jiang H, Mu J, Wang Q, Xiang X, Guo H, Zhang L, Dryden G, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22:522–34.PubMedPubMedCentralCrossRef Wang B, Zhuang X, Deng Z-B, Jiang H, Mu J, Wang Q, Xiang X, Guo H, Zhang L, Dryden G, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22:522–34.PubMedPubMedCentralCrossRef
85.
go back to reference Marchant R, Robards A. Membrane systems associated with the plasmalemma of plant cells. Ann Bot. 1968;32:457–71.CrossRef Marchant R, Robards A. Membrane systems associated with the plasmalemma of plant cells. Ann Bot. 1968;32:457–71.CrossRef
86.
go back to reference Halperin W, Jensen WA. Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res. 1967;18:428–43.PubMedCrossRef Halperin W, Jensen WA. Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res. 1967;18:428–43.PubMedCrossRef
87.
go back to reference McMullen C, Gardner W, Myers G. Ultrastructure of cell-wall thickenings and paramural bodies induced by barley stripe mosaic virus. Phytopathology. 1977;67:462–7.CrossRef McMullen C, Gardner W, Myers G. Ultrastructure of cell-wall thickenings and paramural bodies induced by barley stripe mosaic virus. Phytopathology. 1977;67:462–7.CrossRef
88.
go back to reference Chafe SC. Cell wall structure in the xylem parenchyma of Cryptomeria. Protoplasma. 1974;81(63–76):89. Chafe SC. Cell wall structure in the xylem parenchyma of Cryptomeria. Protoplasma. 1974;81(63–76):89.
89.
go back to reference Robards A, Kidwai P. Vesicular involvement in differentiating plant vascular cells. New Phytol. 1969;68:343–9.CrossRef Robards A, Kidwai P. Vesicular involvement in differentiating plant vascular cells. New Phytol. 1969;68:343–9.CrossRef
90.
91.
go back to reference Pérez-Bermúdez P, Blesa J, Soriano JM, Marcilla A. Extracellular vesicles in food: experimental evidence of their secretion in grape fruits. Eur J Pharm Sci. 2017;98:40–50.PubMedCrossRef Pérez-Bermúdez P, Blesa J, Soriano JM, Marcilla A. Extracellular vesicles in food: experimental evidence of their secretion in grape fruits. Eur J Pharm Sci. 2017;98:40–50.PubMedCrossRef
92.
go back to reference Pocsfalvi G, Turiák L, Ambrosone A, Del Gaudio P, Puska G, Fiume I, Silvestre T, Vékey K. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations. J Plant Physiol. 2018;229:111–21.PubMedCrossRef Pocsfalvi G, Turiák L, Ambrosone A, Del Gaudio P, Puska G, Fiume I, Silvestre T, Vékey K. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations. J Plant Physiol. 2018;229:111–21.PubMedCrossRef
93.
go back to reference Xiao J, Feng S, Wang X, Long K, Luo Y, Wang Y, Ma J, Tang Q, Jin L, Li X, Li M. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ. 2018;6: e5186.PubMedPubMedCentralCrossRef Xiao J, Feng S, Wang X, Long K, Luo Y, Wang Y, Ma J, Tang Q, Jin L, Li X, Li M. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ. 2018;6: e5186.PubMedPubMedCentralCrossRef
94.
go back to reference Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-‘t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C et al. 2013. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2: 20360. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-‘t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C et al. 2013. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2: 20360.
96.
go back to reference Théry C, Amigorena S, Raposo G, and Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006, 30, 3.22.21–3.22.29. Théry C, Amigorena S, Raposo G, and Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006, 30, 3.22.21–3.22.29.
99.
go back to reference Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, Hill AF. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5:32945.PubMedCrossRef Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, Hill AF. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5:32945.PubMedCrossRef
100.
go back to reference van der Meel R, Fens MH, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release. 2014;2014(195):72–85.CrossRef van der Meel R, Fens MH, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release. 2014;2014(195):72–85.CrossRef
101.
go back to reference Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho MA, Pereira MC. Resveratrol and grape extract- loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules. 2017;22:277.PubMedPubMedCentralCrossRef Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho MA, Pereira MC. Resveratrol and grape extract- loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules. 2017;22:277.PubMedPubMedCentralCrossRef
102.
go back to reference Wang X, Devaiah SP, Zhang W, Welti R. Signaling functions of phosphatidic acid. Prog Lipid Res. 2006;45:250–78.PubMedCrossRef Wang X, Devaiah SP, Zhang W, Welti R. Signaling functions of phosphatidic acid. Prog Lipid Res. 2006;45:250–78.PubMedCrossRef
105.
go back to reference Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep. 2018;8:14644.PubMedPubMedCentralCrossRef Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep. 2018;8:14644.PubMedPubMedCentralCrossRef
106.
go back to reference György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55:439–64.PubMedCrossRef György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55:439–64.PubMedCrossRef
107.
go back to reference Vashisht M, Rani P, Onteru SK, Singh D. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Appl Biochem Biotechnol. 2017;183:993–1007.PubMedCrossRef Vashisht M, Rani P, Onteru SK, Singh D. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Appl Biochem Biotechnol. 2017;183:993–1007.PubMedCrossRef
108.
go back to reference Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38:754–63.PubMedPubMedCentralCrossRef Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38:754–63.PubMedPubMedCentralCrossRef
109.
go back to reference Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015;205:35–44.PubMedCrossRef Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015;205:35–44.PubMedCrossRef
110.
go back to reference Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D. Edible ginger-derived nanolipids loaded with doxorubicin as a novel drug- delivery approach for colon cancer therapy. Mol Ther. 2016;24:1783–96.PubMedPubMedCentralCrossRef Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D. Edible ginger-derived nanolipids loaded with doxorubicin as a novel drug- delivery approach for colon cancer therapy. Mol Ther. 2016;24:1783–96.PubMedPubMedCentralCrossRef
111.
go back to reference Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine. 2017;12:1927–43.PubMedPubMedCentralCrossRef Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine. 2017;12:1927–43.PubMedPubMedCentralCrossRef
112.
go back to reference Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.PubMedCrossRef Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.PubMedCrossRef
113.
go back to reference Wahlgren J, Karlson TD, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012;40:e130.PubMedPubMedCentralCrossRef Wahlgren J, Karlson TD, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012;40:e130.PubMedPubMedCentralCrossRef
114.
go back to reference Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm. 2015;12:3650–7.PubMedPubMedCentralCrossRef Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm. 2015;12:3650–7.PubMedPubMedCentralCrossRef
115.
go back to reference Donoso-Quezada J, Ayala-Mar S, González-Valdez J. State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: a review. Crit Rev Biotechnol. 2020;40(804–820):116. Donoso-Quezada J, Ayala-Mar S, González-Valdez J. State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: a review. Crit Rev Biotechnol. 2020;40(804–820):116.
116.
go back to reference Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner MW, SmithJones P, Anchordoquy TJ. Surface functionalization of exosomes using click chemistry. Bioconjug Chem. 2014;25:1777–84.PubMedPubMedCentralCrossRef Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner MW, SmithJones P, Anchordoquy TJ. Surface functionalization of exosomes using click chemistry. Bioconjug Chem. 2014;25:1777–84.PubMedPubMedCentralCrossRef
117.
go back to reference Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P. SNARE-protein-mediated disease resistance at the plant cell wall. Nature. 2003;425:973–7.PubMedCrossRef Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P. SNARE-protein-mediated disease resistance at the plant cell wall. Nature. 2003;425:973–7.PubMedCrossRef
118.
go back to reference Ramirez JEV, Sharpe L, Peppas N. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev. 2017;114:116–31.CrossRef Ramirez JEV, Sharpe L, Peppas N. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev. 2017;114:116–31.CrossRef
119.
120.
go back to reference Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev. 2023;42:1–26.CrossRef Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev. 2023;42:1–26.CrossRef
121.
go back to reference Weng Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37:801–25.PubMedCrossRef Weng Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37:801–25.PubMedCrossRef
122.
go back to reference Blythe, R. H. Sympathomimetic preparation. Google Patents. 1956 Blythe, R. H. Sympathomimetic preparation. Google Patents. 1956
123.
go back to reference Barenholz YC. Doxil®—The frst FDA-approved nanodrug: lessons learned. J Control Release. 2012;160(2):117–34.PubMedCrossRef Barenholz YC. Doxil®—The frst FDA-approved nanodrug: lessons learned. J Control Release. 2012;160(2):117–34.PubMedCrossRef
126.
go back to reference Jones DH, Corris S, McDonald S, Clegg JCS, Farrar GH. Poly (DL- lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine. 1997;15(8):814–7.PubMedCrossRef Jones DH, Corris S, McDonald S, Clegg JCS, Farrar GH. Poly (DL- lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine. 1997;15(8):814–7.PubMedCrossRef
130.
go back to reference Kunisawa J, Kurashima Y, Kiyono H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv Drug Del Rev. 2012;64:523–30.CrossRef Kunisawa J, Kurashima Y, Kiyono H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv Drug Del Rev. 2012;64:523–30.CrossRef
131.
go back to reference Kim KS, Suzuki K, Cho H, Youn YS, Bae YH. Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. ACS Nano. 2018;12:8893–900.PubMedPubMedCentralCrossRef Kim KS, Suzuki K, Cho H, Youn YS, Bae YH. Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. ACS Nano. 2018;12:8893–900.PubMedPubMedCentralCrossRef
132.
go back to reference Qi J, Zhuang J, Lv Y, Lu Y, Wu W. Exploiting or overcoming the dome trap for enhanced oral immunization and drug delivery. J Controlled Release. 2018;275:92–106.CrossRef Qi J, Zhuang J, Lv Y, Lu Y, Wu W. Exploiting or overcoming the dome trap for enhanced oral immunization and drug delivery. J Controlled Release. 2018;275:92–106.CrossRef
133.
go back to reference He C, Yin L, Tang C, Yin C. Multifunctional polymeric nanoparticles for oral delivery of TNF-Alphas iRNA to macrophages. Biomaterials. 2013;34:2843–54.PubMedCrossRef He C, Yin L, Tang C, Yin C. Multifunctional polymeric nanoparticles for oral delivery of TNF-Alphas iRNA to macrophages. Biomaterials. 2013;34:2843–54.PubMedCrossRef
134.
go back to reference Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered extracellular vesicles as a reliable tool in cancer nanomedicine. Cancers. 1979;2019:11. Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered extracellular vesicles as a reliable tool in cancer nanomedicine. Cancers. 1979;2019:11.
135.
go back to reference Amaro MI, Rocha J, Vila-Real H, Eduardo-Figueira M, Mota-Filipe H, Sepodes B, et al. Anti-inflammatory activity of naringin and the biosynthesized naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res Int. 2009;42:1010–7.CrossRef Amaro MI, Rocha J, Vila-Real H, Eduardo-Figueira M, Mota-Filipe H, Sepodes B, et al. Anti-inflammatory activity of naringin and the biosynthesized naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res Int. 2009;42:1010–7.CrossRef
136.
go back to reference Dou W, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S, Wei X, Chou G, Wang ZT, Mani S. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-kB signaling. Br J Nutr. 2013;110:599–608.PubMedPubMedCentralCrossRef Dou W, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S, Wei X, Chou G, Wang ZT, Mani S. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-kB signaling. Br J Nutr. 2013;110:599–608.PubMedPubMedCentralCrossRef
137.
go back to reference Zhang H, Kuang H. Intelligent oral tumor vaccines for cancer therapy. Matter. 2022;5(8):2476–8.CrossRef Zhang H, Kuang H. Intelligent oral tumor vaccines for cancer therapy. Matter. 2022;5(8):2476–8.CrossRef
140.
141.
go back to reference Ortega A, Martinez-Arroyo O, Forner MJ, et al. Exosomes as drug delivery systems: endogenous nanovehicles for treatment of systemic lupus erythematosus. Pharmaceutics. 2020;13:3.PubMedPubMedCentralCrossRef Ortega A, Martinez-Arroyo O, Forner MJ, et al. Exosomes as drug delivery systems: endogenous nanovehicles for treatment of systemic lupus erythematosus. Pharmaceutics. 2020;13:3.PubMedPubMedCentralCrossRef
142.
go back to reference Tsai SJ, Atai NA, Cacciottolo M, et al. Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity. J Biol Chem. 2021;297: 101266.PubMedPubMedCentralCrossRef Tsai SJ, Atai NA, Cacciottolo M, et al. Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity. J Biol Chem. 2021;297: 101266.PubMedPubMedCentralCrossRef
143.
go back to reference Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.PubMedPubMedCentralCrossRef Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.PubMedPubMedCentralCrossRef
144.
go back to reference Choi H, Kim M-Y, Kim D-H, et al. Quantitative biodistribution and pharmacokinetics study of GMP-grade exosomes labeled with 89Zr radioisotope in mice and rats. Pharmaceutics. 2022;14:1118.PubMedPubMedCentralCrossRef Choi H, Kim M-Y, Kim D-H, et al. Quantitative biodistribution and pharmacokinetics study of GMP-grade exosomes labeled with 89Zr radioisotope in mice and rats. Pharmaceutics. 2022;14:1118.PubMedPubMedCentralCrossRef
145.
go back to reference Cong M, Tan S, Li S, et al. Technology insight: plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev. 2022;182: 114108.PubMedCrossRef Cong M, Tan S, Li S, et al. Technology insight: plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev. 2022;182: 114108.PubMedCrossRef
146.
147.
go back to reference Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.PubMedPubMedCentralCrossRef Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.PubMedPubMedCentralCrossRef
148.
go back to reference Raimondo S, Naselli F, Fontana S, Monteleone F, Lo Dico A, Saieva L, Zito G, Flugy A, Manno M, Di Bella MA, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget. 2015;6:19514–27.PubMedPubMedCentralCrossRef Raimondo S, Naselli F, Fontana S, Monteleone F, Lo Dico A, Saieva L, Zito G, Flugy A, Manno M, Di Bella MA, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget. 2015;6:19514–27.PubMedPubMedCentralCrossRef
150.
go back to reference Tran T-H, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for immunotherapy of cancer and infammatory diseases. Clin Immunol. 2015;160:46–58.PubMedCrossRef Tran T-H, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for immunotherapy of cancer and infammatory diseases. Clin Immunol. 2015;160:46–58.PubMedCrossRef
151.
go back to reference Mignot G, Roux S, Thery C, Ségura E, Zitvogel L. Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med. 2006;10:376–88.PubMedCrossRef Mignot G, Roux S, Thery C, Ségura E, Zitvogel L. Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med. 2006;10:376–88.PubMedCrossRef
152.
go back to reference Galbo PM Jr, Ciesielski MJ, Figel S, Maguire O, Qiu J, Wiltsie L, Minderman H, Fenstermaker RA. Circulating CD9+/GFAP+/survivin+ exosomes in malignant glioma patients following survivin vaccination. Oncotarget. 2017;8: 114722.PubMedPubMedCentralCrossRef Galbo PM Jr, Ciesielski MJ, Figel S, Maguire O, Qiu J, Wiltsie L, Minderman H, Fenstermaker RA. Circulating CD9+/GFAP+/survivin+ exosomes in malignant glioma patients following survivin vaccination. Oncotarget. 2017;8: 114722.PubMedPubMedCentralCrossRef
153.
go back to reference Sharma A, Johnson A. Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol. 2020;235:1921–32.PubMedCrossRef Sharma A, Johnson A. Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol. 2020;235:1921–32.PubMedCrossRef
154.
go back to reference Bell BM, Kirk ID, Hiltbrunner S, Gabrielsson S, Bultema JJ. Designer exosomes as next-generation cancer immunotherapy. Nanomed Nanotechnol Biol Med. 2016;12:163–9.CrossRef Bell BM, Kirk ID, Hiltbrunner S, Gabrielsson S, Bultema JJ. Designer exosomes as next-generation cancer immunotherapy. Nanomed Nanotechnol Biol Med. 2016;12:163–9.CrossRef
155.
go back to reference Escudier B, Dorval T, Chaput N, André F, Caby M-P, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefrst phase I clinical trial. J Transl Med. 2005;3:1–13.CrossRef Escudier B, Dorval T, Chaput N, André F, Caby M-P, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefrst phase I clinical trial. J Transl Med. 2005;3:1–13.CrossRef
156.
go back to reference Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005;3:1–8.CrossRef Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005;3:1–8.CrossRef
157.
go back to reference Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A. Dendritic cell-derived exosomes as maintenance immunotherapy after frst line chemotherapy in NSCLC. Oncoimmunology. 2016;5: e1071008.PubMedCrossRef Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A. Dendritic cell-derived exosomes as maintenance immunotherapy after frst line chemotherapy in NSCLC. Oncoimmunology. 2016;5: e1071008.PubMedCrossRef
158.
go back to reference Marie-Cardine A, Viaud N, Thonnart N, Joly R, Chanteux S, Gauthier L, Bonnafous C, Rossi B, Bléry M, Paturel C, et al. IPH4102, a humanized KIR3DL2 antibody with potent activity against cutaneous T-cell lymphoma. Can Res. 2014;74:6060–70.CrossRef Marie-Cardine A, Viaud N, Thonnart N, Joly R, Chanteux S, Gauthier L, Bonnafous C, Rossi B, Bléry M, Paturel C, et al. IPH4102, a humanized KIR3DL2 antibody with potent activity against cutaneous T-cell lymphoma. Can Res. 2014;74:6060–70.CrossRef
159.
go back to reference Patel GK, Khan MA, Zubair H, Srivastava SK, Khushman M, Singh S, Singh AP. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9:1–10.CrossRef Patel GK, Khan MA, Zubair H, Srivastava SK, Khushman M, Singh S, Singh AP. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9:1–10.CrossRef
160.
go back to reference He L, Zhu D, Wang J, Wu X. A highly efcient method for isolating urinary exosomes. Int J Mol Med. 2019;43:83–90.PubMed He L, Zhu D, Wang J, Wu X. A highly efcient method for isolating urinary exosomes. Int J Mol Med. 2019;43:83–90.PubMed
161.
go back to reference Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology. 2023;31:145–69.PubMedPubMedCentralCrossRef Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology. 2023;31:145–69.PubMedPubMedCentralCrossRef
162.
go back to reference Zeelenberg IS, Ostrowski M, Krumeich S, Bobrie A, Jancic C, Boissonnas A, Delcayre A, Le Pecq JB, Combadière B, Amigorena S, et al. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res. 2008;68:1228–35.PubMedCrossRef Zeelenberg IS, Ostrowski M, Krumeich S, Bobrie A, Jancic C, Boissonnas A, Delcayre A, Le Pecq JB, Combadière B, Amigorena S, et al. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res. 2008;68:1228–35.PubMedCrossRef
163.
go back to reference Yang C, Zhang M, Merlin D. Advances in plant-derived edible nanoparticle- based lipid nanodrug delivery systems as therapeutic nanomedicines. J Mater Chem B. 2018;6:1312–21.PubMedPubMedCentralCrossRef Yang C, Zhang M, Merlin D. Advances in plant-derived edible nanoparticle- based lipid nanodrug delivery systems as therapeutic nanomedicines. J Mater Chem B. 2018;6:1312–21.PubMedPubMedCentralCrossRef
164.
go back to reference Huang Y, Wag S, Cai Q, Jin H. Effective methods for isolation and purification of extracellular vesicles from plants. J Integr Plant Biol. 2021;63(2020–1058):2030. Huang Y, Wag S, Cai Q, Jin H. Effective methods for isolation and purification of extracellular vesicles from plants. J Integr Plant Biol. 2021;63(2020–1058):2030.
165.
go back to reference Ipinmoroti AO, Turner J, Bellenger EJ, Crenshaw BJ, Xu J, Reeves C, Ajayi O, Li T, Matthews QL. Characterization of cannabis strain-plant-derived extracellular vesicles as potential biomarkers. Protoplasma. 2023;2023:12. Ipinmoroti AO, Turner J, Bellenger EJ, Crenshaw BJ, Xu J, Reeves C, Ajayi O, Li T, Matthews QL. Characterization of cannabis strain-plant-derived extracellular vesicles as potential biomarkers. Protoplasma. 2023;2023:12.
166.
go back to reference Pomatto MA, Gai C, Negro F, Massari L, Deregibus MC, De Rosa FG, Camussi G. Oral delivery of mRNA vaccine by plant-derived extracellular vesicle carriers. Cells. 2023;12(14):1826.PubMedPubMedCentralCrossRef Pomatto MA, Gai C, Negro F, Massari L, Deregibus MC, De Rosa FG, Camussi G. Oral delivery of mRNA vaccine by plant-derived extracellular vesicle carriers. Cells. 2023;12(14):1826.PubMedPubMedCentralCrossRef
167.
go back to reference Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, Grange C, De Rosa FG, Camussi G. Plant-derived extracellular vesicles as a delivery platform for RNA-based vaccine: feasibility study of an oral and intranasal SARS-CoV-2 vaccine. Pharmaceutics. 2023;15:974.PubMedPubMedCentralCrossRef Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, Grange C, De Rosa FG, Camussi G. Plant-derived extracellular vesicles as a delivery platform for RNA-based vaccine: feasibility study of an oral and intranasal SARS-CoV-2 vaccine. Pharmaceutics. 2023;15:974.PubMedPubMedCentralCrossRef
168.
go back to reference Tsai SJ, Atai NA, Cacciottolo M, Nice J, Salehi A, Guo C, Sedgwick A, Kanagavelu S, Gould SJ. Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity. J Biol Chem. 2021;297: 101266.PubMedPubMedCentralCrossRef Tsai SJ, Atai NA, Cacciottolo M, Nice J, Salehi A, Guo C, Sedgwick A, Kanagavelu S, Gould SJ. Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity. J Biol Chem. 2021;297: 101266.PubMedPubMedCentralCrossRef
169.
go back to reference Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85.PubMedCrossRef Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85.PubMedCrossRef
170.
go back to reference Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6:148–58.PubMedCrossRef Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6:148–58.PubMedCrossRef
171.
go back to reference Rudin A, Riise GC, Holmgren J. Antibody responses in the lower respiratory tract and male urogenital tract in humans after nasal and oral vaccination with cholera toxin B subunit. Infect Immun. 1999;6:2884–90.CrossRef Rudin A, Riise GC, Holmgren J. Antibody responses in the lower respiratory tract and male urogenital tract in humans after nasal and oral vaccination with cholera toxin B subunit. Infect Immun. 1999;6:2884–90.CrossRef
172.
go back to reference Kozlowski PA, Williams SB, Lynch RM, Flanigan TP, Patterson RR, Cu-Uvin S, Neutra MR. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J Immunol. 2002;169:566–74.PubMedCrossRef Kozlowski PA, Williams SB, Lynch RM, Flanigan TP, Patterson RR, Cu-Uvin S, Neutra MR. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J Immunol. 2002;169:566–74.PubMedCrossRef
173.
go back to reference Atalis A, Keenum MC, Pandey B, Beach A, Pradhan P, Vantucci C, O’Farrell L, Noel R, Jain R, Hosten J, et al. Nanoparticle-delivered TLR4 and RIG-I agonists enhance immune response to SARS-CoV-2 subunit vaccine. J Control Release Off J Control Release Soc. 2022;347:476–88.CrossRef Atalis A, Keenum MC, Pandey B, Beach A, Pradhan P, Vantucci C, O’Farrell L, Noel R, Jain R, Hosten J, et al. Nanoparticle-delivered TLR4 and RIG-I agonists enhance immune response to SARS-CoV-2 subunit vaccine. J Control Release Off J Control Release Soc. 2022;347:476–88.CrossRef
174.
go back to reference Lapuente D, Fuchs J, Willar J, Vieira Antão A, Eberlein V, Uhlig N, Issmail L, Schmidt A, Oltmanns F, Peter AS, et al. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. Nat Commun. 2021;12:6871.PubMedPubMedCentralCrossRef Lapuente D, Fuchs J, Willar J, Vieira Antão A, Eberlein V, Uhlig N, Issmail L, Schmidt A, Oltmanns F, Peter AS, et al. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. Nat Commun. 2021;12:6871.PubMedPubMedCentralCrossRef
176.
go back to reference Umezu T, Takanashi M, Murakami Y, et al. Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol Ther Methods Clin Dev. 2021;21:199–208.PubMedPubMedCentralCrossRef Umezu T, Takanashi M, Murakami Y, et al. Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol Ther Methods Clin Dev. 2021;21:199–208.PubMedPubMedCentralCrossRef
177.
go back to reference Zeng L, Wang H, Shi W, et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J Nanobiotechnol. 2021;19:439.CrossRef Zeng L, Wang H, Shi W, et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J Nanobiotechnol. 2021;19:439.CrossRef
178.
go back to reference You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater. 2021;6:4321–32.PubMedPubMedCentral You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater. 2021;6:4321–32.PubMedPubMedCentral
179.
go back to reference Zhang M, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.PubMedPubMedCentralCrossRef Zhang M, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.PubMedPubMedCentralCrossRef
180.
go back to reference Zhang M, Wang X, Han MK, et al. Oral administration of gingerderived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine. 2017;12:1927–43.PubMedPubMedCentralCrossRef Zhang M, Wang X, Han MK, et al. Oral administration of gingerderived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine. 2017;12:1927–43.PubMedPubMedCentralCrossRef
181.
go back to reference Li Z, Wang H, Yin H, et al. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep. 2018;8:14644.PubMedPubMedCentralCrossRef Li Z, Wang H, Yin H, et al. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep. 2018;8:14644.PubMedPubMedCentralCrossRef
182.
go back to reference Yang C, Zhang M, Lama S, et al. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J Control Release. 2020;323:293–310.PubMedPubMedCentralCrossRef Yang C, Zhang M, Lama S, et al. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J Control Release. 2020;323:293–310.PubMedPubMedCentralCrossRef
183.
go back to reference Niu W, Xiao Q, Wang X, et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021;21:1484–92.PubMedCrossRef Niu W, Xiao Q, Wang X, et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021;21:1484–92.PubMedCrossRef
184.
go back to reference Garaeva L, Kamyshinsky R, Kil Y, et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci Rep. 2021;11:6489.PubMedPubMedCentralCrossRef Garaeva L, Kamyshinsky R, Kil Y, et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci Rep. 2021;11:6489.PubMedPubMedCentralCrossRef
185.
go back to reference Wang Q, Ren Y, Mu J, et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015;75:2520–9.PubMedPubMedCentralCrossRef Wang Q, Ren Y, Mu J, et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015;75:2520–9.PubMedPubMedCentralCrossRef
186.
go back to reference Zhuang X, Teng Y, Samykutty A, et al. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol Ther. 2016;24:96–105.PubMedCrossRef Zhuang X, Teng Y, Samykutty A, et al. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol Ther. 2016;24:96–105.PubMedCrossRef
187.
go back to reference Teng Y, Mu J, Hu X, et al. Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages. Oncotarget. 2016;7:25683–97.PubMedPubMedCentralCrossRef Teng Y, Mu J, Hu X, et al. Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages. Oncotarget. 2016;7:25683–97.PubMedPubMedCentralCrossRef
189.
go back to reference Jr GWD. Phase I clinical trial investigating the ability of plant exosomes to deliver curcumin to normal and malignant colon tissue. clinicaltrials.gov; 2021. Report No.: NCT01294072. https://clinicaltrials.gov/ct2/ show/NCT01294072. Accessed 1 Sep 2022. Jr GWD. Phase I clinical trial investigating the ability of plant exosomes to deliver curcumin to normal and malignant colon tissue. clinicaltrials.gov; 2021. Report No.: NCT01294072. https://​clinicaltrials.​gov/​ct2/​ show/NCT01294072. Accessed 1 Sep 2022.
190.
go back to reference Redman R. Preliminary clinical trial investigating the ability of plant exosomes to abrogate oral mucositis induced by combined chemotherapy and radiation in head and neck cancer patients. clinicaltrials.gov; 2022. Report No.: NCT01668849. https://clinicaltrials.gov/ct2/show/ NCT01668849. Accessed 1 Sep 2022. Redman R. Preliminary clinical trial investigating the ability of plant exosomes to abrogate oral mucositis induced by combined chemotherapy and radiation in head and neck cancer patients. clinicaltrials.gov; 2022. Report No.: NCT01668849. https://​clinicaltrials.​gov/​ct2/​show/​ NCT01668849. Accessed 1 Sep 2022.
191.
go back to reference University of Louisville. A preliminary clinical trial investigating the ability of plant exosomes to mitigate insulin resistance and chronic inflammation in patients diagnosed with polycystic ovary syndrome (PCOS). clinicaltrials.gov; 2021. Report No.: NCT03493984. https://clinicaltrials.gov/ ct2/show/NCT03493984. Accessed 1 Sep 2022. University of Louisville. A preliminary clinical trial investigating the ability of plant exosomes to mitigate insulin resistance and chronic inflammation in patients diagnosed with polycystic ovary syndrome (PCOS). clinicaltrials.gov; 2021. Report No.: NCT03493984. https://​clinicaltrials.​gov/​ ct2/show/NCT03493984. Accessed 1 Sep 2022.
Metadata
Title
The application of plant-exosome-like nanovesicles as improved drug delivery systems for cancer vaccines
Author
Tatiana Hillman
Publication date
01-12-2024
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2024
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-024-00974-6

Other articles of this Issue 1/2024

Discover Oncology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine