Skip to main content
Top
Published in: Skeletal Radiology 4/2019

Open Access 01-04-2019 | Review Article

Thalidomide and neurotrophism

Authors: Judith R. Soper, S. Fiona Bonar, Dudley J. O’Sullivan, Janet McCredie, Hans-Georg Willert

Published in: Skeletal Radiology | Issue 4/2019

Login to get access

Abstract

Background

Following the thalidomide disaster (1958–62), Henkel and Willert analysed the pattern of dysmelia in the long bones (J Bone Joint Surg Br. 51:399–414, 1969) and the extremities, Willert and Henkel (Z Orthop Ihre Grenzgeb. 107:663–75, 1970). Willert’s material from deformed extremities is re-examined here asking “How does thalidomide reduce the skeleton?”

Materials and methods

We reviewed the original data collection of Willert and Henkel (Z Orthop Ihre Grenzgeb. 107:663–75, 1970), comprising musculoskeletal histology slides from 30 children affected by thalidomide with radiographs of hands (19 cases) and feet (4 cases).

Results

All original observations by Willert and Henkel (Z Orthop Ihre Grenzgeb. 107:663–75, 1970), were verified. Radial rays of the hand disappeared early, but the foot was spared until late. Radiology confirms that bone reduction in the hand (aplasia or hypoplasia in the thumb and index finger) coincides with sensory segmental nerve C6. In the foot, reduction of the toes is rare, but mesenchymal excess (polydactyly) occurs in the hallux (L5 sclerotome), usually associated with absent tibia (L4 sclerotome). Histology confirms skeletal mesenchymal components to be unremarkable, contrasting with grossly abnormal bony architecture, a striking discordance between microscopic and macroscopic findings. No necrosis or vascular pathology was seen.

Conclusion

The basic lesion was an abnormal quantity rather than quality of mesenchyme. Cell populations result from cellular proliferation, controlled in early limb bud formation by neurotrophism. Thalidomide is a known sensory neurotoxin in adults. In the embryo, sensorineural injury alters neurotrophism, causing increased or diminished cell proliferation in undifferentiated mesenchyme. Differentiation into normal cartilage occurs later, but within an altered mesenchymal mass. Reduction or excess deformity results, with normal histology, a significant finding. The primary pathological condition is not in the skeleton, but in the nerves.
Literature
1.
go back to reference Henkel H-L, Willert H-G. Dysmelia. A classification and a pattern of malformation in a group of congenital defects of the limbs. J Bone Joint Surg Br. 1969;51:399–414.CrossRefPubMed Henkel H-L, Willert H-G. Dysmelia. A classification and a pattern of malformation in a group of congenital defects of the limbs. J Bone Joint Surg Br. 1969;51:399–414.CrossRefPubMed
2.
go back to reference Willert HG, Henkel HL. Pathologisch-anatomische Prinzipien bei Extremitäten Feldbildungen, dargestellt am Beispiel der Finger. Z Orthop Ihre Grenzgeb. 1970;107:663–75.PubMed Willert HG, Henkel HL. Pathologisch-anatomische Prinzipien bei Extremitäten Feldbildungen, dargestellt am Beispiel der Finger. Z Orthop Ihre Grenzgeb. 1970;107:663–75.PubMed
3.
go back to reference McCredie J, Willert HG. Longitudinal limb deficiencies and the sclerotomes: an analysis of 378 dysmelic malformations induced by thalidomide. J Bone Joint Surg Br. 1999;81:9–23.CrossRefPubMed McCredie J, Willert HG. Longitudinal limb deficiencies and the sclerotomes: an analysis of 378 dysmelic malformations induced by thalidomide. J Bone Joint Surg Br. 1999;81:9–23.CrossRefPubMed
4.
go back to reference McCredie J. Beyond thalidomide: birth defects explained. London: Royal Society of Medicine Press; 2007. McCredie J. Beyond thalidomide: birth defects explained. London: Royal Society of Medicine Press; 2007.
5.
go back to reference Fullerton P, Kremer M. Neuropathy after intake of thalidomide (Distaval). BMJ. 1961;ii:855–8.CrossRef Fullerton P, Kremer M. Neuropathy after intake of thalidomide (Distaval). BMJ. 1961;ii:855–8.CrossRef
6.
go back to reference Häfstrom T. Polyneuropathy after Neurosedyn (thalidomide) and its prognosis. Acta Neurol Scand. 1967;43(Suppl 32):6–42. Häfstrom T. Polyneuropathy after Neurosedyn (thalidomide) and its prognosis. Acta Neurol Scand. 1967;43(Suppl 32):6–42.
7.
go back to reference Fullerton P, O'Sullivan DJ. Thalidomide neuropathy—a clinical, electrophysiological and histological follow up study. J Neurol Neurosurg Psychiatry. 1968;31:543–51.CrossRefPubMedPubMedCentral Fullerton P, O'Sullivan DJ. Thalidomide neuropathy—a clinical, electrophysiological and histological follow up study. J Neurol Neurosurg Psychiatry. 1968;31:543–51.CrossRefPubMedPubMedCentral
8.
go back to reference Krücke W, von Hartrott HH, Schröder JM, Scheid W. Light and electron microscope studies of late stages of thalidomide polyneuropathy. Fortschr Neurol Psychiatr. 1971;39:15–50. Krücke W, von Hartrott HH, Schröder JM, Scheid W. Light and electron microscope studies of late stages of thalidomide polyneuropathy. Fortschr Neurol Psychiatr. 1971;39:15–50.
10.
go back to reference Singer M. The invasion of the epidermis of the regenerating forelimb of the urodele Triturus by nerve fibres. J Exp Zool. 1949;111:189–209.CrossRefPubMed Singer M. The invasion of the epidermis of the regenerating forelimb of the urodele Triturus by nerve fibres. J Exp Zool. 1949;111:189–209.CrossRefPubMed
11.
go back to reference Singer M. The influence of nerve in regeneration of the amphibian extremity. Q Rev Biol. 1952;27:169–200.CrossRefPubMed Singer M. The influence of nerve in regeneration of the amphibian extremity. Q Rev Biol. 1952;27:169–200.CrossRefPubMed
12.
go back to reference Singer M. The trophic quality of the neuron: some theoretical considerations. In: Singer M, Schade JP, editors. Mechanisms of neural regeneration. Amsterdam: Elsevier; 1964. p. 228–32. Progress in Brain Research. Singer M. The trophic quality of the neuron: some theoretical considerations. In: Singer M, Schade JP, editors. Mechanisms of neural regeneration. Amsterdam: Elsevier; 1964. p. 228–32. Progress in Brain Research.
13.
go back to reference Singer M. Neurotrophic control of limb regeneration in the newt. Ann N Y Acad Sci. 1974;228:308–22.CrossRefPubMed Singer M. Neurotrophic control of limb regeneration in the newt. Ann N Y Acad Sci. 1974;228:308–22.CrossRefPubMed
14.
go back to reference Maden M. Neurotrophic control of the cell cycle during amphibian regeneration. J Embryol Exp Morpholog. 1978;48:169–75. Maden M. Neurotrophic control of the cell cycle during amphibian regeneration. J Embryol Exp Morpholog. 1978;48:169–75.
15.
go back to reference Wallace H. Vertebrate limb regeneration. Chichester: Wiley; 1981. Wallace H. Vertebrate limb regeneration. Chichester: Wiley; 1981.
16.
go back to reference Géraudie J, Singer M. Necessity of an adequate nerve supply for regeneration of the amputated pectoral fin in the teleost Fundulus. J Exp Zool. 1985;234:367–74.CrossRefPubMed Géraudie J, Singer M. Necessity of an adequate nerve supply for regeneration of the amputated pectoral fin in the teleost Fundulus. J Exp Zool. 1985;234:367–74.CrossRefPubMed
17.
go back to reference Stocum DL. Outgrowth and pattern formation during ontogeny and regeneration. Differentiation. 1975;3:167–82.CrossRefPubMed Stocum DL. Outgrowth and pattern formation during ontogeny and regeneration. Differentiation. 1975;3:167–82.CrossRefPubMed
18.
go back to reference Stocum DL. Wound repair, regeneration and artificial tissues. Austin: RG Landes; 1995. Stocum DL. Wound repair, regeneration and artificial tissues. Austin: RG Landes; 1995.
19.
go back to reference Ferretti P, Géraudie J. Molecular basis of regeneration: from invertebrates to humans. Chichester: Wiley; 1998. Ferretti P, Géraudie J. Molecular basis of regeneration: from invertebrates to humans. Chichester: Wiley; 1998.
20.
go back to reference Inman VT, Saunders JB. Referred pain from skeletal structures. J Nerv Ment Dis. 1944;99:660–7.CrossRef Inman VT, Saunders JB. Referred pain from skeletal structures. J Nerv Ment Dis. 1944;99:660–7.CrossRef
21.
go back to reference Bonar SF. Limb reduction abnormalities. In: Klein MJ, Bonar SF, editors. Non neoplastic diseases: atlas of non-tumour pathology. Washington: ARP Press AFIP; 2011. p. 171–8. Bonar SF. Limb reduction abnormalities. In: Klein MJ, Bonar SF, editors. Non neoplastic diseases: atlas of non-tumour pathology. Washington: ARP Press AFIP; 2011. p. 171–8.
22.
go back to reference Sadler TW, editor. Langman’s medical embryology, 13th ed. Philadelphia: Wolters, Kluwer Health; 2015. p. 74–146. Sadler TW, editor. Langman’s medical embryology, 13th ed. Philadelphia: Wolters, Kluwer Health; 2015. p. 74–146.
23.
go back to reference Stevenson RE. The limbs. In: Stevenson RE, Hall JG, editors. Human malformations and related anomalies. 2nd ed. New York: Oxford University Press; 2006. p. 835–56. Stevenson RE. The limbs. In: Stevenson RE, Hall JG, editors. Human malformations and related anomalies. 2nd ed. New York: Oxford University Press; 2006. p. 835–56.
24.
go back to reference Talamillo A, Bastida MF, Fernandez-Teran M, Ros MA. The developing limb and the control of the number of digits. Clin Genet. 2005;67:143–53.CrossRefPubMed Talamillo A, Bastida MF, Fernandez-Teran M, Ros MA. The developing limb and the control of the number of digits. Clin Genet. 2005;67:143–53.CrossRefPubMed
25.
go back to reference Van Allen MI, Hoyme ME, Jones KL. Vascular pathogenesis of limb defects. I. Radial artery anatomy in radial aplasia. J Pediatr. 1982;101:832–8.CrossRefPubMed Van Allen MI, Hoyme ME, Jones KL. Vascular pathogenesis of limb defects. I. Radial artery anatomy in radial aplasia. J Pediatr. 1982;101:832–8.CrossRefPubMed
26.
go back to reference Levinsohn EM, Hootnick DR, Packard DS. Consistent arterial abnormalities associated with a variety of congenital malformations of the human lower limb. Investig Radiol. 1991;26:364–73.CrossRef Levinsohn EM, Hootnick DR, Packard DS. Consistent arterial abnormalities associated with a variety of congenital malformations of the human lower limb. Investig Radiol. 1991;26:364–73.CrossRef
27.
28.
29.
30.
go back to reference Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327:1345–50.CrossRef Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327:1345–50.CrossRef
31.
go back to reference Therapontos C, Erskine L, Gardner ER, Figg WD, Vargesson N. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci U S A. 2009;106:8573–9.CrossRefPubMedPubMedCentral Therapontos C, Erskine L, Gardner ER, Figg WD, Vargesson N. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci U S A. 2009;106:8573–9.CrossRefPubMedPubMedCentral
32.
go back to reference Ley AM, Chau CH, Figg WD. Structural studies reveal thalidomide's mechanism of action and clinical effects: crystal clear or clearly complexed? Cancer Biol Ther. 2015;16(1):19–20.CrossRefPubMedPubMedCentral Ley AM, Chau CH, Figg WD. Structural studies reveal thalidomide's mechanism of action and clinical effects: crystal clear or clearly complexed? Cancer Biol Ther. 2015;16(1):19–20.CrossRefPubMedPubMedCentral
33.
go back to reference Alexander PG, Clark KL, Tuan RS. Prenatal exposure to environmental factors and congenital limb defects. Birth Defects Res C Embryo Today. 2016;108(3):242–73.CrossRef Alexander PG, Clark KL, Tuan RS. Prenatal exposure to environmental factors and congenital limb defects. Birth Defects Res C Embryo Today. 2016;108(3):242–73.CrossRef
35.
go back to reference McCredie J. Embryonic neuropathy: a hypothesis of neural crest injury as the pathogenesis of congenital malformations. Med J Aust. 1974;1:159–63.PubMed McCredie J. Embryonic neuropathy: a hypothesis of neural crest injury as the pathogenesis of congenital malformations. Med J Aust. 1974;1:159–63.PubMed
36.
37.
go back to reference Knapp K, Lenz W, Nowack E. Multiple congenital abnormalities. Lancet. 1963;ii:725. Knapp K, Lenz W, Nowack E. Multiple congenital abnormalities. Lancet. 1963;ii:725.
38.
go back to reference Schumacher H, Blake DA, Gurian JM, Gilette JR. A comparison of teratogenic activity of thalidomide in rabbits and rats. J Pharmacol Exp Ther. 1968;160:189–200.PubMed Schumacher H, Blake DA, Gurian JM, Gilette JR. A comparison of teratogenic activity of thalidomide in rabbits and rats. J Pharmacol Exp Ther. 1968;160:189–200.PubMed
39.
go back to reference Neubert R, Neubert D. Peculiarities and a possible mode of action of thalidomide. In: Kavlock RJ, Daston GP, editors. Drug toxicity in embryonic development. Heidelberg: Springer; 1996. p. 41–119. Neubert R, Neubert D. Peculiarities and a possible mode of action of thalidomide. In: Kavlock RJ, Daston GP, editors. Drug toxicity in embryonic development. Heidelberg: Springer; 1996. p. 41–119.
40.
go back to reference Dyck PJ, Thomas PK. Peripheral neuropathy. 4th ed. Philadelphia: Elsevier Saunders; 2005. Dyck PJ, Thomas PK. Peripheral neuropathy. 4th ed. Philadelphia: Elsevier Saunders; 2005.
41.
go back to reference Bretscher A, Tschumi PA. Gestufte Reduktion von chemisch behandelten Xenopus Beinen. Rev Suisse Zool. 1951;58:11. Bretscher A, Tschumi PA. Gestufte Reduktion von chemisch behandelten Xenopus Beinen. Rev Suisse Zool. 1951;58:11.
42.
go back to reference Tschumi PA. The growth of the hindlimb bud of Xenopus Laevis and its dependence upon the epidermis. J Anat. 1957;91:149–73.PubMedPubMedCentral Tschumi PA. The growth of the hindlimb bud of Xenopus Laevis and its dependence upon the epidermis. J Anat. 1957;91:149–73.PubMedPubMedCentral
43.
go back to reference Nicotra A, Newman C, Johnson M, Eremin O, Friede T, Malik O, et al. Peripheral nerve dysfunction in middle-aged subjects born with thalidomide embryopathy. PLoS One. 2016;11(4):e0152902.CrossRefPubMedPubMedCentral Nicotra A, Newman C, Johnson M, Eremin O, Friede T, Malik O, et al. Peripheral nerve dysfunction in middle-aged subjects born with thalidomide embryopathy. PLoS One. 2016;11(4):e0152902.CrossRefPubMedPubMedCentral
Metadata
Title
Thalidomide and neurotrophism
Authors
Judith R. Soper
S. Fiona Bonar
Dudley J. O’Sullivan
Janet McCredie
Hans-Georg Willert
Publication date
01-04-2019
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 4/2019
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-018-3086-2

Other articles of this Issue 4/2019

Skeletal Radiology 4/2019 Go to the issue