Skip to main content
Top
Published in: Inflammation 4/2022

17-02-2022 | Original Article

TDAG51-Deficiency Podocytes are Protected from High-Glucose-Induced Damage Through Nrf2 Activation via the AKT–GSK-3β Pathway

Authors: Chuntian Liu, Yanling Li, Xiaojuan Wang

Published in: Inflammation | Issue 4/2022

Login to get access

Abstract

T cell death–associated gene 51 (TDAG51) has been implicated in the development of various pathological conditions. However, whether TDAG51 plays a role in diabetic renal disease remains unknown. The current work investigated the possible function of TDAG51 in diabetic renal disease using high-glucose (HG)-stimulated podocytes in vitro. The elevation of TDAG51 was observed in podocytes in response to HG exposure and the glomeruli of diabetic mice. The siRNAs targeting TDAG51 were applied to deplete TDAG51 in HG-stimulated podocytes. Crucially, TDAG51 deficiency was sufficient to decrease the apoptosis, oxidative stress, and inflammation caused by HG. Mechanically, the inhibition of TDAG51 was capable of enhancing the activation of nuclear factor E2-related factor 2 (Nrf2) associated with the upregulation of AKT-glycogen synthase kinase-3β (GSK-3β) pathway. The reduction of AKT abolished the activation of Nrf2 elicited by TDAG51 deficiency. Additionally, the reduction of Nrf2 diminished the anti-HG injury effect elicited by TDAG51 deficiency. Overall, these data demonstrate that TDAG51 deficiency defends against HG-induced podocyte damage through Nrf2 activation by regulating AKT-GSK-3β pathway. This study suggests that TDAG1 may have a potential role in diabetic renal disease by affecting HG-induced podocyte damage.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reid L., F. Baxter, S. Forbes. 2021. Effects of islet transplantation on microvascular and macrovascular complications in type 1 diabetes. Diabetic Medicine e14570. Reid L., F. Baxter, S. Forbes. 2021. Effects of islet transplantation on microvascular and macrovascular complications in type 1 diabetes. Diabetic Medicine e14570.
2.
go back to reference Dounousi, E., A. Duni, K. Leivaditis, V. Vaios, T. Eleftheriadis, and V. Liakopoulos. 2015. Improvements in the management of diabetic nephropathy. The Review of Diabetic Studies 12: 119–133.PubMedPubMedCentralCrossRef Dounousi, E., A. Duni, K. Leivaditis, V. Vaios, T. Eleftheriadis, and V. Liakopoulos. 2015. Improvements in the management of diabetic nephropathy. The Review of Diabetic Studies 12: 119–133.PubMedPubMedCentralCrossRef
3.
go back to reference Umanath, K., and J.B. Lewis. 2018. Diabetic kidney disease: The tiger may have new stripes. American Journal of Kidney Diseases 72: 631–633.PubMedCrossRef Umanath, K., and J.B. Lewis. 2018. Diabetic kidney disease: The tiger may have new stripes. American Journal of Kidney Diseases 72: 631–633.PubMedCrossRef
4.
go back to reference Nagib, A.M., Y. Elsayed Matter, O.A. Gheith, A.F. Refaie, N.F. Othman, and T. Al-Otaibi. 2019. Diabetic nephropathy following posttransplant diabetes mellitus. Experimental and Clinical Transplantation 17: 138–146.PubMedCrossRef Nagib, A.M., Y. Elsayed Matter, O.A. Gheith, A.F. Refaie, N.F. Othman, and T. Al-Otaibi. 2019. Diabetic nephropathy following posttransplant diabetes mellitus. Experimental and Clinical Transplantation 17: 138–146.PubMedCrossRef
5.
go back to reference Dai, H., Q. Liu, and B. Liu. 2017. Research progress on mechanism of podocyte depletion in diabetic nephropathy. Journal of Diabetes Research 2017: 2615286.PubMedPubMedCentralCrossRef Dai, H., Q. Liu, and B. Liu. 2017. Research progress on mechanism of podocyte depletion in diabetic nephropathy. Journal of Diabetes Research 2017: 2615286.PubMedPubMedCentralCrossRef
6.
go back to reference Wolf, G., S. Chen, and F.N. Ziyadeh. 2005. From the periphery of the glomerular capillary wall toward the center of disease: Podocyte injury comes of age in diabetic nephropathy. Diabetes 54: 1626–1634.PubMedCrossRef Wolf, G., S. Chen, and F.N. Ziyadeh. 2005. From the periphery of the glomerular capillary wall toward the center of disease: Podocyte injury comes of age in diabetic nephropathy. Diabetes 54: 1626–1634.PubMedCrossRef
7.
go back to reference Shankland, S.J. 2006. The podocyte’s response to injury: Role in proteinuria and glomerulosclerosis. Kidney International 69: 2131–2147.PubMedCrossRef Shankland, S.J. 2006. The podocyte’s response to injury: Role in proteinuria and glomerulosclerosis. Kidney International 69: 2131–2147.PubMedCrossRef
8.
go back to reference Barisoni, L., H.W. Schnaper, and J.B. Kopp. 2009. Advances in the biology and genetics of the podocytopathies: Implications for diagnosis and therapy. Archives of Pathology and Laboratory Medicine 133: 201–216.PubMedCrossRef Barisoni, L., H.W. Schnaper, and J.B. Kopp. 2009. Advances in the biology and genetics of the podocytopathies: Implications for diagnosis and therapy. Archives of Pathology and Laboratory Medicine 133: 201–216.PubMedCrossRef
9.
go back to reference Fuselier, T.T., and H. Lu. 2020. PHLD class proteins: A family of new players in the p53 network. International Journal of Molecular Sciences 21: 3543.PubMedCentralCrossRef Fuselier, T.T., and H. Lu. 2020. PHLD class proteins: A family of new players in the p53 network. International Journal of Molecular Sciences 21: 3543.PubMedCentralCrossRef
10.
go back to reference Park, C.G., S.Y. Lee, G. Kandala, S.Y. Lee, and Y. Choi. 1996. A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death. Immunity 4: 583–591.PubMedCrossRef Park, C.G., S.Y. Lee, G. Kandala, S.Y. Lee, and Y. Choi. 1996. A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death. Immunity 4: 583–591.PubMedCrossRef
11.
go back to reference Lemmon, M.A., and K.M. Ferguson. 2000. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. The Biochemical Journal 350 (Pt 1): 1–18.PubMedPubMedCentralCrossRef Lemmon, M.A., and K.M. Ferguson. 2000. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. The Biochemical Journal 350 (Pt 1): 1–18.PubMedPubMedCentralCrossRef
12.
go back to reference Chen, Y., M. Takikawa, S. Tsutsumi, Y. Yamaguchi, A. Okabe, M. Shimada, T. Kawase, A. Sada, I. Ezawa, Y. Takano, et al. 2018. PHLDA1, another PHLDA family protein that inhibits Akt. Cancer Science 109: 3532–3542.PubMedPubMedCentralCrossRef Chen, Y., M. Takikawa, S. Tsutsumi, Y. Yamaguchi, A. Okabe, M. Shimada, T. Kawase, A. Sada, I. Ezawa, Y. Takano, et al. 2018. PHLDA1, another PHLDA family protein that inhibits Akt. Cancer Science 109: 3532–3542.PubMedPubMedCentralCrossRef
13.
go back to reference Hossain, G.S., J.V. van Thienen, G.H. Werstuck, J. Zhou, S.K. Sood, J.G. Dickhout, A.B. de Koning, D. Tang, D. Wu, E. Falk, et al. 2003. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. Journal of Biological Chemistry 278: 30317–30327.PubMedCrossRef Hossain, G.S., J.V. van Thienen, G.H. Werstuck, J. Zhou, S.K. Sood, J.G. Dickhout, A.B. de Koning, D. Tang, D. Wu, E. Falk, et al. 2003. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. Journal of Biological Chemistry 278: 30317–30327.PubMedCrossRef
14.
go back to reference Basseri, S., S. Lhotak, M.D. Fullerton, R. Palanivel, H. Jiang, E.G. Lynn, R.J. Ford, K.N. Maclean, G.R. Steinberg, and R.C. Austin. 2013. Loss of TDAG51 results in mature-onset obesity, hepatic steatosis, and insulin resistance by regulating lipogenesis. Diabetes 62: 158–169.PubMedCrossRef Basseri, S., S. Lhotak, M.D. Fullerton, R. Palanivel, H. Jiang, E.G. Lynn, R.J. Ford, K.N. Maclean, G.R. Steinberg, and R.C. Austin. 2013. Loss of TDAG51 results in mature-onset obesity, hepatic steatosis, and insulin resistance by regulating lipogenesis. Diabetes 62: 158–169.PubMedCrossRef
15.
go back to reference Sakthianandeswaren, A., M. Christie, C. D’Andreti, C. Tsui, R.N. Jorissen, S. Li, N.I. Fleming, P. Gibbs, L. Lipton, J. Malaterre, et al. 2011. PHLDA1 expression marks the putative epithelial stem cells and contributes to intestinal tumorigenesis. Cancer Research 71: 3709–3719.PubMedCrossRef Sakthianandeswaren, A., M. Christie, C. D’Andreti, C. Tsui, R.N. Jorissen, S. Li, N.I. Fleming, P. Gibbs, L. Lipton, J. Malaterre, et al. 2011. PHLDA1 expression marks the putative epithelial stem cells and contributes to intestinal tumorigenesis. Cancer Research 71: 3709–3719.PubMedCrossRef
16.
go back to reference Xi, Z.Q., L.Y. Wang, J.J. Sun, X.Z. Liu, X. Zhu, F. Xiao, L.F. Guan, J.M. Li, L. Wang, and X.F. Wang. 2007. TDAG51 in the anterior temporal neocortex of patients with intractable epilepsy. Neuroscience Letters 425: 53–58.PubMedCrossRef Xi, Z.Q., L.Y. Wang, J.J. Sun, X.Z. Liu, X. Zhu, F. Xiao, L.F. Guan, J.M. Li, L. Wang, and X.F. Wang. 2007. TDAG51 in the anterior temporal neocortex of patients with intractable epilepsy. Neuroscience Letters 425: 53–58.PubMedCrossRef
17.
go back to reference Park, E.S., J. Kim, T.U. Ha, J.S. Choi, K. Soo Hong, and J. Rho. 2013. TDAG51 deficiency promotes oxidative stress-induced apoptosis through the generation of reactive oxygen species in mouse embryonic fibroblasts. Experimental and Molecular Medicine 45: e35.PubMedPubMedCentralCrossRef Park, E.S., J. Kim, T.U. Ha, J.S. Choi, K. Soo Hong, and J. Rho. 2013. TDAG51 deficiency promotes oxidative stress-induced apoptosis through the generation of reactive oxygen species in mouse embryonic fibroblasts. Experimental and Molecular Medicine 45: e35.PubMedPubMedCentralCrossRef
18.
go back to reference Guo, Y., P. Jia, Y. Chen, H. Yu, X. Xin, Y. Bao, H. Yang, N. Wu, Y. Sun, and D. Jia. 2020. PHLDA1 is a new therapeutic target of oxidative stress and ischemia reperfusion-induced myocardial injury. Life Sciences 245: 117347.PubMedCrossRef Guo, Y., P. Jia, Y. Chen, H. Yu, X. Xin, Y. Bao, H. Yang, N. Wu, Y. Sun, and D. Jia. 2020. PHLDA1 is a new therapeutic target of oxidative stress and ischemia reperfusion-induced myocardial injury. Life Sciences 245: 117347.PubMedCrossRef
19.
go back to reference Hossain, G.S., E.G. Lynn, K.N. Maclean, J. Zhou, J.G. Dickhout, S. Lhotak, B. Trigatti, J. Capone, J. Rho, D. Tang, et al. 2013. Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression. Journal of the American Heart Association 2: e000134.PubMedPubMedCentralCrossRef Hossain, G.S., E.G. Lynn, K.N. Maclean, J. Zhou, J.G. Dickhout, S. Lhotak, B. Trigatti, J. Capone, J. Rho, D. Tang, et al. 2013. Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression. Journal of the American Heart Association 2: e000134.PubMedPubMedCentralCrossRef
20.
go back to reference Han, C., P. Yan, T. He, J. Cheng, W. Zheng, L.T. Zheng, and X. Zhen. 2020. PHLDA1 promotes microglia-mediated neuroinflammation via regulating K63-linked ubiquitination of TRAF6. Brain, Behavior, and Immunity 88: 640–653.PubMedCrossRef Han, C., P. Yan, T. He, J. Cheng, W. Zheng, L.T. Zheng, and X. Zhen. 2020. PHLDA1 promotes microglia-mediated neuroinflammation via regulating K63-linked ubiquitination of TRAF6. Brain, Behavior, and Immunity 88: 640–653.PubMedCrossRef
21.
go back to reference Motohashi, H., and M. Yamamoto. 2004. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine 10: 549–557.PubMedCrossRef Motohashi, H., and M. Yamamoto. 2004. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine 10: 549–557.PubMedCrossRef
22.
go back to reference Raghunath, A., K. Sundarraj, R. Nagarajan, F. Arfuso, J. Bian, A.P. Kumar, G. Sethi, and E. Perumal. 2018. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biology 17: 297–314.PubMedPubMedCentralCrossRef Raghunath, A., K. Sundarraj, R. Nagarajan, F. Arfuso, J. Bian, A.P. Kumar, G. Sethi, and E. Perumal. 2018. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biology 17: 297–314.PubMedPubMedCentralCrossRef
23.
go back to reference Schmidlin, C.J., M.B. Dodson, L. Madhavan, and D.D. Zhang. 2019. Redox regulation by NRF2 in aging and disease. Free Radical Biology & Medicine 134: 702–707.CrossRef Schmidlin, C.J., M.B. Dodson, L. Madhavan, and D.D. Zhang. 2019. Redox regulation by NRF2 in aging and disease. Free Radical Biology & Medicine 134: 702–707.CrossRef
24.
go back to reference Adelusi, T.I., L. Du, M. Hao, X. Zhou, Q. Xuan, C. Apu, Y. Sun, Q. Lu, and X. Yin. 2020. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomedicine & Pharmacotherapy 123: 109732.CrossRef Adelusi, T.I., L. Du, M. Hao, X. Zhou, Q. Xuan, C. Apu, Y. Sun, Q. Lu, and X. Yin. 2020. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomedicine & Pharmacotherapy 123: 109732.CrossRef
25.
go back to reference Zoja, C., A. Benigni, and G. Remuzzi. 2014. The Nrf2 pathway in the progression of renal disease. Nephrology, Dialysis, Transplantation 29 (Suppl 1): i19–i24.PubMedCrossRef Zoja, C., A. Benigni, and G. Remuzzi. 2014. The Nrf2 pathway in the progression of renal disease. Nephrology, Dialysis, Transplantation 29 (Suppl 1): i19–i24.PubMedCrossRef
26.
go back to reference Feng, J., L. Xie, X. Yu, C. Liu, H. Dong, W. Lu, and R. Kong. 2021. Perilipin 5 ameliorates high-glucose-induced podocyte injury via Akt/GSK-3beta/Nrf2-mediated suppression of apoptosis, oxidative stress, and inflammation. Biochemical and Biophysical Research Communications 544: 22–30.PubMedCrossRef Feng, J., L. Xie, X. Yu, C. Liu, H. Dong, W. Lu, and R. Kong. 2021. Perilipin 5 ameliorates high-glucose-induced podocyte injury via Akt/GSK-3beta/Nrf2-mediated suppression of apoptosis, oxidative stress, and inflammation. Biochemical and Biophysical Research Communications 544: 22–30.PubMedCrossRef
27.
go back to reference Yan, H., F. Xu, J. Xu, M.A. Song, K. Wang, and L. Wang. 2021. Activation of Akt-dependent Nrf2/ARE pathway by restoration of Brg-1 remits high glucose-induced oxidative stress and ECM accumulation in podocytes. Journal of Biochemical and Molecular Toxicology 35: e22672.PubMedCrossRef Yan, H., F. Xu, J. Xu, M.A. Song, K. Wang, and L. Wang. 2021. Activation of Akt-dependent Nrf2/ARE pathway by restoration of Brg-1 remits high glucose-induced oxidative stress and ECM accumulation in podocytes. Journal of Biochemical and Molecular Toxicology 35: e22672.PubMedCrossRef
28.
go back to reference Wang, X., Q. Liu, D. Kong, Z. Long, Y. Guo, S. Wang, R. Liu, and C. Hai. 2020. Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy. Journal of Molecular Histology 51: 549–558.PubMedCrossRef Wang, X., Q. Liu, D. Kong, Z. Long, Y. Guo, S. Wang, R. Liu, and C. Hai. 2020. Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy. Journal of Molecular Histology 51: 549–558.PubMedCrossRef
29.
go back to reference Liu T., Y.F. Lv, J.L. Zhao, Q.D. You, Z.Y. Jiang. 2021. Regulation of Nrf2 by phosphorylation: consequences for biological function and therapeutic implications. Free Radical Biology and Medicine S0891-5849(0821)00194-00195 Liu T., Y.F. Lv, J.L. Zhao, Q.D. You, Z.Y. Jiang. 2021. Regulation of Nrf2 by phosphorylation: consequences for biological function and therapeutic implications. Free Radical Biology and Medicine S0891-5849(0821)00194-00195
30.
go back to reference Salazar, M., A.I. Rojo, D. Velasco, R.M. de Sagarra, and A. Cuadrado. 2006. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. Journal of Biological Chemistry 281: 14841–14851.PubMedCrossRef Salazar, M., A.I. Rojo, D. Velasco, R.M. de Sagarra, and A. Cuadrado. 2006. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. Journal of Biological Chemistry 281: 14841–14851.PubMedCrossRef
31.
go back to reference Cross, D.A., D.R. Alessi, P. Cohen, M. Andjelkovich, and B.A. Hemmings. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.PubMedCrossRef Cross, D.A., D.R. Alessi, P. Cohen, M. Andjelkovich, and B.A. Hemmings. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.PubMedCrossRef
32.
go back to reference Zhang, J., C. Ding, S. Zhang, and Y. Xu. 2020. Neuroprotective effects of astaxanthin against oxygen and glucose deprivation damage via the PI3K/Akt/GSK3beta/Nrf2 signalling pathway in vitro. Journal of Cellular and Molecular Medicine 24: 8977–8985.PubMedPubMedCentralCrossRef Zhang, J., C. Ding, S. Zhang, and Y. Xu. 2020. Neuroprotective effects of astaxanthin against oxygen and glucose deprivation damage via the PI3K/Akt/GSK3beta/Nrf2 signalling pathway in vitro. Journal of Cellular and Molecular Medicine 24: 8977–8985.PubMedPubMedCentralCrossRef
33.
go back to reference Chen, R., Y.Y. Zhang, J.N. Lan, H.M. Liu, W. Li, Y. Wu, Y. Leng, L.H. Tang, J.B. Hou, Q. Sun, et al. 2020. Ischemic postconditioning alleviates intestinal ischemia-reperfusion injury by enhancing autophagy and suppressing oxidative stress through the Akt/GSK-3beta/Nrf2 pathway in mice. Oxidative Medicine and Cellular Longevity 2020: 6954764.PubMedPubMedCentral Chen, R., Y.Y. Zhang, J.N. Lan, H.M. Liu, W. Li, Y. Wu, Y. Leng, L.H. Tang, J.B. Hou, Q. Sun, et al. 2020. Ischemic postconditioning alleviates intestinal ischemia-reperfusion injury by enhancing autophagy and suppressing oxidative stress through the Akt/GSK-3beta/Nrf2 pathway in mice. Oxidative Medicine and Cellular Longevity 2020: 6954764.PubMedPubMedCentral
35.
go back to reference Joo, J.H., G. Liao, J.B. Collins, S.F. Grissom, and A.M. Jetten. 2007. Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Research 67: 7929–7936.PubMedCrossRef Joo, J.H., G. Liao, J.B. Collins, S.F. Grissom, and A.M. Jetten. 2007. Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Research 67: 7929–7936.PubMedCrossRef
36.
go back to reference Carlisle, R.E., A. Heffernan, E. Brimble, L. Liu, D. Jerome, C.A. Collins, Z. Mohammed-Ali, P.J. Margetts, R.C. Austin, and J.G. Dickhout. 2012. TDAG51 mediates epithelial-to-mesenchymal transition in human proximal tubular epithelium. American Journal of Physiology. Renal Physiology 303: F467–F481.PubMedCrossRef Carlisle, R.E., A. Heffernan, E. Brimble, L. Liu, D. Jerome, C.A. Collins, Z. Mohammed-Ali, P.J. Margetts, R.C. Austin, and J.G. Dickhout. 2012. TDAG51 mediates epithelial-to-mesenchymal transition in human proximal tubular epithelium. American Journal of Physiology. Renal Physiology 303: F467–F481.PubMedCrossRef
37.
go back to reference Xu, J., J.K. Jiang, X.L. Li, X.P. Yu, Y.G. Xu, and Y.Q. Lu. 2020. Comparative transcriptomic analysis of vascular endothelial cells after hypoxia/re-oxygenation induction based on microarray technology. Journal of Zhejiang University Science B 21: 291–304.PubMedPubMedCentralCrossRef Xu, J., J.K. Jiang, X.L. Li, X.P. Yu, Y.G. Xu, and Y.Q. Lu. 2020. Comparative transcriptomic analysis of vascular endothelial cells after hypoxia/re-oxygenation induction based on microarray technology. Journal of Zhejiang University Science B 21: 291–304.PubMedPubMedCentralCrossRef
38.
go back to reference Hong, T., R. Li, L.L. Sun, J. Xu, M.T. He, W. Wang, R. Yan, J. Tong, and J. Zhang. 2019. Role of the gene Phlda1 in fenvalerate-induced apoptosis and testicular damage in Sprague-Dawley rats. Journal of Toxicology and Environmental Health Part A 82: 870–878.PubMedCrossRef Hong, T., R. Li, L.L. Sun, J. Xu, M.T. He, W. Wang, R. Yan, J. Tong, and J. Zhang. 2019. Role of the gene Phlda1 in fenvalerate-induced apoptosis and testicular damage in Sprague-Dawley rats. Journal of Toxicology and Environmental Health Part A 82: 870–878.PubMedCrossRef
39.
go back to reference Jiao, H.W., X.X. Jia, T.J. Zhao, H. Rong, J.N. Zhang, Y. Cheng, H.P. Zhu, K.L. Xu, S.Y. Guo, Q.Y. Shi, et al. 2016. Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression. Immunopharmacology and Immunotoxicology 38: 124–130.PubMedCrossRef Jiao, H.W., X.X. Jia, T.J. Zhao, H. Rong, J.N. Zhang, Y. Cheng, H.P. Zhu, K.L. Xu, S.Y. Guo, Q.Y. Shi, et al. 2016. Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression. Immunopharmacology and Immunotoxicology 38: 124–130.PubMedCrossRef
40.
go back to reference Wang, J., F. Wang, J. Zhu, M. Song, J. An, and W. Li. 2018. Transcriptome profiling reveals PHLDA1 as a novel molecular marker for ischemic cardiomyopathy. Journal of Molecular Neuroscience 65: 102–109.PubMedPubMedCentralCrossRef Wang, J., F. Wang, J. Zhu, M. Song, J. An, and W. Li. 2018. Transcriptome profiling reveals PHLDA1 as a novel molecular marker for ischemic cardiomyopathy. Journal of Molecular Neuroscience 65: 102–109.PubMedPubMedCentralCrossRef
41.
go back to reference Toyoshima, Y., M. Karas, S. Yakar, J. Dupont, H. Lee, and D. LeRoith. 2004. TDAG51 mediates the effects of insulin-like growth factor I (IGF-I) on cell survival. Journal of Biological Chemistry 279: 25898–25904.PubMedCrossRef Toyoshima, Y., M. Karas, S. Yakar, J. Dupont, H. Lee, and D. LeRoith. 2004. TDAG51 mediates the effects of insulin-like growth factor I (IGF-I) on cell survival. Journal of Biological Chemistry 279: 25898–25904.PubMedCrossRef
42.
go back to reference Yu, Q., M. Zhang, L. Qian, D. Wen, and G. Wu. 2019. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sciences 225: 1–7.PubMedCrossRef Yu, Q., M. Zhang, L. Qian, D. Wen, and G. Wu. 2019. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sciences 225: 1–7.PubMedCrossRef
43.
go back to reference Hou, B., Y. Li, X. Li, C. Zhang, Z. Zhao, Q. Chen, N. Zhang, and H. Li. 2020. HGF protected against diabetic nephropathy via autophagy-lysosome pathway in podocyte by modulating PI3K/Akt-GSK3beta-TFEB axis. Cellular Signalling 75: 109744.PubMedCrossRef Hou, B., Y. Li, X. Li, C. Zhang, Z. Zhao, Q. Chen, N. Zhang, and H. Li. 2020. HGF protected against diabetic nephropathy via autophagy-lysosome pathway in podocyte by modulating PI3K/Akt-GSK3beta-TFEB axis. Cellular Signalling 75: 109744.PubMedCrossRef
44.
go back to reference Wang, D., M. Jin, X. Zhao, T. Zhao, W. Lin, Z. He, M. Fan, W. Jin, J. Zhou, L. Jin, et al. 2019. FGF1(DeltaHBS) ameliorates chronic kidney disease via PI3K/AKT mediated suppression of oxidative stress and inflammation. Cell Death & Disease 10: 464.CrossRef Wang, D., M. Jin, X. Zhao, T. Zhao, W. Lin, Z. He, M. Fan, W. Jin, J. Zhou, L. Jin, et al. 2019. FGF1(DeltaHBS) ameliorates chronic kidney disease via PI3K/AKT mediated suppression of oxidative stress and inflammation. Cell Death & Disease 10: 464.CrossRef
45.
go back to reference Guo, J., L. Yang, Y. Qiao, and Z. Liu. 2016. Glycogen synthase kinase3beta is required for epithelialmesenchymal transition and barrier dysfunction in mouse podocytes under high glucose conditions. Molecular Medicine Reports 14: 4091–4098.PubMedPubMedCentralCrossRef Guo, J., L. Yang, Y. Qiao, and Z. Liu. 2016. Glycogen synthase kinase3beta is required for epithelialmesenchymal transition and barrier dysfunction in mouse podocytes under high glucose conditions. Molecular Medicine Reports 14: 4091–4098.PubMedPubMedCentralCrossRef
46.
go back to reference Fang, Y., B. Chen, A.Y. Gong, D.K. Malhotra, R. Gupta, L.D. Dworkin, and R. Gong. 2021. The ketone body beta-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney International 100: 1037–1053.PubMedCrossRef Fang, Y., B. Chen, A.Y. Gong, D.K. Malhotra, R. Gupta, L.D. Dworkin, and R. Gong. 2021. The ketone body beta-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney International 100: 1037–1053.PubMedCrossRef
47.
go back to reference Failor, K.L., Y. Desyatnikov, L.A. Finger, and G.L. Firestone. 2007. Glucocorticoid-induced degradation of glycogen synthase kinase-3 protein is triggered by serum- and glucocorticoid-induced protein kinase and Akt signaling and controls beta-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Molecular Endocrinology 21: 2403–2415.PubMedCrossRef Failor, K.L., Y. Desyatnikov, L.A. Finger, and G.L. Firestone. 2007. Glucocorticoid-induced degradation of glycogen synthase kinase-3 protein is triggered by serum- and glucocorticoid-induced protein kinase and Akt signaling and controls beta-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Molecular Endocrinology 21: 2403–2415.PubMedCrossRef
48.
go back to reference Zhou, S., P. Wang, Y. Qiao, Y. Ge, Y. Wang, S. Quan, R. Yao, S. Zhuang, L.J. Wang, Y. Du, et al. 2016. Genetic and pharmacologic targeting of glycogen synthase kinase 3beta reinforces the Nrf2 antioxidant defense against podocytopathy. Journal of the American Society of Nephrology 27: 2289–2308.PubMedCrossRef Zhou, S., P. Wang, Y. Qiao, Y. Ge, Y. Wang, S. Quan, R. Yao, S. Zhuang, L.J. Wang, Y. Du, et al. 2016. Genetic and pharmacologic targeting of glycogen synthase kinase 3beta reinforces the Nrf2 antioxidant defense against podocytopathy. Journal of the American Society of Nephrology 27: 2289–2308.PubMedCrossRef
49.
go back to reference Fearon, A.E., E.P. Carter, N.S. Clayton, E.H. Wilkes, A.M. Baker, E. Kapitonova, B.A. Bakhouche, Y. Tanner, J. Wang, E. Gadaleta, et al. 2018. PHLDA1 mediates drug resistance in receptor tyrosine kinase-driven cancer. Cell Reports 22: 2469–2481.PubMedCrossRef Fearon, A.E., E.P. Carter, N.S. Clayton, E.H. Wilkes, A.M. Baker, E. Kapitonova, B.A. Bakhouche, Y. Tanner, J. Wang, E. Gadaleta, et al. 2018. PHLDA1 mediates drug resistance in receptor tyrosine kinase-driven cancer. Cell Reports 22: 2469–2481.PubMedCrossRef
50.
go back to reference Mima, A., T. Yasuzawa, T. Nakamura, and S. Ueshima. 2020. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes. Science and Reports 10: 5775.CrossRef Mima, A., T. Yasuzawa, T. Nakamura, and S. Ueshima. 2020. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes. Science and Reports 10: 5775.CrossRef
Metadata
Title
TDAG51-Deficiency Podocytes are Protected from High-Glucose-Induced Damage Through Nrf2 Activation via the AKT–GSK-3β Pathway
Authors
Chuntian Liu
Yanling Li
Xiaojuan Wang
Publication date
17-02-2022
Publisher
Springer US
Published in
Inflammation / Issue 4/2022
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01638-9

Other articles of this Issue 4/2022

Inflammation 4/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.