Skip to main content
Top
Published in: Acta Neuropathologica 1/2011

01-01-2011 | Review

The application of in vitro cell-free conversion systems to human prion diseases

Authors: Michael Jones, Alexander H. Peden, Mark W. Head, James W. Ironside

Published in: Acta Neuropathologica | Issue 1/2011

Login to get access

Abstract

A key event in the pathogenesis of prion diseases is the conversion of the normal cellular isoform of the prion protein into the disease-associated isoform, but the mechanisms operating in this critical event are not yet fully understood. A number of novel approaches have recently been developed to study factors influencing this process. One of these, the protein misfolding cyclical amplification (PMCA) technique, has been used to explore defined factors influencing the conversion of cellular prion protein in a cell-free model system. Although initially developed in animal models, this technique has been increasingly applied to human prion diseases. Recent studies have focused on the role of different isoforms of the disease-associated human prion protein and the effects of the naturally occurring polymorphism at codon 129 in the human prion protein gene on the conversion process, improving our understanding of the interaction between host and agent factors that influence the wide range of phenotypes in human prion diseases. This technique also allows a greatly enhanced sensitivity of detection of disease-associated prion protein in human tissues and fluids, which is potentially applicable to disease screening, particularly for variant Creutzfeldt–Jakob disease. The PMCA technique can also be used to model human susceptibility to a range of prions of non-human origin, which is likely to prove of considerable future interest as more novel and potentially pathogenic prion diseases are identified in animal species that form part of the human food chain.
Literature
1.
go back to reference Aguzzi A, Klein MA, Musahl C et al (1998) Use of brain grafts to study the pathogenesis of prion diseases. Essays Biochem 33:133–147PubMed Aguzzi A, Klein MA, Musahl C et al (1998) Use of brain grafts to study the pathogenesis of prion diseases. Essays Biochem 33:133–147PubMed
2.
go back to reference Aguzzi A, Sigurdson C, Heikenwalder M (2007) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol Aguzzi A, Sigurdson C, Heikenwalder M (2007) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol
3.
go back to reference Asano M, Mohri S, Ironside JW et al (2006) vCJD prion acquires altered virulence through trans-species infection. Biochem Biophys Res Commun 342:293–299CrossRefPubMed Asano M, Mohri S, Ironside JW et al (2006) vCJD prion acquires altered virulence through trans-species infection. Biochem Biophys Res Commun 342:293–299CrossRefPubMed
4.
go back to reference Atarashi R, Moore RA, Sim VL et al (2007) Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods 4:645–650CrossRefPubMed Atarashi R, Moore RA, Sim VL et al (2007) Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods 4:645–650CrossRefPubMed
5.
go back to reference Atarashi R, Wilham JM, Christensen L et al (2008) Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat Methods 5:211–212CrossRefPubMed Atarashi R, Wilham JM, Christensen L et al (2008) Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat Methods 5:211–212CrossRefPubMed
6.
go back to reference Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C (2009) De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog 5:e1000421CrossRefPubMed Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C (2009) De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog 5:e1000421CrossRefPubMed
7.
go back to reference Bessen RA, Kocisko DA, Raymond GJ et al (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375:698–700CrossRefPubMed Bessen RA, Kocisko DA, Raymond GJ et al (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375:698–700CrossRefPubMed
8.
go back to reference Bieschke J, Weber P, Sarafoff N et al (2004) Autocatalytic self-propagation of misfolded prion protein. Proc Natl Acad Sci USA 101:12207–12211CrossRefPubMed Bieschke J, Weber P, Sarafoff N et al (2004) Autocatalytic self-propagation of misfolded prion protein. Proc Natl Acad Sci USA 101:12207–12211CrossRefPubMed
9.
go back to reference Bishop MT, Hart P, Aitchison L et al (2006) Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol 5:393–398CrossRefPubMed Bishop MT, Hart P, Aitchison L et al (2006) Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol 5:393–398CrossRefPubMed
10.
go back to reference Bossers A, Belt PBGM, Raymond GJ et al (1997) Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc Natl Acad Sci USA 94:4931–4936CrossRefPubMed Bossers A, Belt PBGM, Raymond GJ et al (1997) Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc Natl Acad Sci USA 94:4931–4936CrossRefPubMed
11.
go back to reference Bossers A, de Vries R, Smits MA (2000) Susceptibility of sheep for scrapie as assessed by in vitro conversion of nine naturally occurring variants of PrP. J Virol 74:1407–1414CrossRefPubMed Bossers A, de Vries R, Smits MA (2000) Susceptibility of sheep for scrapie as assessed by in vitro conversion of nine naturally occurring variants of PrP. J Virol 74:1407–1414CrossRefPubMed
12.
go back to reference Brandner S, Isenmann S, Raeber A et al (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343CrossRefPubMed Brandner S, Isenmann S, Raeber A et al (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343CrossRefPubMed
13.
go back to reference Brandner S, Raeber A, Sailer A et al (1996) Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc Natl Acad Sci USA 93:13148–13151CrossRefPubMed Brandner S, Raeber A, Sailer A et al (1996) Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc Natl Acad Sci USA 93:13148–13151CrossRefPubMed
14.
go back to reference Bruce ME, Will RG, Ironside JW et al (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389:498–501CrossRefPubMed Bruce ME, Will RG, Ironside JW et al (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389:498–501CrossRefPubMed
15.
go back to reference Budka H, Head MW, Ironside JW et al (2003) Sporadic Creutzfeldt–Jakob disease. In: Dickson DW et al (eds) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 287–297 Budka H, Head MW, Ironside JW et al (2003) Sporadic Creutzfeldt–Jakob disease. In: Dickson DW et al (eds) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 287–297
16.
go back to reference Buschmann A, Gretzschel A, Biacabe AG et al (2006) Atypical BSE in Germany—proof of transmissibility and biochemical characterization. Vet Microbiol 117:103–116CrossRefPubMed Buschmann A, Gretzschel A, Biacabe AG et al (2006) Atypical BSE in Germany—proof of transmissibility and biochemical characterization. Vet Microbiol 117:103–116CrossRefPubMed
17.
go back to reference Cali I, Castellani R, Alshekhlee A et al (2009) Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt–Jakob disease: its effect on the phenotype and prion-type characteristics. Brain 132:2643–2658CrossRefPubMed Cali I, Castellani R, Alshekhlee A et al (2009) Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt–Jakob disease: its effect on the phenotype and prion-type characteristics. Brain 132:2643–2658CrossRefPubMed
18.
go back to reference Castilla J, Morales R, Saa P et al (2008) Cell-free propagation of prion strains. EMBO J 27:2557–2566CrossRefPubMed Castilla J, Morales R, Saa P et al (2008) Cell-free propagation of prion strains. EMBO J 27:2557–2566CrossRefPubMed
19.
go back to reference Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206CrossRefPubMed Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206CrossRefPubMed
20.
go back to reference Castilla J, Saa P, Morales R et al (2006) Protein misfolding cyclic amplification for diagnosis and prion propagation studies. Methods Enzymol 412:3–21CrossRefPubMed Castilla J, Saa P, Morales R et al (2006) Protein misfolding cyclic amplification for diagnosis and prion propagation studies. Methods Enzymol 412:3–21CrossRefPubMed
21.
go back to reference Castilla J, Saa P, Soto C (2005) Detection of prions in blood. Nat Med 11:982–985PubMed Castilla J, Saa P, Soto C (2005) Detection of prions in blood. Nat Med 11:982–985PubMed
23.
go back to reference Caughey B, Horiuchi M, Demaimay R, Raymond GJ (1999) Assays of protease-resistant prion protein and its formation. Methods Enzymol 309:122–133CrossRefPubMed Caughey B, Horiuchi M, Demaimay R, Raymond GJ (1999) Assays of protease-resistant prion protein and its formation. Methods Enzymol 309:122–133CrossRefPubMed
24.
go back to reference Caughey B, Kocisko DA, Raymond GJ, Lansbury PT Jr (1995) Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem Biol 2:807–817CrossRefPubMed Caughey B, Kocisko DA, Raymond GJ, Lansbury PT Jr (1995) Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem Biol 2:807–817CrossRefPubMed
25.
go back to reference Caughey B, Raymond GJ, Kocisko DA, Lansbury PT Jr (1997) Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies. J Virol 71:4107–4110PubMed Caughey B, Raymond GJ, Kocisko DA, Lansbury PT Jr (1997) Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies. J Virol 71:4107–4110PubMed
26.
go back to reference Caughey WS, Raymond LD, Horiuchi M, Caughey B (1998) Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc Natl Acad Sci USA 95:12117–12122CrossRefPubMed Caughey WS, Raymond LD, Horiuchi M, Caughey B (1998) Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc Natl Acad Sci USA 95:12117–12122CrossRefPubMed
27.
go back to reference Chabry J, Caughey B, Chesebro B (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem 273:13203–13207CrossRefPubMed Chabry J, Caughey B, Chesebro B (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem 273:13203–13207CrossRefPubMed
28.
go back to reference Chabry J, Priola SA, Wehrly K et al (1999) Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence. J Virol 73:6245–6250PubMed Chabry J, Priola SA, Wehrly K et al (1999) Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence. J Virol 73:6245–6250PubMed
29.
go back to reference Chakrabarti O, Ashok A, Hegde RS (2009) Prion protein biosynthesis and its emerging role in neurodegeneration. Trends Biochem Sci 34:287–295CrossRefPubMed Chakrabarti O, Ashok A, Hegde RS (2009) Prion protein biosynthesis and its emerging role in neurodegeneration. Trends Biochem Sci 34:287–295CrossRefPubMed
30.
go back to reference Chen PY, Lin CC, Chang YT, Lin SC, Chan SI (2002) One O-linked sugar can affect the coil-to-beta structural transition of the prion peptide. Proc Natl Acad Sci USA 99:12633–12638CrossRefPubMed Chen PY, Lin CC, Chang YT, Lin SC, Chan SI (2002) One O-linked sugar can affect the coil-to-beta structural transition of the prion peptide. Proc Natl Acad Sci USA 99:12633–12638CrossRefPubMed
31.
go back to reference Colby DW, Giles K, Legname G et al (2009) Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci USA 106:20417–20422CrossRefPubMed Colby DW, Giles K, Legname G et al (2009) Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci USA 106:20417–20422CrossRefPubMed
32.
go back to reference Colby DW, Zhang Q, Wang S et al (2007) Prion detection by an amyloid seeding assay. Proc Natl Acad Sci USA 104:20914–20919CrossRefPubMed Colby DW, Zhang Q, Wang S et al (2007) Prion detection by an amyloid seeding assay. Proc Natl Acad Sci USA 104:20914–20919CrossRefPubMed
33.
go back to reference Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318:930–936CrossRefPubMed Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318:930–936CrossRefPubMed
34.
go back to reference DebBurman SK, Raymond GJ, Caughey B, Lindquist S (1997) Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci USA 94:13938–13943CrossRefPubMed DebBurman SK, Raymond GJ, Caughey B, Lindquist S (1997) Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci USA 94:13938–13943CrossRefPubMed
35.
go back to reference Deleault NR, Harris BT, Rees JR, Supattapone S (2007) From the cover: formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA 104:9741–9746CrossRefPubMed Deleault NR, Harris BT, Rees JR, Supattapone S (2007) From the cover: formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA 104:9741–9746CrossRefPubMed
36.
go back to reference Demaimay R, Harper J, Gordon H et al (1998) Structural aspects of Congo red as an inhibitor of protease-resistant prion protein formation. J Neurochem 71:2534–2541CrossRefPubMed Demaimay R, Harper J, Gordon H et al (1998) Structural aspects of Congo red as an inhibitor of protease-resistant prion protein formation. J Neurochem 71:2534–2541CrossRefPubMed
37.
go back to reference Eiden M, Palm GJ, Hinrichs W et al (2006) Synergistic and strain-specific effects of bovine spongiform encephalopathy and scrapie prions in the cell-free conversion of recombinant prion protein. J Gen Virol 87:3753–3761CrossRefPubMed Eiden M, Palm GJ, Hinrichs W et al (2006) Synergistic and strain-specific effects of bovine spongiform encephalopathy and scrapie prions in the cell-free conversion of recombinant prion protein. J Gen Virol 87:3753–3761CrossRefPubMed
38.
go back to reference Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239CrossRefPubMed Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239CrossRefPubMed
39.
go back to reference Green KM, Castilla J, Seward TS et al (2008) Accelerated high fidelity prion amplification within and across prion species barriers. PLoS Pathog 4:e1000139PubMed Green KM, Castilla J, Seward TS et al (2008) Accelerated high fidelity prion amplification within and across prion species barriers. PLoS Pathog 4:e1000139PubMed
40.
go back to reference Head MW, Bunn TJ, Bishop MT et al (2004) Prion protein heterogeneity in sporadic but not variant Creutzfeldt–Jakob disease: UK cases 1991–2002. Ann Neurol 55:851–859CrossRefPubMed Head MW, Bunn TJ, Bishop MT et al (2004) Prion protein heterogeneity in sporadic but not variant Creutzfeldt–Jakob disease: UK cases 1991–2002. Ann Neurol 55:851–859CrossRefPubMed
41.
go back to reference Herrmann LM, Caughey B (1998) The importance of the disulfide bond in prion protein conversion. Neuroreport 9:2457–2461CrossRefPubMed Herrmann LM, Caughey B (1998) The importance of the disulfide bond in prion protein conversion. Neuroreport 9:2457–2461CrossRefPubMed
42.
go back to reference Hill AF, Antoniou M, Collinge J (1999) Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 80(Pt 1):11–14PubMed Hill AF, Antoniou M, Collinge J (1999) Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 80(Pt 1):11–14PubMed
43.
go back to reference Horiuchi M, Priola SA, Chabry J, Caughey B (2000) Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci USA 97:5836–5841CrossRefPubMed Horiuchi M, Priola SA, Chabry J, Caughey B (2000) Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci USA 97:5836–5841CrossRefPubMed
44.
go back to reference Iniguez V, McKenzie D, Mirwald J, Aiken J (2000) Strain-specific propagation of PrP(Sc) properties into baculovirus-expressed hamster PrP(C). J Gen Virol 81:2565–2571PubMed Iniguez V, McKenzie D, Mirwald J, Aiken J (2000) Strain-specific propagation of PrP(Sc) properties into baculovirus-expressed hamster PrP(C). J Gen Virol 81:2565–2571PubMed
45.
go back to reference Ironside JW, Bishop MT, Connolly K et al (2006) Variant Creutzfeldt–Jakob disease: prion protein genotype analysis of positive appendix tissue samples from a retrospective prevalence study. Br Med J 332:1186–1188CrossRef Ironside JW, Bishop MT, Connolly K et al (2006) Variant Creutzfeldt–Jakob disease: prion protein genotype analysis of positive appendix tissue samples from a retrospective prevalence study. Br Med J 332:1186–1188CrossRef
46.
go back to reference Ironside JW, Ghetti B, Head MW, Piccardo P, Will RG (2008) Prion diseases. In: Love S, Louis DN, Ellison DW (eds) Hodder and Arnold, pp 1197–1273 Ironside JW, Ghetti B, Head MW, Piccardo P, Will RG (2008) Prion diseases. In: Love S, Louis DN, Ellison DW (eds) Hodder and Arnold, pp 1197–1273
47.
go back to reference Ironside JW, Ritchie DL, Head MW (2005) Phenotypic variability in human prion diseases. Neuropathol Appl Neurobiol 31:565–579CrossRefPubMed Ironside JW, Ritchie DL, Head MW (2005) Phenotypic variability in human prion diseases. Neuropathol Appl Neurobiol 31:565–579CrossRefPubMed
48.
go back to reference Jackson GS, Hosszu LL, Power A et al (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935–1937CrossRefPubMed Jackson GS, Hosszu LL, Power A et al (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935–1937CrossRefPubMed
49.
go back to reference Jones M, Peden A, Prowse C et al (2007) In vitro amplification and detection of variant Creutzfeldt–Jakob disease PrP(Sc). J Pathol 213:21–26CrossRefPubMed Jones M, Peden A, Prowse C et al (2007) In vitro amplification and detection of variant Creutzfeldt–Jakob disease PrP(Sc). J Pathol 213:21–26CrossRefPubMed
50.
go back to reference Jones M, Peden AH, Wight D et al (2008) Effects of human PrPSc type and PRNP genotype in an in vitro conversion assay. Neuroreport 19:1783–1786CrossRefPubMed Jones M, Peden AH, Wight D et al (2008) Effects of human PrPSc type and PRNP genotype in an in vitro conversion assay. Neuroreport 19:1783–1786CrossRefPubMed
51.
go back to reference Jones M, Peden AH, Yull H et al (2008) Human platelets as a substrate source for the in vitro amplification of the abnormal prion protein (PrP) associated with variant Creutzfeldt–Jakob disease. Transfusion 49:376–384CrossRefPubMed Jones M, Peden AH, Yull H et al (2008) Human platelets as a substrate source for the in vitro amplification of the abnormal prion protein (PrP) associated with variant Creutzfeldt–Jakob disease. Transfusion 49:376–384CrossRefPubMed
52.
go back to reference Jones M, Wight D, Barron R et al (2009) Molecular model of prion transmission to humans. Emerg Infect Dis 15:2013–2016CrossRefPubMed Jones M, Wight D, Barron R et al (2009) Molecular model of prion transmission to humans. Emerg Infect Dis 15:2013–2016CrossRefPubMed
53.
go back to reference Kaneko K, Ball HL, Wille H et al (2000) A synthetic peptide initiates Gerstmann–Straussler–Scheinker (GSS) disease in transgenic mice. J Mol Biol 295:997–1007CrossRefPubMed Kaneko K, Ball HL, Wille H et al (2000) A synthetic peptide initiates Gerstmann–Straussler–Scheinker (GSS) disease in transgenic mice. J Mol Biol 295:997–1007CrossRefPubMed
54.
go back to reference Kaski D, Mead S, Hyare H et al (2009) Variant CJD in an individual heterozygous for PRNP codon 129. Lancet 374:2128CrossRefPubMed Kaski D, Mead S, Hyare H et al (2009) Variant CJD in an individual heterozygous for PRNP codon 129. Lancet 374:2128CrossRefPubMed
55.
go back to reference Kim JI, Cali I, Surewicz K et al (2010) Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J Biol Chem 285:14083–14087CrossRefPubMed Kim JI, Cali I, Surewicz K et al (2010) Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J Biol Chem 285:14083–14087CrossRefPubMed
56.
go back to reference Kirby L, Birkett CR, Rudyk H, Gilbert IH, Hope J (2003) In vitro cell-free conversion of bacterial recombinant PrP to PrPres as a model for conversion. J Gen Virol 84:1013–1020CrossRefPubMed Kirby L, Birkett CR, Rudyk H, Gilbert IH, Hope J (2003) In vitro cell-free conversion of bacterial recombinant PrP to PrPres as a model for conversion. J Gen Virol 84:1013–1020CrossRefPubMed
57.
go back to reference Klohn PC, Stoltze L, Flechsig E, Enari M, Weissmann C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci USA 100:11666–11671CrossRefPubMed Klohn PC, Stoltze L, Flechsig E, Enari M, Weissmann C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci USA 100:11666–11671CrossRefPubMed
58.
go back to reference Kocisko DA, Come JH, Priola SA et al (1994) Cell-free formation of protease-resistant prion protein. Nature 370:471–474CrossRefPubMed Kocisko DA, Come JH, Priola SA et al (1994) Cell-free formation of protease-resistant prion protein. Nature 370:471–474CrossRefPubMed
59.
go back to reference Kocisko DA, Priola SA, Raymond GJ et al (1995) Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc Natl Acad Sci USA 92:3923–3927CrossRefPubMed Kocisko DA, Priola SA, Raymond GJ et al (1995) Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc Natl Acad Sci USA 92:3923–3927CrossRefPubMed
60.
go back to reference Kong Q, Zheng M, Casalone C et al (2008) Evaluation of the human transmission risk of an atypical bovine spongiform encephalopathy prion strain. J Virol 82:3697–3701CrossRefPubMed Kong Q, Zheng M, Casalone C et al (2008) Evaluation of the human transmission risk of an atypical bovine spongiform encephalopathy prion strain. J Virol 82:3697–3701CrossRefPubMed
61.
go back to reference Kuczius T, Koch R, Keyvani K et al (2007) Regional and phenotype heterogeneity of cellular prion proteins in the human brain. Eur J Neurosci 25:2649–2655CrossRefPubMed Kuczius T, Koch R, Keyvani K et al (2007) Regional and phenotype heterogeneity of cellular prion proteins in the human brain. Eur J Neurosci 25:2649–2655CrossRefPubMed
62.
go back to reference Kurt TD, Perrott MR, Wilusz CJ et al (2007) Efficient in vitro amplification of chronic wasting disease PrPRES. J Virol 81:9605–9608CrossRefPubMed Kurt TD, Perrott MR, Wilusz CJ et al (2007) Efficient in vitro amplification of chronic wasting disease PrPRES. J Virol 81:9605–9608CrossRefPubMed
63.
64.
go back to reference Makarava N, Baskakov IV (2008) The same primary structure of the prion protein yields two distinct self-propagating states. J Biol Chem 283:15988–15996CrossRefPubMed Makarava N, Baskakov IV (2008) The same primary structure of the prion protein yields two distinct self-propagating states. J Biol Chem 283:15988–15996CrossRefPubMed
65.
go back to reference Makarava N, Kovacs GG, Bocharova O et al (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119:177–187CrossRefPubMed Makarava N, Kovacs GG, Bocharova O et al (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119:177–187CrossRefPubMed
66.
go back to reference Makarava N, Ostapchenko VG, Savtchenko R, Baskakov IV (2009) Conformational switching within individual amyloid fibrils. J Biol Chem 284:14386–14395CrossRefPubMed Makarava N, Ostapchenko VG, Savtchenko R, Baskakov IV (2009) Conformational switching within individual amyloid fibrils. J Biol Chem 284:14386–14395CrossRefPubMed
67.
go back to reference Mallucci G, Dickinson A, Linehan J et al (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874CrossRefPubMed Mallucci G, Dickinson A, Linehan J et al (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874CrossRefPubMed
68.
go back to reference Mallucci GR, White MD, Farmer M et al (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53:325–335CrossRefPubMed Mallucci GR, White MD, Farmer M et al (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53:325–335CrossRefPubMed
69.
go back to reference Manson JC, Cancellotti E, Hart P, Bishop MT, Barron RM (2006) The transmissible spongiform encephalopathies: emerging and declining epidemics. Biochem Soc Trans 34:1155–1158CrossRefPubMed Manson JC, Cancellotti E, Hart P, Bishop MT, Barron RM (2006) The transmissible spongiform encephalopathies: emerging and declining epidemics. Biochem Soc Trans 34:1155–1158CrossRefPubMed
70.
go back to reference Mays CE, Titlow W, Seward T, Telling GC, Ryou C (2009) Enhancement of protein misfolding cyclic amplification by using concentrated cellular prion protein source. Biochem Biophys Res Commun 388:306–310CrossRefPubMed Mays CE, Titlow W, Seward T, Telling GC, Ryou C (2009) Enhancement of protein misfolding cyclic amplification by using concentrated cellular prion protein source. Biochem Biophys Res Commun 388:306–310CrossRefPubMed
71.
go back to reference Murayama Y, Yoshioka M, Okada H et al (2007) Urinary excretion and blood level of prions in scrapie-infected hamsters. J Gen Virol 88:2890–2898CrossRefPubMed Murayama Y, Yoshioka M, Okada H et al (2007) Urinary excretion and blood level of prions in scrapie-infected hamsters. J Gen Virol 88:2890–2898CrossRefPubMed
72.
go back to reference Nandi PK, Leclerc E, Nicole JC, Takahashi M (2002) DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid. J Mol Biol 322:153–161CrossRefPubMed Nandi PK, Leclerc E, Nicole JC, Takahashi M (2002) DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid. J Mol Biol 322:153–161CrossRefPubMed
73.
go back to reference Nishina KA, Deleault NR, Mahal SP et al (2006) The stoichiometry of host PrPC glycoforms modulates the efficiency of PrPSc formation in vitro. Biochemistry 45:14129–14139CrossRefPubMed Nishina KA, Deleault NR, Mahal SP et al (2006) The stoichiometry of host PrPC glycoforms modulates the efficiency of PrPSc formation in vitro. Biochemistry 45:14129–14139CrossRefPubMed
74.
go back to reference Orru CD, Wilham JM, Hughson AG et al (2009) Human variant Creutzfeldt–Jakob disease and sheep scrapie PrP(res) detection using seeded conversion of recombinant prion protein. Protein Eng Des Sel 22:515–521CrossRefPubMed Orru CD, Wilham JM, Hughson AG et al (2009) Human variant Creutzfeldt–Jakob disease and sheep scrapie PrP(res) detection using seeded conversion of recombinant prion protein. Protein Eng Des Sel 22:515–521CrossRefPubMed
75.
go back to reference Parchi P, Giese A, Capellari S et al (1999) Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233CrossRefPubMed Parchi P, Giese A, Capellari S et al (1999) Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233CrossRefPubMed
76.
go back to reference Peden A, McCardle L, Head MW et al. (2010) Variant CJD infection in the spleen of a neurologically asymptomatic UK adult patient with haemophilia. Haemophilia Peden A, McCardle L, Head MW et al. (2010) Variant CJD infection in the spleen of a neurologically asymptomatic UK adult patient with haemophilia. Haemophilia
77.
go back to reference Peden AH, Head MW, Ritchie DL, Bell JE, Ironside JW (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364:527–529CrossRefPubMed Peden AH, Head MW, Ritchie DL, Bell JE, Ironside JW (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364:527–529CrossRefPubMed
78.
go back to reference Post K, Pitschke M, Schafer O et al (1998) Rapid acquisition of beta-sheet structure in the prion protein prior to multimer formation. Biol Chem 379:1307–1317CrossRefPubMed Post K, Pitschke M, Schafer O et al (1998) Rapid acquisition of beta-sheet structure in the prion protein prior to multimer formation. Biol Chem 379:1307–1317CrossRefPubMed
79.
go back to reference Priola SA, Lawson VA (2001) Glycosylation influences cross-species formation of protease-resistant prion protein. EMBO J 20:6692–6699CrossRefPubMed Priola SA, Lawson VA (2001) Glycosylation influences cross-species formation of protease-resistant prion protein. EMBO J 20:6692–6699CrossRefPubMed
81.
go back to reference Qin K, Yang DS, Yang Y et al (2000) Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J Biol Chem 275:19121–19131CrossRefPubMed Qin K, Yang DS, Yang Y et al (2000) Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J Biol Chem 275:19121–19131CrossRefPubMed
82.
go back to reference Raymond GJ, Hope J, Kocisko DA et al (1997) Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature 388:285–288CrossRefPubMed Raymond GJ, Hope J, Kocisko DA et al (1997) Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature 388:285–288CrossRefPubMed
83.
go back to reference Saa P, Castilla J, Soto C (2006) Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem 281:35245–35252CrossRefPubMed Saa P, Castilla J, Soto C (2006) Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem 281:35245–35252CrossRefPubMed
84.
go back to reference Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813CrossRefPubMed Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813CrossRefPubMed
85.
go back to reference Saborio GP, Soto C, Kascsak RJ et al (1999) Cell-lysate conversion of prion protein into its protease-resistant isoform suggests the participation of a cellular chaperone. Biochem Biophys Res Commun 258:470–475CrossRefPubMed Saborio GP, Soto C, Kascsak RJ et al (1999) Cell-lysate conversion of prion protein into its protease-resistant isoform suggests the participation of a cellular chaperone. Biochem Biophys Res Commun 258:470–475CrossRefPubMed
86.
go back to reference Sarafoff NI, Bieschke J, Giese A et al (2005) Automated PrPres amplification using indirect sonication. J Biochem Biophys Methods 63:213–221CrossRefPubMed Sarafoff NI, Bieschke J, Giese A et al (2005) Automated PrPres amplification using indirect sonication. J Biochem Biophys Methods 63:213–221CrossRefPubMed
87.
go back to reference Sigurdson CJ, Nilsson KP, Hornemann S et al (2009) De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc Natl Acad Sci USA 106:304–309CrossRefPubMed Sigurdson CJ, Nilsson KP, Hornemann S et al (2009) De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc Natl Acad Sci USA 106:304–309CrossRefPubMed
88.
go back to reference Soto C, Anderes L, Suardi S et al (2005) Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett 579:638–642CrossRefPubMed Soto C, Anderes L, Suardi S et al (2005) Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett 579:638–642CrossRefPubMed
89.
go back to reference Tattum MH, Jones S, Pal S, Collinge J, Jackson GS (2010) Discrimination between prion-infected and normal blood samples by protein misfolding cyclic amplification. Transfusion 50:996–1002CrossRefPubMed Tattum MH, Jones S, Pal S, Collinge J, Jackson GS (2010) Discrimination between prion-infected and normal blood samples by protein misfolding cyclic amplification. Transfusion 50:996–1002CrossRefPubMed
90.
go back to reference Thorne L, Terry LA (2008) In vitro amplification of PrPSc derived from the brain and blood of sheep infected with scrapie. J Gen Virol 89:3177–3184CrossRefPubMed Thorne L, Terry LA (2008) In vitro amplification of PrPSc derived from the brain and blood of sheep infected with scrapie. J Gen Virol 89:3177–3184CrossRefPubMed
91.
go back to reference Uro-Coste E, Cassard H, Simon S et al (2008) Beyond PrP res type 1/type 2 dichotomy in Creutzfeldt–Jakob disease. PLoS Pathog 4:e1000029CrossRef Uro-Coste E, Cassard H, Simon S et al (2008) Beyond PrP res type 1/type 2 dichotomy in Creutzfeldt–Jakob disease. PLoS Pathog 4:e1000029CrossRef
92.
go back to reference Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135CrossRefPubMed Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135CrossRefPubMed
93.
go back to reference Webb PR, Powell L, Denyer M et al (2009) A retrospective immunohistochemical study reveals atypical scrapie has existed in the United Kingdom since at least 1987. J Vet Diagn Invest 21:826–829PubMed Webb PR, Powell L, Denyer M et al (2009) A retrospective immunohistochemical study reveals atypical scrapie has existed in the United Kingdom since at least 1987. J Vet Diagn Invest 21:826–829PubMed
94.
go back to reference Weissmann C, Bueler H, Fischer M, Sauer A, Aguet M (1994) Susceptibility to scrapie in mice is dependent on PrPC. Philos Trans R Soc Lond B Biol Sci 343:431–433CrossRefPubMed Weissmann C, Bueler H, Fischer M, Sauer A, Aguet M (1994) Susceptibility to scrapie in mice is dependent on PrPC. Philos Trans R Soc Lond B Biol Sci 343:431–433CrossRefPubMed
95.
go back to reference Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim Biophys Acta 1772:629–644PubMed Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim Biophys Acta 1772:629–644PubMed
96.
go back to reference White MD, Farmer M, Mirabile I et al (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci USA 105:10238–10243CrossRefPubMed White MD, Farmer M, Mirabile I et al (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci USA 105:10238–10243CrossRefPubMed
97.
go back to reference Will RG, Ironside JW, Zeidler M et al (1996) A new variant of Creutzfeldt–Jakob disease in the UK. Lancet 347:921–925CrossRefPubMed Will RG, Ironside JW, Zeidler M et al (1996) A new variant of Creutzfeldt–Jakob disease in the UK. Lancet 347:921–925CrossRefPubMed
98.
go back to reference Xiong LW, Raymond LD, Hayes SF, Raymond GJ, Caughey B (2001) Conformational change, aggregation and fibril formation induced by detergent treatments of cellular prion protein. J Neurochem 79:669–678CrossRefPubMed Xiong LW, Raymond LD, Hayes SF, Raymond GJ, Caughey B (2001) Conformational change, aggregation and fibril formation induced by detergent treatments of cellular prion protein. J Neurochem 79:669–678CrossRefPubMed
99.
go back to reference Zou WQ, Cashman NR (2002) Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J Biol Chem 277:43942–43947CrossRefPubMed Zou WQ, Cashman NR (2002) Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J Biol Chem 277:43942–43947CrossRefPubMed
Metadata
Title
The application of in vitro cell-free conversion systems to human prion diseases
Authors
Michael Jones
Alexander H. Peden
Mark W. Head
James W. Ironside
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 1/2011
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-010-0708-8

Other articles of this Issue 1/2011

Acta Neuropathologica 1/2011 Go to the issue