Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Reduction of breathing irregularity-related motion artifacts in low-pitch spiral 4D CT by optimized projection binning

Authors: René Werner, Christian Hofmann, Eike Mücke, Tobias Gauer

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Respiration-correlated CT (4D CT) is the basis of radiotherapy treatment planning of thoracic and abdominal tumors. Current clinical 4D CT images suffer, however, from artifacts due to unfulfilled assumptions concerning breathing pattern regularity. We propose and evaluate modifications to existing low-pitch spiral 4D CT reconstruction protocols to counteract respective artifacts.

Methods

The proposed advanced reconstruction (AR) approach consists of two steps that build on each other: (1) statistical analysis of the breathing signal recorded during CT data acquisition and extraction of a patient-specific reference breathing cycle for projection binning; (2) incorporation of an artifact measure into the reconstruction. 4D CT data of 30 patients were reconstructed by standard phase- and local amplitude-based reconstruction (PB, LAB) and compared with images obtained by AR. The number of artifacts was evaluated and artifact statistics correlated to breathing curve characteristics.

Results

AR reduced the number of 4D CT artifacts by 31% and 27% compared to PB and LAB; the reduction was most pronounced for irregular breathing curves.

Conclusions

We described a two-step optimization of low-pitch spiral 4D CT reconstruction to reduce artifacts in the presence of breathing irregularity and illustrated that the modifications to existing reconstruction solutions are effective in terms of artifact reduction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ford EC, Mageras GS, Yorke E, Ling CC. Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys. 2003; 30:88–97.CrossRefPubMed Ford EC, Mageras GS, Yorke E, Ling CC. Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys. 2003; 30:88–97.CrossRefPubMed
2.
go back to reference Low DA, Nystrom M, Kalinin E, et al. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys. 2003; 30:1254–63.CrossRefPubMed Low DA, Nystrom M, Kalinin E, et al. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys. 2003; 30:1254–63.CrossRefPubMed
3.
go back to reference Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003; 48:45–62.CrossRefPubMed Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003; 48:45–62.CrossRefPubMed
4.
go back to reference Simpson DR, Lawson JD, Nath SK, Rose BS, Mundt AJ, Mell LK. Utilization of advanced imaging technologies for target delineation in radiation oncology. J Am Coll Radiol. 2009; 6:876–3.CrossRefPubMed Simpson DR, Lawson JD, Nath SK, Rose BS, Mundt AJ, Mell LK. Utilization of advanced imaging technologies for target delineation in radiation oncology. J Am Coll Radiol. 2009; 6:876–3.CrossRefPubMed
5.
go back to reference Yamamoto T, Kabus S, Bal M, Keall P, Benedict S, Daly M. The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. Radiother Oncol. 2016; 118:227–31.CrossRefPubMed Yamamoto T, Kabus S, Bal M, Keall P, Benedict S, Daly M. The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. Radiother Oncol. 2016; 118:227–31.CrossRefPubMed
6.
go back to reference Zou W, Yin L, Shen J, Corradetti MN, Kirk M, Munbodh R, Fang P, Jabbour SK, Simone 2nd CB, Yue NJ, Rengan R, Teo B-KK. Dynamic simulation of motion effects in IMAT lung SBRT. Radiat Oncol. 2014; 9:225. Zou W, Yin L, Shen J, Corradetti MN, Kirk M, Munbodh R, Fang P, Jabbour SK, Simone 2nd CB, Yue NJ, Rengan R, Teo B-KK. Dynamic simulation of motion effects in IMAT lung SBRT. Radiat Oncol. 2014; 9:225.
7.
go back to reference Xu H, Gong G, Wei H, Chen L, Chen J, Lu J, Liu T, Zhu J, Yin Y. Feasibility and potential benefits of defining the internal gross tumor volume of hepatocellular carcinoma using contrast-enhanced 4D CT images obtained by deformable registration. Radiat Oncol. 2014; 9:221.CrossRefPubMedPubMedCentral Xu H, Gong G, Wei H, Chen L, Chen J, Lu J, Liu T, Zhu J, Yin Y. Feasibility and potential benefits of defining the internal gross tumor volume of hepatocellular carcinoma using contrast-enhanced 4D CT images obtained by deformable registration. Radiat Oncol. 2014; 9:221.CrossRefPubMedPubMedCentral
9.
go back to reference Werner R, Ehrhardt J, Schmidt-Richberg A, et al.Towards accurate dose accumulation for step-&-shoot IMRT: Impact of weighting schemes and temporal image resolution on the estimation of dosimetric motion effects. Z Med Phys. 2012; 22:109–22.CrossRefPubMed Werner R, Ehrhardt J, Schmidt-Richberg A, et al.Towards accurate dose accumulation for step-&-shoot IMRT: Impact of weighting schemes and temporal image resolution on the estimation of dosimetric motion effects. Z Med Phys. 2012; 22:109–22.CrossRefPubMed
10.
11.
go back to reference Thomas DH, Ruan D, Williams P, et al.Is there an ideal set of prospective scan acquisition phases for fast-helical based 4D-CT?Phys Med Biol. 2016; 61(23):632–41.CrossRef Thomas DH, Ruan D, Williams P, et al.Is there an ideal set of prospective scan acquisition phases for fast-helical based 4D-CT?Phys Med Biol. 2016; 61(23):632–41.CrossRef
12.
go back to reference Yamamoto T, Langner U, Loo Jr BW, Shen J, Keall PJ. Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients. Int J Radiat Oncol Biol Phys. 2008; 72(4):1250–8.CrossRefPubMedPubMedCentral Yamamoto T, Langner U, Loo Jr BW, Shen J, Keall PJ. Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients. Int J Radiat Oncol Biol Phys. 2008; 72(4):1250–8.CrossRefPubMedPubMedCentral
13.
go back to reference Wulfhekel E, Grohmann C, Gauer T, Werner R. Compilation of a database for illustration and automated detection of 4DCT motion artifacts. Radiother Oncol. 2014; 111(Supplement 1):266.CrossRef Wulfhekel E, Grohmann C, Gauer T, Werner R. Compilation of a database for illustration and automated detection of 4DCT motion artifacts. Radiother Oncol. 2014; 111(Supplement 1):266.CrossRef
14.
go back to reference Pan T. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med Phys. 2005; 32(2):627–34.CrossRefPubMed Pan T. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med Phys. 2005; 32(2):627–34.CrossRefPubMed
15.
go back to reference Chen GTY, Kung JH, Beaudette KP. Artifacts in computed tomography scanning of moving objects. Semin Radiat Oncol. 2004; 14:19–26.CrossRefPubMed Chen GTY, Kung JH, Beaudette KP. Artifacts in computed tomography scanning of moving objects. Semin Radiat Oncol. 2004; 14:19–26.CrossRefPubMed
16.
go back to reference Thomas D, Lamb J, White B, et al.A novel fast helical 4D-CT acquisition technique to generate low-noise sorting artifact-free images at user-selected breathing phases. Int J Radiat Oncol Biol Phys. 2014; 89:191–8.CrossRefPubMedPubMedCentral Thomas D, Lamb J, White B, et al.A novel fast helical 4D-CT acquisition technique to generate low-noise sorting artifact-free images at user-selected breathing phases. Int J Radiat Oncol Biol Phys. 2014; 89:191–8.CrossRefPubMedPubMedCentral
17.
go back to reference Wink N, Panknin C, Solberg TD. Phase versus amplitude sorting of 4D-CT data. J Appl Clin Med Phys. 2006; 7(1):77–85.CrossRefPubMed Wink N, Panknin C, Solberg TD. Phase versus amplitude sorting of 4D-CT data. J Appl Clin Med Phys. 2006; 7(1):77–85.CrossRefPubMed
18.
go back to reference Lu W, Parikh PJ, Hubenschmidt JP, Bradley JD, Low DA. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med Phys. 2006; 33(8):2964–74.CrossRefPubMed Lu W, Parikh PJ, Hubenschmidt JP, Bradley JD, Low DA. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med Phys. 2006; 33(8):2964–74.CrossRefPubMed
19.
go back to reference O’Brien RT, Kipritidis J, Shieh CC, Keall PJ. Optimizing 4DCBCT projection allocation to respiratory bins. Phys Med Biol. 2014; 59(19):5631–49.CrossRefPubMed O’Brien RT, Kipritidis J, Shieh CC, Keall PJ. Optimizing 4DCBCT projection allocation to respiratory bins. Phys Med Biol. 2014; 59(19):5631–49.CrossRefPubMed
20.
go back to reference Castillo SJ, Castillo R, Castillo E, et al.Evaluation of 4D CT acquisition methods designed to reduce artifacts. J Appl Clin Med Phys. 2015; 16(2):4949.CrossRefPubMedPubMedCentral Castillo SJ, Castillo R, Castillo E, et al.Evaluation of 4D CT acquisition methods designed to reduce artifacts. J Appl Clin Med Phys. 2015; 16(2):4949.CrossRefPubMedPubMedCentral
21.
go back to reference Vásquez AC, Runz A, Echner G, Sroka-Perez G, Karger CP. Comparison of two respiration monitoring systems for 4D imaging with a siemens CT using a new dynamic breathing phantom. Phys Med Biol. 2012; 57(9):131–43.CrossRef Vásquez AC, Runz A, Echner G, Sroka-Perez G, Karger CP. Comparison of two respiration monitoring systems for 4D imaging with a siemens CT using a new dynamic breathing phantom. Phys Med Biol. 2012; 57(9):131–43.CrossRef
22.
go back to reference Wolthaus JWH, Sonke JJ, van Herk M, Belderbos JSA, Rossi MMG, Lebesque JV, Damen EMF. Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys. 2008; 70(4):1229–38.CrossRefPubMed Wolthaus JWH, Sonke JJ, van Herk M, Belderbos JSA, Rossi MMG, Lebesque JV, Damen EMF. Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys. 2008; 70(4):1229–38.CrossRefPubMed
23.
go back to reference Cui G, Jew B, Hong JC, Johnston EW, Loo Jr BW, Maxim PG. An automated method for comparing motion artifacts in cine four-dimensional computed tomography images. J Appl Clin Med Phys. 2012; 13(6):3838.CrossRefPubMed Cui G, Jew B, Hong JC, Johnston EW, Loo Jr BW, Maxim PG. An automated method for comparing motion artifacts in cine four-dimensional computed tomography images. J Appl Clin Med Phys. 2012; 13(6):3838.CrossRefPubMed
24.
go back to reference Vedam SS, Keall PJ, Kini VR, Mohan R. Determining parameters for respiration-gated radiotherapy. Med Phys. 2001; 28(10):2139–46.CrossRefPubMed Vedam SS, Keall PJ, Kini VR, Mohan R. Determining parameters for respiration-gated radiotherapy. Med Phys. 2001; 28(10):2139–46.CrossRefPubMed
25.
go back to reference Werner R, Hofmann C, Gauer T. Optimized projection binning for improved helical amplitude- and phase-based 4DCT reconstruction in the presence of breathing irregularity In: Kontos D, Flohr TG, Lo JY, editors. Proceedings of SPIE Medical Imaging 2016: Physics of Medical Imaging. SPIE. Vol. 9783. p. 978313. doi:10.1117/12.2216187. Werner R, Hofmann C, Gauer T. Optimized projection binning for improved helical amplitude- and phase-based 4DCT reconstruction in the presence of breathing irregularity In: Kontos D, Flohr TG, Lo JY, editors. Proceedings of SPIE Medical Imaging 2016: Physics of Medical Imaging. SPIE. Vol. 9783. p. 978313. doi:10.​1117/​12.​2216187.
Metadata
Title
Reduction of breathing irregularity-related motion artifacts in low-pitch spiral 4D CT by optimized projection binning
Authors
René Werner
Christian Hofmann
Eike Mücke
Tobias Gauer
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0835-7

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue