Skip to main content
Top
Published in: AIDS Research and Therapy 1/2016

Open Access 01-12-2016 | Short report

The antiviral compound BIT225 inhibits HIV-1 replication in myeloid dendritic cells

Authors: Gabriela Khoury, Gary Ewart, Carolyn Luscombe, Michelle Miller, John Wilkinson

Published in: AIDS Research and Therapy | Issue 1/2016

Login to get access

Abstract

Background

Previous studies with BIT225 (N-carbamimidoyl-5-(1-methyl-1H-pyrazol-4-yl)-2-naphthamide) have demonstrated a unique antiviral activity that blocks the release of HIV-1 from monocyte-derived macrophages (MDM). Antagonising the ion channel formed by HIV-1 Vpu, BIT225 preferentially targets de novo intracellular virus produced in ‘virus-containing compartments’ of MDM. In primary infections, dendritic cells (DC) are one of the first cells infected by HIV-1 and can transfer virus to more permissive CD4+ T cells, making these cells an important target for novel antiviral therapies. To extend previous findings with BIT225, we aimed to further characterise the antiviral activity of BIT225 on HIV-1 replication in monocyte-derived DC (MDDC).

Results

The anti-HIV-1 activity of BIT225 was evaluated in vitro within MDDC alone and in co-cultures with activated CD4+ T cells to examine the effect of the drug on HIV-1 transfer. Antiviral activity was determined by measuring HIV-1 reverse transcriptase activity in the culture supernatant of BIT225 treated and DMSO control cultures. A single dose of BIT225 resulted in a mean (SE) peak inhibition of HIV-1 release from MDDC by 74.5 % (±0.6) following 14 days of culture and a 6-fold reduction of HIV-1 transfer to activated uninfected CD4+ T cells in co-culture.

Conclusions

HIV-1 release from MDDC was inhibited by BIT225. This data broadens the drug’s antiviral activity profile within cells of the myeloid lineage. These findings suggest a potential role for BIT225 in reducing HIV-1 production and preventing viral dissemination in early and chronic infection and may assist in limiting virus spread with any ongoing viral replication during antiretroviral therapy.
Literature
1.
go back to reference Ewart GD, Sutherland T, Gage PW, Cox GB. The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol. 1996;70:7108–15.PubMedCentralPubMed Ewart GD, Sutherland T, Gage PW, Cox GB. The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol. 1996;70:7108–15.PubMedCentralPubMed
2.
go back to reference Ewart GD, Mills K, Cox GB, Gage PW. Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur Biophys J. 2002;31:26–35.CrossRefPubMed Ewart GD, Mills K, Cox GB, Gage PW. Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur Biophys J. 2002;31:26–35.CrossRefPubMed
3.
go back to reference Khoury G, Ewart G, Luscombe C, Miller M, Wilkinson J. Antiviral efficacy of the novel compound BIT225 against HIV-1 release from human macrophages. Antimicrob Agents Chemother. 2010;54:835–45.PubMedCentralCrossRefPubMed Khoury G, Ewart G, Luscombe C, Miller M, Wilkinson J. Antiviral efficacy of the novel compound BIT225 against HIV-1 release from human macrophages. Antimicrob Agents Chemother. 2010;54:835–45.PubMedCentralCrossRefPubMed
4.
go back to reference Ewart GD, Nasr N, Naif H, Cox GB, Cunningham AL, Gage PW. Potential new anti-human immunodeficiency virus type 1 compounds depress virus replication in cultured human macrophages. Antimicrob Agents Chemother. 2004;48:2325–30.PubMedCentralCrossRefPubMed Ewart GD, Nasr N, Naif H, Cox GB, Cunningham AL, Gage PW. Potential new anti-human immunodeficiency virus type 1 compounds depress virus replication in cultured human macrophages. Antimicrob Agents Chemother. 2004;48:2325–30.PubMedCentralCrossRefPubMed
5.
go back to reference Wilkinson J, Ewart G, Luscombe C, McBride K, Ratanasuwan W, et al. A Phase 1b/2a study of the safety, pharmacokinetics and antiviral activity of BIT225 in patients with HIV-1 infection. J Antimicrob Chemother. 2015;. doi:10.1093/jac/dkv389.PubMed Wilkinson J, Ewart G, Luscombe C, McBride K, Ratanasuwan W, et al. A Phase 1b/2a study of the safety, pharmacokinetics and antiviral activity of BIT225 in patients with HIV-1 infection. J Antimicrob Chemother. 2015;. doi:10.​1093/​jac/​dkv389.PubMed
6.
go back to reference Kuhl BD, Cheng V, Donahue DA, Sloan RD, Liang C, Wilkinson J, Wainberg MA. The HIV-1 Vpu viroporin inhibitor BIT225 does not affect Vpu-mediated tetherin antagonism. PLoS ONE. 2011;6:e27660.PubMedCentralCrossRefPubMed Kuhl BD, Cheng V, Donahue DA, Sloan RD, Liang C, Wilkinson J, Wainberg MA. The HIV-1 Vpu viroporin inhibitor BIT225 does not affect Vpu-mediated tetherin antagonism. PLoS ONE. 2011;6:e27660.PubMedCentralCrossRefPubMed
7.
go back to reference Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol. 2009;83:3258–67.PubMedCentralCrossRefPubMed Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol. 2009;83:3258–67.PubMedCentralCrossRefPubMed
8.
9.
go back to reference Ballweber L, Robinson B, Kreger A, Fialkow M, Lentz G, McElrath MJ, Hladik F. Vaginal langerhans cells nonproductively transporting HIV-1 mediate infection of T cells. J Virol. 2011;85:13443–7.PubMedCentralCrossRefPubMed Ballweber L, Robinson B, Kreger A, Fialkow M, Lentz G, McElrath MJ, Hladik F. Vaginal langerhans cells nonproductively transporting HIV-1 mediate infection of T cells. J Virol. 2011;85:13443–7.PubMedCentralCrossRefPubMed
10.
go back to reference Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D, McElrath MJ. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity. 2007;26:257–70.PubMedCentralCrossRefPubMed Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D, McElrath MJ. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity. 2007;26:257–70.PubMedCentralCrossRefPubMed
11.
go back to reference Miller CJ, Li Q, Abel K, Kim EY, Ma ZM, Wietgrefe S, et al. Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J Virol. 2005;79:9217–27.PubMedCentralCrossRefPubMed Miller CJ, Li Q, Abel K, Kim EY, Ma ZM, Wietgrefe S, et al. Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J Virol. 2005;79:9217–27.PubMedCentralCrossRefPubMed
12.
go back to reference Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood. 2004;103:2170–9.CrossRefPubMed Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood. 2004;103:2170–9.CrossRefPubMed
13.
go back to reference Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4 + T cells. Science. 1992;257:383–7.CrossRefPubMed Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4 + T cells. Science. 1992;257:383–7.CrossRefPubMed
14.
go back to reference Loré K, Smed-Sörensen A, Vasudevan J, Mascola JR, Koup RA. Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4 + T cells. J Exp Med. 2005;201:2023–33.PubMedCentralCrossRefPubMed Loré K, Smed-Sörensen A, Vasudevan J, Mascola JR, Koup RA. Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4 + T cells. J Exp Med. 2005;201:2023–33.PubMedCentralCrossRefPubMed
15.
go back to reference Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science. 1996;274:985–9.CrossRefPubMed Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science. 1996;274:985–9.CrossRefPubMed
16.
go back to reference Suzuki K, Craddock BP, Okamoto N, Kano T, Steigbigel RT. Poly A-linked colorimetric microtiter plate assay for HIV reverse transcriptase. J Virol Methods. 1993;44:189–98.CrossRefPubMed Suzuki K, Craddock BP, Okamoto N, Kano T, Steigbigel RT. Poly A-linked colorimetric microtiter plate assay for HIV reverse transcriptase. J Virol Methods. 1993;44:189–98.CrossRefPubMed
18.
go back to reference Spiegel H, Herbst H, Niedobitek G, Foss HD, Stein H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4 + T-helper cells. Am J Pathol. 1992;140:15–22.PubMedCentralPubMed Spiegel H, Herbst H, Niedobitek G, Foss HD, Stein H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4 + T-helper cells. Am J Pathol. 1992;140:15–22.PubMedCentralPubMed
20.
go back to reference Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA. 2014;111:2307–12.PubMedCentralCrossRefPubMed Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA. 2014;111:2307–12.PubMedCentralCrossRefPubMed
21.
go back to reference Perreau M, Savoye AL, De Crignis E, Corpataux JM, Cubas R, Haddad EK, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med. 2013;210:143–56.PubMedCentralCrossRefPubMed Perreau M, Savoye AL, De Crignis E, Corpataux JM, Cubas R, Haddad EK, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med. 2013;210:143–56.PubMedCentralCrossRefPubMed
22.
go back to reference Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15:893–900.PubMedCentralCrossRefPubMed Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15:893–900.PubMedCentralCrossRefPubMed
Metadata
Title
The antiviral compound BIT225 inhibits HIV-1 replication in myeloid dendritic cells
Authors
Gabriela Khoury
Gary Ewart
Carolyn Luscombe
Michelle Miller
John Wilkinson
Publication date
01-12-2016
Publisher
BioMed Central
Published in
AIDS Research and Therapy / Issue 1/2016
Electronic ISSN: 1742-6405
DOI
https://doi.org/10.1186/s12981-016-0093-z

Other articles of this Issue 1/2016

AIDS Research and Therapy 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.