Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control

Authors: Richard M Oxborough, Raphael N’Guessan, Rebecca Jones, Jovin Kitau, Corine Ngufor, David Malone, Franklin W Mosha, Mark W Rowland

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

The rapid selection of pyrethroid resistance throughout sub-Saharan Africa is a serious threat to malaria vector control. Chlorfenapyr is a pyrrole insecticide which shows no cross resistance to insecticide classes normally used for vector control and is effective on mosquito nets under experimental hut conditions. Unlike neurotoxic insecticides, chlorfenapyr owes its toxicity to disruption of metabolic pathways in mitochondria that enable cellular respiration. A series of experiments explored whether standard World Health Organization (WHO) guidelines for evaluation of long-lasting insecticidal nets, developed through testing of pyrethroid insecticides, are suitable for evaluation of non-neurotoxic insecticides.

Methods

The efficacy of WHO recommended cone, cylinder and tunnel tests was compared for pyrethroids and chlorfenapyr. To establish bioassay exposure times predictive of insecticide-treated net (ITN) efficacy in experimental hut trials, standard three-minute bioassays of pyrethroid and chlorfenapyr ITNs were compared with longer exposures. Mosquito behaviour and response to chlorfenapyr ITN in bioassays conducted at night were compared to day and across a range of temperatures representative of highland and lowland transmission.

Results

Standard three-minute bioassay of chlorfenapyr produced extremely low levels of mortality compared to pyrethroids. Thirty-minute day-time bioassay produced mortality closer to hut efficacy of chlorfenapyr ITN but still fell short of the WHO threshold. Overnight tunnel test with chlorfenapyr produced 100% mortality and exceeded the WHO threshold of 80%. The endogenous circadian activity rhythm of anophelines results in inactivity by day and raised metabolism and flight activity by night. A model which explains improved toxicity of chlorfenapyr ITN when tested at night, and during the day at higher ambient temperature, is that activation of chlorfenapyr and disruption of respiratory pathways is enhanced when the insect is more metabolically and behaviourally active.

Conclusions

Testing according to current WHO guidelines is not suitable for certain types of non-neurotoxic insecticide which, although highly effective in field trials, would be overlooked at the screening stage of evaluation through bioassay. Testing methods must be tailored to the characteristics and mode of action of each insecticide class. The WHO tunnel test on night-active anophelines is the most reliable bioassay for identifying the toxicity of novel insecticides.
Literature
1.
2.
go back to reference Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRefPubMed Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRefPubMed
3.
go back to reference Guillet P, N’Guessan R, Darriet F, Traore-Lamizana M, Chandre F, Carnevale P. Combined pyrethroid and carbamate ‘two-in-one’ treated mosquito nets: field efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus. Med Vet Entomol. 2001;15:105–12.CrossRefPubMed Guillet P, N’Guessan R, Darriet F, Traore-Lamizana M, Chandre F, Carnevale P. Combined pyrethroid and carbamate ‘two-in-one’ treated mosquito nets: field efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus. Med Vet Entomol. 2001;15:105–12.CrossRefPubMed
4.
go back to reference WHOPES. WHO recommended long-lasting insecticidal mosquito nets. Geneva: World Health Organization; 2012. WHOPES. WHO recommended long-lasting insecticidal mosquito nets. Geneva: World Health Organization; 2012.
5.
go back to reference Lines JD, Myamba J, Curtis CF. Experimental hut trials of permethrin-impregnated mosquito nets and eave curtains against malaria vectors in Tanzania. Med Vet Entomol. 1987;1:37–51.CrossRefPubMed Lines JD, Myamba J, Curtis CF. Experimental hut trials of permethrin-impregnated mosquito nets and eave curtains against malaria vectors in Tanzania. Med Vet Entomol. 1987;1:37–51.CrossRefPubMed
6.
go back to reference Darriet FV, Tho Vien N, Robert V, Carnevale P. Evaluation of the efficacy of permethrin impregnated intact and perforated mosquito nets against vectors of malaria. Geneva, World Health Organization 1984, WHO/VBC/84899, WHO/MAL/84.1008. Darriet FV, Tho Vien N, Robert V, Carnevale P. Evaluation of the efficacy of permethrin impregnated intact and perforated mosquito nets against vectors of malaria. Geneva, World Health Organization 1984, WHO/VBC/84899, WHO/MAL/84.1008.
7.
go back to reference WHO: Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. Geneva, World Health Organization, 2006:WHO/CDS/NTD/WHOPES/GCDPP/2006.2003. WHO: Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. Geneva, World Health Organization, 2006:WHO/CDS/NTD/WHOPES/GCDPP/2006.2003.
8.
go back to reference WHO: Guidelines for laboratory and field-testing of long-lasting insecticidal nets. Geneva, World Health Organization, WHO/HTM/NTD/WHOPES/20131 2013. WHO: Guidelines for laboratory and field-testing of long-lasting insecticidal nets. Geneva, World Health Organization, WHO/HTM/NTD/WHOPES/20131 2013.
9.
go back to reference Raghavendra K, Barik TK, Sharma P, Bhatt RM, Srivastava HC, Sreehari U, et al. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors. Malar J. 2011;10:16.CrossRefPubMedCentralPubMed Raghavendra K, Barik TK, Sharma P, Bhatt RM, Srivastava HC, Sreehari U, et al. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors. Malar J. 2011;10:16.CrossRefPubMedCentralPubMed
10.
go back to reference Black BC, Hollingworth RM, Ahmmadsahib KI, Kukel CD, Donovan S. Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated pyrroles. Pestic Biochem Physiol. 1994;50:115–28.CrossRef Black BC, Hollingworth RM, Ahmmadsahib KI, Kukel CD, Donovan S. Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated pyrroles. Pestic Biochem Physiol. 1994;50:115–28.CrossRef
11.
go back to reference N’Guessan R, Boko P, Odjo A, Akogbeto M, Yates A, Rowland M. Chlorfenapyr: a pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes. Acta Trop. 2007;102:69–78.CrossRefPubMed N’Guessan R, Boko P, Odjo A, Akogbeto M, Yates A, Rowland M. Chlorfenapyr: a pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes. Acta Trop. 2007;102:69–78.CrossRefPubMed
12.
go back to reference Gunning RV, Moores GD. Chlorfenapyr resistance in Helicoverpa armigera in Australia. In: Pests and diseases proceedings of the British crop protection council conference. London, UK: British Crop Protection Council; 2002. p. 793–8. Gunning RV, Moores GD. Chlorfenapyr resistance in Helicoverpa armigera in Australia. In: Pests and diseases proceedings of the British crop protection council conference. London, UK: British Crop Protection Council; 2002. p. 793–8.
13.
go back to reference Oliver SV, Kaiser ML, Wood OR, Coetzee M, Rowland M, Brooke BD. Evaluation of the pyrrole insecticide chlorfenapyr against pyrethroid resistant and susceptible Anopheles funestus (Diptera: Culicidae). Trop Med Int Health. 2010;15:127–31.PubMed Oliver SV, Kaiser ML, Wood OR, Coetzee M, Rowland M, Brooke BD. Evaluation of the pyrrole insecticide chlorfenapyr against pyrethroid resistant and susceptible Anopheles funestus (Diptera: Culicidae). Trop Med Int Health. 2010;15:127–31.PubMed
14.
go back to reference Oxborough RM, Kitau J, Matowo J, Mndeme R, Feston E, Boko P, et al. Evaluation of indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-susceptible Anopheles arabiensis and pyrethroid-resistant Culex quinquefasciatus mosquitoes. Trans R Soc Trop Med Hyg. 2010;104:639–45.CrossRefPubMed Oxborough RM, Kitau J, Matowo J, Mndeme R, Feston E, Boko P, et al. Evaluation of indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-susceptible Anopheles arabiensis and pyrethroid-resistant Culex quinquefasciatus mosquitoes. Trans R Soc Trop Med Hyg. 2010;104:639–45.CrossRefPubMed
15.
go back to reference Tawatsin A, Thavara U, Chompoosri J, Phusup Y, Jonjang N, Khumsawads C, et al. Insecticide resistance in bedbugs in Thailand and laboratory evaluation of insecticides for the control of Cimex hemipterus and Cimex lectularius (Hemiptera: Cimicidae). J Med Entomol. 2011;48:1023–30.CrossRefPubMed Tawatsin A, Thavara U, Chompoosri J, Phusup Y, Jonjang N, Khumsawads C, et al. Insecticide resistance in bedbugs in Thailand and laboratory evaluation of insecticides for the control of Cimex hemipterus and Cimex lectularius (Hemiptera: Cimicidae). J Med Entomol. 2011;48:1023–30.CrossRefPubMed
16.
go back to reference Romero A, Potter MF, Haynes KF. Evaluation of chlorfenapyr for control of the bed bug, Cimex lectularius L. Pest Manag Sci. 2010;66:1243–8.CrossRefPubMed Romero A, Potter MF, Haynes KF. Evaluation of chlorfenapyr for control of the bed bug, Cimex lectularius L. Pest Manag Sci. 2010;66:1243–8.CrossRefPubMed
17.
go back to reference Che W, Shi T, Wu Y, Yang Y. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J Econ Entomol. 2013;106:1855–62.CrossRefPubMed Che W, Shi T, Wu Y, Yang Y. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J Econ Entomol. 2013;106:1855–62.CrossRefPubMed
18.
go back to reference N’Guessan R, Boko P, Odjo A, Knols B, Akogbeto M, Rowland M. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin. Trop Med Int Health. 2009;14:389–95.CrossRefPubMed N’Guessan R, Boko P, Odjo A, Knols B, Akogbeto M, Rowland M. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin. Trop Med Int Health. 2009;14:389–95.CrossRefPubMed
19.
go back to reference Mosha FW, Lyimo IN, Oxborough RM, Malima R, Tenu F, Matowo J, et al. Experimental hut evaluation of the pyrrole insecticide chlorfenapyr on bed nets for the control of Anopheles arabiensis and Culex quinquefasciatus. Trop Med Int Health. 2008;13:644–52.CrossRefPubMed Mosha FW, Lyimo IN, Oxborough RM, Malima R, Tenu F, Matowo J, et al. Experimental hut evaluation of the pyrrole insecticide chlorfenapyr on bed nets for the control of Anopheles arabiensis and Culex quinquefasciatus. Trop Med Int Health. 2008;13:644–52.CrossRefPubMed
20.
go back to reference Jones MDR, Gubbins SJ, Cubbin CM. Circadian flight activity in four sibling species of the Anopheles gambiae complex (Diptera, Culicidae). Bull Entomol Res. 1974;64:241–6.CrossRef Jones MDR, Gubbins SJ, Cubbin CM. Circadian flight activity in four sibling species of the Anopheles gambiae complex (Diptera, Culicidae). Bull Entomol Res. 1974;64:241–6.CrossRef
21.
go back to reference Rowland M. Changes in the circadian flight activity of the mosquito Anopheles stephensi associated with insemination, blood-feeding, oviposition and nocturnal light intensity. Physiol Entomol. 1989;14:77–84.CrossRef Rowland M. Changes in the circadian flight activity of the mosquito Anopheles stephensi associated with insemination, blood-feeding, oviposition and nocturnal light intensity. Physiol Entomol. 1989;14:77–84.CrossRef
22.
go back to reference Oxborough RM, Kitau J, Matowo J, Feston E, Mndeme R, Mosha FW, et al. ITN mixtures of chlorfenapyr (pyrrole) and alphacypermethrin (pyrethroid) for control of pyrethroid resistant Anopheles arabiensis and Culex quinquefasciatus. PLoS One. 2013;8:e55781.CrossRefPubMedCentralPubMed Oxborough RM, Kitau J, Matowo J, Feston E, Mndeme R, Mosha FW, et al. ITN mixtures of chlorfenapyr (pyrrole) and alphacypermethrin (pyrethroid) for control of pyrethroid resistant Anopheles arabiensis and Culex quinquefasciatus. PLoS One. 2013;8:e55781.CrossRefPubMedCentralPubMed
23.
go back to reference Matowo J, Kitau J, Kabula B, Kavishe R, Oxborough R, Kaaya R, et al. Dynamics of insecticide resistance and the frequency of kdr mutation in the primary malaria vector Anopheles arabiensis in rural villages of Lower Moshi, North Eastern Tanzania. J Parasitol Vector Biol. 2014;6:31–41. Matowo J, Kitau J, Kabula B, Kavishe R, Oxborough R, Kaaya R, et al. Dynamics of insecticide resistance and the frequency of kdr mutation in the primary malaria vector Anopheles arabiensis in rural villages of Lower Moshi, North Eastern Tanzania. J Parasitol Vector Biol. 2014;6:31–41.
24.
go back to reference Lindsay SW, Snow RW, Broomfield GL, Janneh MS, Wirtz RA, Greenwood BM. Impact of permethrin-treated bednets on malaria transmission by the Anopheles gambiae complex in The Gambia. Med Vet Entomol. 1989;3:263–71.CrossRefPubMed Lindsay SW, Snow RW, Broomfield GL, Janneh MS, Wirtz RA, Greenwood BM. Impact of permethrin-treated bednets on malaria transmission by the Anopheles gambiae complex in The Gambia. Med Vet Entomol. 1989;3:263–71.CrossRefPubMed
25.
go back to reference Mosha FW, Lyimo IN, Oxborough RM, Matowo J, Malima R, Feston E, et al. Comparative efficacies of permethrin-, deltamethrin- and alpha-cypermethrin-treated nets, against Anopheles arabiensis and Culex quinquefasciatus in northern Tanzania. Ann Trop Med Parasitol. 2008;102:367–76.CrossRefPubMed Mosha FW, Lyimo IN, Oxborough RM, Matowo J, Malima R, Feston E, et al. Comparative efficacies of permethrin-, deltamethrin- and alpha-cypermethrin-treated nets, against Anopheles arabiensis and Culex quinquefasciatus in northern Tanzania. Ann Trop Med Parasitol. 2008;102:367–76.CrossRefPubMed
26.
go back to reference WHO: Safety of pyrethroids for public health use. Geneva, World Health Organization, 2005, WHO/CDS/WHOPES/GCDPP/2005.10. WHO: Safety of pyrethroids for public health use. Geneva, World Health Organization, 2005, WHO/CDS/WHOPES/GCDPP/2005.10.
27.
go back to reference Hossain MI, Curtis CF. Permethrin-impregnated bednets: behavioural and killing effects on mosquitoes. Med Vet Entomol. 1989;3:367–76.CrossRefPubMed Hossain MI, Curtis CF. Permethrin-impregnated bednets: behavioural and killing effects on mosquitoes. Med Vet Entomol. 1989;3:367–76.CrossRefPubMed
28.
go back to reference Miller JE, Gibson G. Behavioral response of host-seeking mosquitoes (Diptera: Culicidae) to insecticide-impregnated bed netting: a new approach to insecticide bioassays. J Med Entomol. 1994;31:114–22.CrossRefPubMed Miller JE, Gibson G. Behavioral response of host-seeking mosquitoes (Diptera: Culicidae) to insecticide-impregnated bed netting: a new approach to insecticide bioassays. J Med Entomol. 1994;31:114–22.CrossRefPubMed
29.
go back to reference Ngufor C, N’Guessan R, Boko P, Odjo A, Vigninou E, Asidi A, et al. Combining indoor residual spraying with chlorfenapyr and long-lasting insecticidal bed nets for improved control of pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Benin. Malar J. 2011;10:343.CrossRefPubMedCentralPubMed Ngufor C, N’Guessan R, Boko P, Odjo A, Vigninou E, Asidi A, et al. Combining indoor residual spraying with chlorfenapyr and long-lasting insecticidal bed nets for improved control of pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Benin. Malar J. 2011;10:343.CrossRefPubMedCentralPubMed
30.
go back to reference Balmert NJ, Rund SS, Ghazi JP, Zhou P, Duffield GE. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. J Insect Physiol. 2014;64:30–9.CrossRefPubMed Balmert NJ, Rund SS, Ghazi JP, Zhou P, Duffield GE. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. J Insect Physiol. 2014;64:30–9.CrossRefPubMed
32.
go back to reference Ahn Y, Shono T, Fukami J-I. Effect of temperature on pyrethroid action to kdr-type house fly adults. Pest Biochem Physiol. 1987;28:301–7.CrossRef Ahn Y, Shono T, Fukami J-I. Effect of temperature on pyrethroid action to kdr-type house fly adults. Pest Biochem Physiol. 1987;28:301–7.CrossRef
33.
go back to reference Hadaway AB. Post-treatment temperature and the toxicity of some insecticides to tsetse flies. Geneva, World Health Organization, 1978, WHO/VBC/78.693:1–2. Hadaway AB. Post-treatment temperature and the toxicity of some insecticides to tsetse flies. Geneva, World Health Organization, 1978, WHO/VBC/78.693:1–2.
34.
go back to reference Hodjati MH, Curtis CF. Effects of permethrin at different temperatures on pyrethroid-resistant and susceptible strains of Anopheles. Med Vet Entomol. 1999;13:415–22.CrossRefPubMed Hodjati MH, Curtis CF. Effects of permethrin at different temperatures on pyrethroid-resistant and susceptible strains of Anopheles. Med Vet Entomol. 1999;13:415–22.CrossRefPubMed
35.
go back to reference Wadleigh RW, Koehler PG, Preisler HK, Patterson RS, Robertson JL. Effect of temperature on the toxicities of ten pyrethroids to German cockroach (Dictyoptera: Blattellidae). J Econ Entomol. 1991;84:1433–6.CrossRefPubMed Wadleigh RW, Koehler PG, Preisler HK, Patterson RS, Robertson JL. Effect of temperature on the toxicities of ten pyrethroids to German cockroach (Dictyoptera: Blattellidae). J Econ Entomol. 1991;84:1433–6.CrossRefPubMed
Metadata
Title
The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control
Authors
Richard M Oxborough
Raphael N’Guessan
Rebecca Jones
Jovin Kitau
Corine Ngufor
David Malone
Franklin W Mosha
Mark W Rowland
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0639-x

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.