Skip to main content
Top
Published in: Critical Care 1/2022

Open Access 01-12-2022 | Temperature Management | Research

Target temperature management following cardiac arrest: a systematic review and Bayesian meta-analysis

Authors: Anders Aneman, Steven Frost, Michael Parr, Markus B. Skrifvars

Published in: Critical Care | Issue 1/2022

Login to get access

Abstract

Background

Temperature control with target temperature management (TTM) after cardiac arrest has been endorsed by expert societies and adopted in international clinical practice guidelines but recent evidence challenges the use of hypothermic TTM.

Methods

Systematic review and Bayesian meta-analysis of clinical trials on adult survivors from cardiac arrest undergoing TTM for at least 12 h comparing TTM versus no TTM or with a separation > 2 °C between intervention and control groups using the PubMed/MEDLINE, EMBASE, CENTRAL databases from inception to 1 September 2021 (PROSPERO CRD42021248140). All randomised and quasi-randomised controlled trials were considered. The risk ratio and 95% confidence interval for death (primary outcome) and unfavourable neurological recovery (secondary outcome) were captured using the original study definitions censored up to 180 days after cardiac arrest. Bias was assessed using the updated Cochrane risk-of-bias for randomised trials tool and certainty of evidence assessed using the Grading of Recommendation Assessment, Development and Evaluation methodology. A hierarchical robust Bayesian model-averaged meta-analysis was performed using both minimally informative and data-driven priors and reported by mean risk ratio (RR) and its 95% credible interval (95% CrI).

Results

In seven studies (three low bias, three intermediate bias, one high bias, very low to low certainty) recruiting 3792 patients the RR by TTM 32–34 °C was 0.95 [95% CrI 0.78—1.09] for death and RR 0.93 [95% CrI 0.84—1.02] for unfavourable neurological outcome. The posterior probability for no benefit (RR ≥ 1) by TTM 32–34 °C was 24% for death and 12% for unfavourable neurological outcome. The posterior probabilities for favourable treatment effects of TTM 32–34 °C were the highest for an absolute risk reduction of 2–4% for death (28–53% chance) and unfavourable neurological outcome (63–78% chance). Excluding four studies without active avoidance of fever in the control arm reduced the probability to achieve an absolute risk reduction > 2% for death or unfavourable neurological outcome to ≤ 50%.

Conclusions

The posterior probability distributions did not support the use of TTM at 32–34 °C compared to 36 °C also including active control of fever to reduce the risk of death and unfavourable neurological outcome at 90–180 days. Any likely benefit of hypothermic TTM is smaller than targeted in RCTs to date.
Appendix
Available only for authorised users
Literature
1.
go back to reference Donnino MW, Andersen LW, Berg KM, Reynolds JC, Nolan JP, Morley PT, Lang E, Cocchi MN, Xanthos T, Callaway CW, et al. Temperature management after cardiac arrest: an advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Resuscitation. 2016;98:97–104.PubMedCrossRef Donnino MW, Andersen LW, Berg KM, Reynolds JC, Nolan JP, Morley PT, Lang E, Cocchi MN, Xanthos T, Callaway CW, et al. Temperature management after cardiac arrest: an advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Resuscitation. 2016;98:97–104.PubMedCrossRef
2.
go back to reference Panchal AR, Bartos JA, Cabanas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(16_suppl_2):S366–468.PubMedCrossRef Panchal AR, Bartos JA, Cabanas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(16_suppl_2):S366–468.PubMedCrossRef
3.
go back to reference Nolan JP, Sandroni C, Bottiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Resuscitation. 2021;161:220–69.PubMedCrossRef Nolan JP, Sandroni C, Bottiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Resuscitation. 2021;161:220–69.PubMedCrossRef
4.
go back to reference Barbarawi M, Alabdouh A, Barbarawi O, Lakshman H, Alkasasbeh M, Rizk F, Bachuwa G, Alkotob ML. Targeted temperature management in cardiac arrest patients with an initial non-shockable rhythm: a systematic review and meta-analysis. Shock. 2020;54(5):623–30.PubMedCrossRef Barbarawi M, Alabdouh A, Barbarawi O, Lakshman H, Alkasasbeh M, Rizk F, Bachuwa G, Alkotob ML. Targeted temperature management in cardiac arrest patients with an initial non-shockable rhythm: a systematic review and meta-analysis. Shock. 2020;54(5):623–30.PubMedCrossRef
5.
go back to reference Alqalyoobi S, Boctor N, Sarkeshik AA, Hoerger J, Klimberg N, Bartolome BG, Stewart SL, Albertson TE. Therapeutic hypothermia and mortality in the intensive care unit: systematic review and meta-analysis. Crit Care Resusc. 2019;21(4):287–98.PubMed Alqalyoobi S, Boctor N, Sarkeshik AA, Hoerger J, Klimberg N, Bartolome BG, Stewart SL, Albertson TE. Therapeutic hypothermia and mortality in the intensive care unit: systematic review and meta-analysis. Crit Care Resusc. 2019;21(4):287–98.PubMed
6.
go back to reference Arrich J, Holzer M, Havel C, Mullner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2016;2:CD004128.PubMed Arrich J, Holzer M, Havel C, Mullner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2016;2:CD004128.PubMed
7.
go back to reference Bhattacharjee S, Baidya DK, Maitra S. Therapeutic hypothermia after cardiac arrest is not associated with favorable neurological outcome: a meta-analysis. J Clin Anesth. 2016;33:225–32.PubMedCrossRef Bhattacharjee S, Baidya DK, Maitra S. Therapeutic hypothermia after cardiac arrest is not associated with favorable neurological outcome: a meta-analysis. J Clin Anesth. 2016;33:225–32.PubMedCrossRef
8.
go back to reference Hakim SM, Ammar MA, Reyad MS. Effect of therapeutic hypothermia on survival and neurological outcome in adults suffering cardiac arrest: a systematic review and meta-analysis. Minerva Anestesiol. 2018;84(6):720–30.PubMedCrossRef Hakim SM, Ammar MA, Reyad MS. Effect of therapeutic hypothermia on survival and neurological outcome in adults suffering cardiac arrest: a systematic review and meta-analysis. Minerva Anestesiol. 2018;84(6):720–30.PubMedCrossRef
9.
go back to reference Kalra R, Arora G, Patel N, Doshi R, Berra L, Arora P, Bajaj NS. Targeted temperature management after cardiac arrest: systematic review and meta-analyses. Anesth Analg. 2018;126(3):867–75.PubMedPubMedCentralCrossRef Kalra R, Arora G, Patel N, Doshi R, Berra L, Arora P, Bajaj NS. Targeted temperature management after cardiac arrest: systematic review and meta-analyses. Anesth Analg. 2018;126(3):867–75.PubMedPubMedCentralCrossRef
10.
go back to reference Mahmoud A, Elgendy IY, Bavry AA. Use of targeted temperature management after out-of-hospital cardiac arrest: a meta-analysis of randomized controlled trials. Am J Med. 2016;129(5):522e522-527e522.CrossRef Mahmoud A, Elgendy IY, Bavry AA. Use of targeted temperature management after out-of-hospital cardiac arrest: a meta-analysis of randomized controlled trials. Am J Med. 2016;129(5):522e522-527e522.CrossRef
11.
go back to reference Goligher EC, Tomlinson G, Hajage D, Wijeysundera DN, Fan E, Juni P, Brodie D, Slutsky AS, Combes A. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc bayesian analysis of a randomized clinical trial. JAMA. 2018;320(21):2251–9.PubMedCrossRef Goligher EC, Tomlinson G, Hajage D, Wijeysundera DN, Fan E, Juni P, Brodie D, Slutsky AS, Combes A. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc bayesian analysis of a randomized clinical trial. JAMA. 2018;320(21):2251–9.PubMedCrossRef
12.
go back to reference Ryan EG, Harrison EM, Pearse RM, Gates S. Perioperative haemodynamic therapy for major gastrointestinal surgery: the effect of a Bayesian approach to interpreting the findings of a randomised controlled trial. BMJ Open. 2019;9(3):e024256.PubMedPubMedCentralCrossRef Ryan EG, Harrison EM, Pearse RM, Gates S. Perioperative haemodynamic therapy for major gastrointestinal surgery: the effect of a Bayesian approach to interpreting the findings of a randomised controlled trial. BMJ Open. 2019;9(3):e024256.PubMedPubMedCentralCrossRef
13.
go back to reference Zampieri FG, Damiani LP, Bakker J, Ospina-Tascon GA, Castro R, Cavalcanti AB, Hernandez G. Effects of a resuscitation strategy targeting peripheral perfusion status versus serum lactate levels among patients with septic shock. A Bayesian reanalysis of the ANDROMEDA-SHOCK trial. Am J Respir Crit Care Med. 2020;201(4):423–9.PubMedCrossRef Zampieri FG, Damiani LP, Bakker J, Ospina-Tascon GA, Castro R, Cavalcanti AB, Hernandez G. Effects of a resuscitation strategy targeting peripheral perfusion status versus serum lactate levels among patients with septic shock. A Bayesian reanalysis of the ANDROMEDA-SHOCK trial. Am J Respir Crit Care Med. 2020;201(4):423–9.PubMedCrossRef
14.
go back to reference Yarnell CJ, Abrams D, Baldwin MR, Brodie D, Fan E, Ferguson ND, Hua M, Madahar P, McAuley DF, Munshi L, et al. Clinical trials in critical care: Can a Bayesian approach enhance clinical and scientific decision making? Lancet Respir Med. 2021;9(2):207–16.PubMedCrossRef Yarnell CJ, Abrams D, Baldwin MR, Brodie D, Fan E, Ferguson ND, Hua M, Madahar P, McAuley DF, Munshi L, et al. Clinical trials in critical care: Can a Bayesian approach enhance clinical and scientific decision making? Lancet Respir Med. 2021;9(2):207–16.PubMedCrossRef
15.
go back to reference Jacobs AK, Kushner FG, Ettinger SM, Guyton RA, Anderson JL, Ohman EM, Albert NM, Antman EM, Arnett DK, Bertolet M, et al. ACCF/AHA clinical practice guideline methodology summit report: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(2):213–65.PubMedCrossRef Jacobs AK, Kushner FG, Ettinger SM, Guyton RA, Anderson JL, Ohman EM, Albert NM, Antman EM, Arnett DK, Bertolet M, et al. ACCF/AHA clinical practice guideline methodology summit report: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(2):213–65.PubMedCrossRef
17.
go back to reference Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullen S, Rylander C, Wise MP, Oddo M, Cariou A, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384(24):2283–94.PubMedCrossRef Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullen S, Rylander C, Wise MP, Oddo M, Cariou A, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384(24):2283–94.PubMedCrossRef
18.
go back to reference Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Belohlavek J, Callaway C, Cariou A, Eastwood G, Erlinge D, Hovdenes J, et al. Targeted hypothermia versus targeted Normothermia after out-of-hospital cardiac arrest (TTM2): a randomized clinical trial-Rationale and design. Am Heart J. 2019;217:23–31.PubMedCrossRef Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Belohlavek J, Callaway C, Cariou A, Eastwood G, Erlinge D, Hovdenes J, et al. Targeted hypothermia versus targeted Normothermia after out-of-hospital cardiac arrest (TTM2): a randomized clinical trial-Rationale and design. Am Heart J. 2019;217:23–31.PubMedCrossRef
19.
go back to reference Jakobsen JC, Dankiewicz J, Lange T, Cronberg T, Lilja G, Levin H, Belohlavek J, Callaway C, Cariou A, Erlinge D, et al. Targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest: a statistical analysis plan. Trials. 2020;21(1):831.PubMedPubMedCentralCrossRef Jakobsen JC, Dankiewicz J, Lange T, Cronberg T, Lilja G, Levin H, Belohlavek J, Callaway C, Cariou A, Erlinge D, et al. Targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest: a statistical analysis plan. Trials. 2020;21(1):831.PubMedPubMedCentralCrossRef
20.
go back to reference Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.PubMedPubMedCentralCrossRef Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.PubMedPubMedCentralCrossRef
21.
go back to reference Sung L, Hayden J, Greenberg ML, Koren G, Feldman BM, Tomlinson GA. Seven items were identified for inclusion when reporting a Bayesian analysis of a clinical study. J Clin Epidemiol. 2005;58(3):261–8.PubMedCrossRef Sung L, Hayden J, Greenberg ML, Koren G, Feldman BM, Tomlinson GA. Seven items were identified for inclusion when reporting a Bayesian analysis of a clinical study. J Clin Epidemiol. 2005;58(3):261–8.PubMedCrossRef
22.
go back to reference Steinbusch CVM, van Heugten CM, Rasquin SMC, Verbunt JA, Moulaert VRM. Cognitive impairments and subjective cognitive complaints after survival of cardiac arrest: a prospective longitudinal cohort study. Resuscitation. 2017;120:132–7.PubMedCrossRef Steinbusch CVM, van Heugten CM, Rasquin SMC, Verbunt JA, Moulaert VRM. Cognitive impairments and subjective cognitive complaints after survival of cardiac arrest: a prospective longitudinal cohort study. Resuscitation. 2017;120:132–7.PubMedCrossRef
23.
go back to reference Perkins GD, Callaway CW, Haywood K, Neumar RW, Lilja G, Rowland MJ, Sawyer KN, Skrifvars MB, Nolan JP. Brain injury after cardiac arrest. Lancet. 2021;398(10307):1269–78.PubMedCrossRef Perkins GD, Callaway CW, Haywood K, Neumar RW, Lilja G, Rowland MJ, Sawyer KN, Skrifvars MB, Nolan JP. Brain injury after cardiac arrest. Lancet. 2021;398(10307):1269–78.PubMedCrossRef
24.
go back to reference Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.PubMedCrossRef Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.PubMedCrossRef
25.
go back to reference Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schunemann HJ, Group GW. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.CrossRef Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schunemann HJ, Group GW. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.CrossRef
28.
go back to reference Gronau QF, Heck DW, Berkhout SW, Haaf JM, Wagenmakers E. A primer on Bayesian model-averaged meta-analysis. PsyArXiv Preprints; 2020. Gronau QF, Heck DW, Berkhout SW, Haaf JM, Wagenmakers E. A primer on Bayesian model-averaged meta-analysis. PsyArXiv Preprints; 2020.
29.
go back to reference Zampieri FG, Casey JD, Shankar-Hari M, Harrell FE, Jr., Harhay MO. Using Bayesian methods to augment the interpretation of critical care trials. An overview of theory and example reanalysis of the alveolar recruitment for acute respiratory distress syndrome trial. Am J Respir Crit Care Med. 2021;203(5):543–552. Zampieri FG, Casey JD, Shankar-Hari M, Harrell FE, Jr., Harhay MO. Using Bayesian methods to augment the interpretation of critical care trials. An overview of theory and example reanalysis of the alveolar recruitment for acute respiratory distress syndrome trial. Am J Respir Crit Care Med. 2021;203(5):543–552.
30.
go back to reference Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JP. Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat Med. 2015;34(6):984–98.PubMedCrossRef Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JP. Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat Med. 2015;34(6):984–98.PubMedCrossRef
31.
go back to reference Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.PubMedCrossRef Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.PubMedCrossRef
32.
go back to reference Grasner JT, Wnent J, Herlitz J, Perkins GD, Lefering R, Tjelmeland I, Koster RW, Masterson S, Rossell-Ortiz F, Maurer H, et al. Survival after out-of-hospital cardiac arrest in Europe—results of the EuReCa TWO study. Resuscitation. 2020;148:218–26.PubMedCrossRef Grasner JT, Wnent J, Herlitz J, Perkins GD, Lefering R, Tjelmeland I, Koster RW, Masterson S, Rossell-Ortiz F, Maurer H, et al. Survival after out-of-hospital cardiac arrest in Europe—results of the EuReCa TWO study. Resuscitation. 2020;148:218–26.PubMedCrossRef
33.
go back to reference Nichol G, Brown SP, Perkins GD, Kim F, Sterz F, Broeckel Elrod JA, Mentzelopoulos S, Lyon R, Arabi Y, Castren M, et al. What change in outcomes after cardiac arrest is necessary to change practice? Results of an international survey. Resuscitation. 2016;107:115–20.PubMedCrossRef Nichol G, Brown SP, Perkins GD, Kim F, Sterz F, Broeckel Elrod JA, Mentzelopoulos S, Lyon R, Arabi Y, Castren M, et al. What change in outcomes after cardiac arrest is necessary to change practice? Results of an international survey. Resuscitation. 2016;107:115–20.PubMedCrossRef
34.
go back to reference Johnsson J, Wahlstrom J, Dankiewicz J, Annborn M, Agarwal S, Dupont A, Forsberg S, Friberg H, Hand R, Hirsch KG, et al. Functional outcomes associated with varying levels of targeted temperature management after out-of-hospital cardiac arrest—an INTCAR2 registry analysis. Resuscitation. 2020;146:229–36.PubMedCrossRef Johnsson J, Wahlstrom J, Dankiewicz J, Annborn M, Agarwal S, Dupont A, Forsberg S, Friberg H, Hand R, Hirsch KG, et al. Functional outcomes associated with varying levels of targeted temperature management after out-of-hospital cardiac arrest—an INTCAR2 registry analysis. Resuscitation. 2020;146:229–36.PubMedCrossRef
35.
go back to reference RStudio Team: RStudio: integrated development environment for R; 2020. RStudio Team: RStudio: integrated development environment for R; 2020.
37.
go back to reference Hypothermia after Cardiac Arrest Study G. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56. Hypothermia after Cardiac Arrest Study G. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.
38.
go back to reference Laurent I, Adrie C, Vinsonneau C, Cariou A, Chiche JD, Ohanessian A, Spaulding C, Carli P, Dhainaut JF, Monchi M. High-volume hemofiltration after out-of-hospital cardiac arrest: a randomized study. J Am Coll Cardiol. 2005;46(3):432–7.PubMedCrossRef Laurent I, Adrie C, Vinsonneau C, Cariou A, Chiche JD, Ohanessian A, Spaulding C, Carli P, Dhainaut JF, Monchi M. High-volume hemofiltration after out-of-hospital cardiac arrest: a randomized study. J Am Coll Cardiol. 2005;46(3):432–7.PubMedCrossRef
39.
go back to reference Hachimi-Idrissi S, Zizi M, Nguyen DN, Schiettecate J, Ebinger G, Michotte Y, Huyghens L. The evolution of serum astroglial S-100 beta protein in patients with cardiac arrest treated with mild hypothermia. Resuscitation. 2005;64(2):187–92.PubMedCrossRef Hachimi-Idrissi S, Zizi M, Nguyen DN, Schiettecate J, Ebinger G, Michotte Y, Huyghens L. The evolution of serum astroglial S-100 beta protein in patients with cardiac arrest treated with mild hypothermia. Resuscitation. 2005;64(2):187–92.PubMedCrossRef
40.
go back to reference Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.PubMedCrossRef Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.PubMedCrossRef
41.
go back to reference Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, Coupez E, Dequin PF, Cariou A, Boulain T, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381(24):2327–37.PubMedCrossRef Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, Coupez E, Dequin PF, Cariou A, Boulain T, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381(24):2327–37.PubMedCrossRef
42.
go back to reference Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.PubMedCrossRef Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.PubMedCrossRef
43.
go back to reference Al Amer FM, Thompson CG, Lin L. Bayesian methods for meta-analyses of binary outcomes: implementations, examples, and impact of priors. Int J Environ Res Public Health. 2021;18(7):66.CrossRef Al Amer FM, Thompson CG, Lin L. Bayesian methods for meta-analyses of binary outcomes: implementations, examples, and impact of priors. Int J Environ Res Public Health. 2021;18(7):66.CrossRef
44.
go back to reference Seide SE, Rover C, Friede T. Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies. BMC Med Res Methodol. 2019;19(1):16.PubMedPubMedCentralCrossRef Seide SE, Rover C, Friede T. Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies. BMC Med Res Methodol. 2019;19(1):16.PubMedPubMedCentralCrossRef
45.
go back to reference Rout A, Singh S, Sarkar S, Munawar I, Garg A, D’Adamo CR, Tantry US, Dharmadhikari A, Gurbel PA. Meta-analysis of the usefulness of therapeutic hypothermia after cardiac arrest. Am J Cardiol. 2020;133:48–53.PubMedCrossRef Rout A, Singh S, Sarkar S, Munawar I, Garg A, D’Adamo CR, Tantry US, Dharmadhikari A, Gurbel PA. Meta-analysis of the usefulness of therapeutic hypothermia after cardiac arrest. Am J Cardiol. 2020;133:48–53.PubMedCrossRef
46.
go back to reference Schenone AL, Cohen A, Patarroyo G, Harper L, Wang X, Shishehbor MH, Menon V, Duggal A. Therapeutic hypothermia after cardiac arrest: a systematic review/meta-analysis exploring the impact of expanded criteria and targeted temperature. Resuscitation. 2016;108:102–10.PubMedCrossRef Schenone AL, Cohen A, Patarroyo G, Harper L, Wang X, Shishehbor MH, Menon V, Duggal A. Therapeutic hypothermia after cardiac arrest: a systematic review/meta-analysis exploring the impact of expanded criteria and targeted temperature. Resuscitation. 2016;108:102–10.PubMedCrossRef
47.
go back to reference Granfeldt A, Holmberg MJ, Nolan JP, Soar J, Andersen LW. International Liaison Committee on Resuscitation Advanced Life Support Task F: targeted temperature management in adult cardiac arrest: systematic review and meta-analysis. Resuscitation. 2021;167:160–72.PubMedCrossRef Granfeldt A, Holmberg MJ, Nolan JP, Soar J, Andersen LW. International Liaison Committee on Resuscitation Advanced Life Support Task F: targeted temperature management in adult cardiac arrest: systematic review and meta-analysis. Resuscitation. 2021;167:160–72.PubMedCrossRef
48.
go back to reference Fernando SM, Di Santo P, Sadeghirad B, Lascarrou JB, Rochwerg B, Mathew R, Sekhon MS, Munshi L, Fan E, Brodie D, et al. Targeted temperature management following out-of-hospital cardiac arrest: a systematic review and network meta-analysis of temperature targets. Intensive Care Med. 2021;47(10):1078–88.PubMedCrossRef Fernando SM, Di Santo P, Sadeghirad B, Lascarrou JB, Rochwerg B, Mathew R, Sekhon MS, Munshi L, Fan E, Brodie D, et al. Targeted temperature management following out-of-hospital cardiac arrest: a systematic review and network meta-analysis of temperature targets. Intensive Care Med. 2021;47(10):1078–88.PubMedCrossRef
49.
go back to reference Elbadawi A, Sedhom R, Baig B, Mahana I, Thakker R, Gad M, Eid M, Nair A, Kayani W, Denktas A, et al. Targeted hypothermia vs targeted normothermia in survivors of cardiac arrest: a systematic review and meta-analysis of randomized trials. Am J Med. 2021;6:66. Elbadawi A, Sedhom R, Baig B, Mahana I, Thakker R, Gad M, Eid M, Nair A, Kayani W, Denktas A, et al. Targeted hypothermia vs targeted normothermia in survivors of cardiac arrest: a systematic review and meta-analysis of randomized trials. Am J Med. 2021;6:66.
50.
go back to reference Sanfilippo F, La Via L, Lanzafame B, Dezio V, Busalacchi D, Messina A, Ristagno G, Pelosi P, Astuto M. Targeted temperature management after cardiac arrest: a systematic review and meta-analysis with trial sequential analysis. J Clin Med. 2021;10(17):66.CrossRef Sanfilippo F, La Via L, Lanzafame B, Dezio V, Busalacchi D, Messina A, Ristagno G, Pelosi P, Astuto M. Targeted temperature management after cardiac arrest: a systematic review and meta-analysis with trial sequential analysis. J Clin Med. 2021;10(17):66.CrossRef
52.
go back to reference Salter R, Bailey M, Bellomo R, Eastwood G, Goodwin A, Nielsen N, Pilcher D, Nichol A, Saxena M, Shehabi Y, et al. Changes in temperature management of cardiac arrest patients following publication of the target temperature management trial. Crit Care Med. 2018;46(11):1722–30.PubMedCrossRef Salter R, Bailey M, Bellomo R, Eastwood G, Goodwin A, Nielsen N, Pilcher D, Nichol A, Saxena M, Shehabi Y, et al. Changes in temperature management of cardiac arrest patients following publication of the target temperature management trial. Crit Care Med. 2018;46(11):1722–30.PubMedCrossRef
53.
go back to reference Garfield B, Abdoolraheem MY, Dixon A, Aswani A, Paul R, Sherren P, Glover G. Temporal changes in targeted temperature management for out-of-hospital cardiac arrest-examining the effect of the targeted temperature management trial: a retrospective cohort study. Ther Hypothermia Temp Manag. 2020;6:66. Garfield B, Abdoolraheem MY, Dixon A, Aswani A, Paul R, Sherren P, Glover G. Temporal changes in targeted temperature management for out-of-hospital cardiac arrest-examining the effect of the targeted temperature management trial: a retrospective cohort study. Ther Hypothermia Temp Manag. 2020;6:66.
54.
go back to reference Nolan JP, Orzechowska I, Harrison DA, Soar J, Perkins GD, Shankar-Hari M. Changes in temperature management and outcome after out-of-hospital cardiac arrest in United Kingdom intensive care units following publication of the targeted temperature management trial. Resuscitation. 2021;162:304–11.PubMedCrossRef Nolan JP, Orzechowska I, Harrison DA, Soar J, Perkins GD, Shankar-Hari M. Changes in temperature management and outcome after out-of-hospital cardiac arrest in United Kingdom intensive care units following publication of the targeted temperature management trial. Resuscitation. 2021;162:304–11.PubMedCrossRef
55.
go back to reference Morrison LJ, Thoma B. Translating targeted temperature management trials into postarrest care. N Engl J Med. 2021;384(24):2344–5.PubMedCrossRef Morrison LJ, Thoma B. Translating targeted temperature management trials into postarrest care. N Engl J Med. 2021;384(24):2344–5.PubMedCrossRef
56.
go back to reference Lopez-de-Sa E, Juarez M, Armada E, Sanchez-Salado JC, Sanchez PL, Loma-Osorio P, Sionis A, Monedero MC, Martinez-Selles M, Martin-Benitez JC, et al. A multicentre randomized pilot trial on the effectiveness of different levels of cooling in comatose survivors of out-of-hospital cardiac arrest: the FROST-I trial. Intensive Care Med. 2018;44(11):1807–15.PubMedCrossRef Lopez-de-Sa E, Juarez M, Armada E, Sanchez-Salado JC, Sanchez PL, Loma-Osorio P, Sionis A, Monedero MC, Martinez-Selles M, Martin-Benitez JC, et al. A multicentre randomized pilot trial on the effectiveness of different levels of cooling in comatose survivors of out-of-hospital cardiac arrest: the FROST-I trial. Intensive Care Med. 2018;44(11):1807–15.PubMedCrossRef
57.
go back to reference Wijeysundera DN, Austin PC, Hux JE, Beattie WS, Laupacis A. Bayesian statistical inference enhances the interpretation of contemporary randomized controlled trials. J Clin Epidemiol. 2009;62(1):13e15-21e15.CrossRef Wijeysundera DN, Austin PC, Hux JE, Beattie WS, Laupacis A. Bayesian statistical inference enhances the interpretation of contemporary randomized controlled trials. J Clin Epidemiol. 2009;62(1):13e15-21e15.CrossRef
58.
go back to reference Johnson SR, Tomlinson GA, Hawker GA, Granton JT, Feldman BM. Methods to elicit beliefs for Bayesian priors: a systematic review. J Clin Epidemiol. 2010;63(4):355–69.PubMedCrossRef Johnson SR, Tomlinson GA, Hawker GA, Granton JT, Feldman BM. Methods to elicit beliefs for Bayesian priors: a systematic review. J Clin Epidemiol. 2010;63(4):355–69.PubMedCrossRef
Metadata
Title
Target temperature management following cardiac arrest: a systematic review and Bayesian meta-analysis
Authors
Anders Aneman
Steven Frost
Michael Parr
Markus B. Skrifvars
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2022
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-022-03935-z

Other articles of this Issue 1/2022

Critical Care 1/2022 Go to the issue