Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Temporal and spatial dose distribution of radiation pneumonitis after concurrent radiochemotherapy in stage III non-small cell cancer patients

Authors: Mohammed Alharbi, Stefan Janssen, Heiko Golpon, Michael Bremer, Christoph Henkenberens

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background and purpose

Radiation pneumonitis (RP) is the most common subacute side effect after concurrent chemoradiotherapy (CRT) for locally advanced non-small cell lung cancer. Several clinical and dose-volume (DV) parameters are associated with a distinct risk of symptomatic RP. The aim of this study was to assess the spatial dose distribution of the RP volume from first occurence to maximum volume expansion of RP.

Material and methods

Between 2007 and 2015, 732 patients with lung cancer were treated in an institution. Thirty-three patients met the following inclusion criteria: an RP grade II after CRT and a radiation dose ≥60 Gy and no prior medical history of cardiopulmonary comorbidities. The images of the first chest computed tomography (CT) confirming the diagnosis of RP and the CT images showing the maximum expansion of RP were merged with the treatment plan. The RP volume was delineated within the treatment plan, and a DV analysis was performed to evaluate the lung dose volume areas in which the RP manifested over time and whether dose volume changes within the RP volume occurred.

Results

A change from clinical diagnosis to maximum expansion of RP was observed as the RP at clinical appearance mainly manifested in the lower dose areas of the lung, whereas the RP volume at maximum expansion manifested in the higher dose areas, resulting in a significant shift of the assessed relative mean dose volume proportions within the RP volume. The mean relative dose volume proportion 0- ≤ 20 Gy decreased from 30.2% (range, 0–100) to 21.9% (range, 0–100; p = 0.04) at the expense of the dose volume > 40 Gy which increased from 39.2% (range, 0–100) to 49.8% (range, 0–100; p = 0.02), whereas the dose relative volume proportion > 20- ≤ 40 Gy showed no relevant change and slightly decreased from 30.6% (range, 0–85.7) to 28.3%, (range, 0–85.7; p = 0.34).

Conclusion

We observed a considerable increase in the relative dose proportions within the RP volume from diagnosis to maximum volume extent from low dose zones below 20 Gy to zones above 40 Gy. Although the clinical impact on RP remains unknown, a reduction of healthy healthy lung tissue receiving >40 Gy (V40) might be an additional parameter for irradiation planning in lung cancer patients.
Literature
1.
go back to reference Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16:187–99.CrossRefPubMedPubMedCentral Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16:187–99.CrossRefPubMedPubMedCentral
2.
go back to reference Schröder C, Engenhart-Cabilic R, Vorwerk H, Schmidt M, Huhnt W, Blank E, et al. Changes in pulmonary function and influencing factors after high-dose intrathoracic radio(chemo)therapy. Strahlenther Onkol. 2017;193:125–31.CrossRefPubMed Schröder C, Engenhart-Cabilic R, Vorwerk H, Schmidt M, Huhnt W, Blank E, et al. Changes in pulmonary function and influencing factors after high-dose intrathoracic radio(chemo)therapy. Strahlenther Onkol. 2017;193:125–31.CrossRefPubMed
3.
go back to reference Schröder C, Engenhart-Cabilic R, Vorwerk H, Schmidt M, Huhnt W, Blank E, et al. Patient's quality of life after high-dose radiation therapy for thoracic carcinomas : changes over time and influence on clinical outcome. Strahlenther Onkol. 2017;193:132–40.CrossRefPubMed Schröder C, Engenhart-Cabilic R, Vorwerk H, Schmidt M, Huhnt W, Blank E, et al. Patient's quality of life after high-dose radiation therapy for thoracic carcinomas : changes over time and influence on clinical outcome. Strahlenther Onkol. 2017;193:132–40.CrossRefPubMed
4.
go back to reference Borst GR, De Jaeger K, Belderbos JS, Burgers SA, Lebesque JV. Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int J Radiat Oncol Biol Phys. 2005;62:639–44.CrossRefPubMed Borst GR, De Jaeger K, Belderbos JS, Burgers SA, Lebesque JV. Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int J Radiat Oncol Biol Phys. 2005;62:639–44.CrossRefPubMed
5.
go back to reference Claude L, Perol D, Ginestet C, Falchero L, Arpin D, Vincent M, et al. A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol. 2004;71:175–81.CrossRefPubMed Claude L, Perol D, Ginestet C, Falchero L, Arpin D, Vincent M, et al. A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol. 2004;71:175–81.CrossRefPubMed
6.
go back to reference Henkenberens C, Janssen S, Lavae-Mokhtari M, Leni K, Meyer A, Christiansen H, et al. Inhalative steroids as an individual treatment in symptomatic lung cancer patients with radiation pneumonitis grade II after radiotherapy - a single-centre experience. Radiat Oncol. 2016; https://doi.org/10.1186/s13014-016-0580-3. Henkenberens C, Janssen S, Lavae-Mokhtari M, Leni K, Meyer A, Christiansen H, et al. Inhalative steroids as an individual treatment in symptomatic lung cancer patients with radiation pneumonitis grade II after radiotherapy - a single-centre experience. Radiat Oncol. 2016; https://​doi.​org/​10.​1186/​s13014-016-0580-3.
7.
go back to reference Mao J, Kocak Z, Zhou S, Garst J, Evans ES, Zhang J, et al. The impact of induction chemotherapy and the associated tumor response and subsequent radiation-related changes in lung function and tumor response. In J Radiat Oncol Biol Phys. 2007;67:1360–9.CrossRef Mao J, Kocak Z, Zhou S, Garst J, Evans ES, Zhang J, et al. The impact of induction chemotherapy and the associated tumor response and subsequent radiation-related changes in lung function and tumor response. In J Radiat Oncol Biol Phys. 2007;67:1360–9.CrossRef
8.
go back to reference Shi A, Zhu G, Wu H, Yu R, Li F, Xu B. Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol. 2010; https://doi.org/10.1186/1748-717X-5-35. Shi A, Zhu G, Wu H, Yu R, Li F, Xu B. Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol. 2010; https://​doi.​org/​10.​1186/​1748-717X-5-35.
9.
go back to reference Tsujino K, Hirota S, Endo M, Obayashi K, Kotani Y, Satouchi M, et al. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys. 2003;55:110–5.CrossRefPubMed Tsujino K, Hirota S, Endo M, Obayashi K, Kotani Y, Satouchi M, et al. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys. 2003;55:110–5.CrossRefPubMed
11.
go back to reference Zhang XJ, Sun JG, Sun J, Ming H, Wang XX, Wu L, et al. Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol. 2012;138:2010–6. Zhang XJ, Sun JG, Sun J, Ming H, Wang XX, Wu L, et al. Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol. 2012;138:2010–6.
12.
go back to reference Belani CP, Choy H, Bonomi P, Scott C, Travis P, Haluschak J, et al. Combined chemoradiotherapy regimens of paclitaxel and carboplatin for locally advanced non-small-cell lung cancer: a randomized phase II locally advanced multi-modality protocol. J Clin Oncol. 2005;23:5883–91.CrossRefPubMed Belani CP, Choy H, Bonomi P, Scott C, Travis P, Haluschak J, et al. Combined chemoradiotherapy regimens of paclitaxel and carboplatin for locally advanced non-small-cell lung cancer: a randomized phase II locally advanced multi-modality protocol. J Clin Oncol. 2005;23:5883–91.CrossRefPubMed
13.
go back to reference Flentje M, Huber RM, Engel-Riedel W, Andreas S, Kollmeier J, Staar S, et al. GILT-A randomised phase III study of oral vinorelbine and cisplatin with concomitant radiotherapy followed by either consolidation therapy with oral vinorelbine and cisplatin or best supportive care alone in stage III non-small cell lung cancer. Strahlenther Onkol. 2016;192:216–22.CrossRefPubMed Flentje M, Huber RM, Engel-Riedel W, Andreas S, Kollmeier J, Staar S, et al. GILT-A randomised phase III study of oral vinorelbine and cisplatin with concomitant radiotherapy followed by either consolidation therapy with oral vinorelbine and cisplatin or best supportive care alone in stage III non-small cell lung cancer. Strahlenther Onkol. 2016;192:216–22.CrossRefPubMed
14.
go back to reference Tsoutsou PG. The interplay between radiation and the immune system in the field of post-radical pneumonitis and fibrosis and why it is important to understand it. Expert Opin Pharmacother. 2014;15:1781–3.CrossRefPubMed Tsoutsou PG. The interplay between radiation and the immune system in the field of post-radical pneumonitis and fibrosis and why it is important to understand it. Expert Opin Pharmacother. 2014;15:1781–3.CrossRefPubMed
15.
go back to reference Parashar B, Edwards A, Mehta R, Pasmantier M, Wernicke AG, Sabbas A, et al. Chemotherapy significantly increases the risk of radiation pneumonitis in radiation therapy of advanced lung cancer. Am J Clin Oncol. 2011;34:160–4.PubMed Parashar B, Edwards A, Mehta R, Pasmantier M, Wernicke AG, Sabbas A, et al. Chemotherapy significantly increases the risk of radiation pneumonitis in radiation therapy of advanced lung cancer. Am J Clin Oncol. 2011;34:160–4.PubMed
16.
go back to reference Tsujino K, Hashimoto T, Shimada T, Yoden E, Fujii O, Ota Y, et al. Combined analysis of V20, VS5, pulmonary fibrosis score on baseline computed tomography, and patient age improves prediction of severe radiation pneumonitis after concurrent chemoradiotherapy for locally advanced non-small-cell lung cancer. J Thorac Oncol. 2014;9:883–90.CrossRef Tsujino K, Hashimoto T, Shimada T, Yoden E, Fujii O, Ota Y, et al. Combined analysis of V20, VS5, pulmonary fibrosis score on baseline computed tomography, and patient age improves prediction of severe radiation pneumonitis after concurrent chemoradiotherapy for locally advanced non-small-cell lung cancer. J Thorac Oncol. 2014;9:883–90.CrossRef
17.
go back to reference Ramella S, Trodella L, Mineo TC, Pompeo E, Stimato G, Valentini V, et al. Adding ipsilateral V20 and V30 to conventional dosimetric constraints predicts radiation pneumonitis in stage IIIA-B NSCLC treated with combined-modality therapy. Int J Radiat Oncol Biol Phys. 2010;76:110–5.CrossRefPubMed Ramella S, Trodella L, Mineo TC, Pompeo E, Stimato G, Valentini V, et al. Adding ipsilateral V20 and V30 to conventional dosimetric constraints predicts radiation pneumonitis in stage IIIA-B NSCLC treated with combined-modality therapy. Int J Radiat Oncol Biol Phys. 2010;76:110–5.CrossRefPubMed
18.
go back to reference Briere TM, Krafft S, Liao Z, Martel MK. Lung size and the risk of radiation Pneumonitis. Int J Radiat Oncol Phys. 2016;94:377–84.CrossRef Briere TM, Krafft S, Liao Z, Martel MK. Lung size and the risk of radiation Pneumonitis. Int J Radiat Oncol Phys. 2016;94:377–84.CrossRef
19.
go back to reference Khalil AA, Hoffmann L, Moeller DS, Farr KP, Knapp MM. New dose constraint reduces radiation-induced fatal pneumonitis in locally advanced non-small cell lung cancer patients treated with intensity-modulated radiotherapy. Acta Oncol. 2015;54:1343–9.CrossRefPubMed Khalil AA, Hoffmann L, Moeller DS, Farr KP, Knapp MM. New dose constraint reduces radiation-induced fatal pneumonitis in locally advanced non-small cell lung cancer patients treated with intensity-modulated radiotherapy. Acta Oncol. 2015;54:1343–9.CrossRefPubMed
20.
go back to reference Farr KP, Kallehauge JF, Moller DS, Khalil AA, Kramer S, Bluhme H, et al. Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: a prospective study. Radiother Oncol. 2016;117:9–16.CrossRef Farr KP, Kallehauge JF, Moller DS, Khalil AA, Kramer S, Bluhme H, et al. Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: a prospective study. Radiother Oncol. 2016;117:9–16.CrossRef
21.
go back to reference Palma DA, Senan S, Tsujino K, Barriger RB, Moreno M, Bradley JD, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85:444–50.CrossRefPubMed Palma DA, Senan S, Tsujino K, Barriger RB, Moreno M, Bradley JD, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85:444–50.CrossRefPubMed
22.
go back to reference Kocak Z, Evans ES, Zhou SM, Miller KL, Folz RJ, Shafman TD, et al. Challenges in defining radiation pneumonitis in patients with cancer lung cancer. Int J Radiat Oncol Biol Phys. 2005;62:635–8.CrossRefPubMed Kocak Z, Evans ES, Zhou SM, Miller KL, Folz RJ, Shafman TD, et al. Challenges in defining radiation pneumonitis in patients with cancer lung cancer. Int J Radiat Oncol Biol Phys. 2005;62:635–8.CrossRefPubMed
23.
go back to reference Wang D, Zhu J, Sun J, Li B, Wang Z, Wei L, et al. Functional and biologic metrics for predicting radiation pneumonitis in locally advanced non-small cell lung cancer patients treated with chemoradiotherapy. Clin Transl Oncol. 2012;14:943–52.CrossRefPubMed Wang D, Zhu J, Sun J, Li B, Wang Z, Wei L, et al. Functional and biologic metrics for predicting radiation pneumonitis in locally advanced non-small cell lung cancer patients treated with chemoradiotherapy. Clin Transl Oncol. 2012;14:943–52.CrossRefPubMed
24.
go back to reference Lopez Guerra JL, Gomez D, Zhuang Y, Levy LB, Eapen G, Liu H, et al. Change in diffusing capacity after radiation as an objective measure for grading radiation pneumonitis in patients treated for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;83:1573–9.CrossRefPubMed Lopez Guerra JL, Gomez D, Zhuang Y, Levy LB, Eapen G, Liu H, et al. Change in diffusing capacity after radiation as an objective measure for grading radiation pneumonitis in patients treated for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;83:1573–9.CrossRefPubMed
25.
go back to reference Chun SG, Hu C, Komaki RU, Timmermann RD, Schild SE, Bogart JA, et al. Impact of intensity-modulated radiation therapy technique for Lacally advanced non-Sall-cell lung cancer: a secondary analysis of the NRG oncology RT 0617 randomized clinical trial. J Clin Oncol. 2017;35:56–62.CrossRefPubMed Chun SG, Hu C, Komaki RU, Timmermann RD, Schild SE, Bogart JA, et al. Impact of intensity-modulated radiation therapy technique for Lacally advanced non-Sall-cell lung cancer: a secondary analysis of the NRG oncology RT 0617 randomized clinical trial. J Clin Oncol. 2017;35:56–62.CrossRefPubMed
Metadata
Title
Temporal and spatial dose distribution of radiation pneumonitis after concurrent radiochemotherapy in stage III non-small cell cancer patients
Authors
Mohammed Alharbi
Stefan Janssen
Heiko Golpon
Michael Bremer
Christoph Henkenberens
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0898-5

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue