Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Review

Taurine: the appeal of a safe amino acid for skeletal muscle disorders

Authors: Annamaria De Luca, Sabata Pierno, Diana Conte Camerino

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Taurine is a natural amino acid present as free form in many mammalian tissues and in particular in skeletal muscle. Taurine exerts many physiological functions, including membrane stabilization, osmoregulation and cytoprotective effects, antioxidant and anti-inflammatory actions as well as modulation of intracellular calcium concentration and ion channel function. In addition taurine may control muscle metabolism and gene expression, through yet unclear mechanisms. This review summarizes the effects of taurine on specific muscle targets and pathways as well as its therapeutic potential to restore skeletal muscle function and performance in various pathological conditions. Evidences support the link between alteration of intracellular taurine level in skeletal muscle and different pathophysiological conditions, such as disuse-induced muscle atrophy, muscular dystrophy and/or senescence, reinforcing the interest towards its exogenous supplementation. In addition, taurine treatment can be beneficial to reduce sarcolemmal hyper-excitability in myotonia-related syndromes. Although further studies are necessary to fill the gaps between animals and humans, the benefit of the amino acid appears to be due to its multiple actions on cellular functions while toxicity seems relatively low. Human clinical trials using taurine in various pathologies such as diabetes, cardiovascular and neurological disorders have been performed and may represent a guide-line for designing specific studies in patients of neuromuscular diseases.
Literature
1.
go back to reference Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMed Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMed
2.
go back to reference Barle H, Ahlman B, Nyberg B, Andersson K, Essén P, Wernerman J (1996) The concentrations of free amino acids in human liver tissue obtained during laparoscopic surgery. Clin Physiol 16:217–227PubMed Barle H, Ahlman B, Nyberg B, Andersson K, Essén P, Wernerman J (1996) The concentrations of free amino acids in human liver tissue obtained during laparoscopic surgery. Clin Physiol 16:217–227PubMed
3.
go back to reference Huxtable RJ (2000) Expanding the circle 1975-1999: sulfur biochemistry and insights on the biological functions of taurine. Adv Exp Med Biol 483:1–25PubMed Huxtable RJ (2000) Expanding the circle 1975-1999: sulfur biochemistry and insights on the biological functions of taurine. Adv Exp Med Biol 483:1–25PubMed
4.
5.
go back to reference Faggiano A, Melis D, Alfieri R, De Martino M, Filippella M, Milone F et al (2005) Sulfur amino acids in Cushing’s disease: insight in homocysteine and taurine levels in patients with active and cured disease. J Clin Endocrinol Metab 90:6616–6622PubMed Faggiano A, Melis D, Alfieri R, De Martino M, Filippella M, Milone F et al (2005) Sulfur amino acids in Cushing’s disease: insight in homocysteine and taurine levels in patients with active and cured disease. J Clin Endocrinol Metab 90:6616–6622PubMed
6.
go back to reference Warskulat U, Flögel U, Jacoby C, Hartwig HG, Thewissen M, Merx MW et al (2004) Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J 18:577–579PubMed Warskulat U, Flögel U, Jacoby C, Hartwig HG, Thewissen M, Merx MW et al (2004) Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J 18:577–579PubMed
7.
go back to reference Stipanuk MH (2004) Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem Res 29:105–110PubMed Stipanuk MH (2004) Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem Res 29:105–110PubMed
8.
go back to reference Lambert IH, Kristensen DM, Holm JB, Mortensen OH (2015) Physiological role of taurine–from organism to organelle. Acta Physiol (Oxf). 213:191–212PubMed Lambert IH, Kristensen DM, Holm JB, Mortensen OH (2015) Physiological role of taurine–from organism to organelle. Acta Physiol (Oxf). 213:191–212PubMed
9.
go back to reference Wu JY, Tang XW, Tsai WH (1992) Taurine receptor: kinetic analysis and pharmacological studies. Adv Exp Med Biol 315:263–268PubMed Wu JY, Tang XW, Tsai WH (1992) Taurine receptor: kinetic analysis and pharmacological studies. Adv Exp Med Biol 315:263–268PubMed
10.
go back to reference Frosini M, Sesti C, Dragoni S, Valoti M, Palmi M, Dixon HB et al (2003) Interactions of taurine and structurally related analogues with the GABAergic system and taurine binding sites of rabbit brain. Br J Pharmacol 139:1163–1171 Frosini M, Sesti C, Dragoni S, Valoti M, Palmi M, Dixon HB et al (2003) Interactions of taurine and structurally related analogues with the GABAergic system and taurine binding sites of rabbit brain. Br J Pharmacol 139:1163–1171
11.
go back to reference Jia F, Yue M, Chandra D, Keramidas A, Goldstein PA, Homanics GE et al (2008) Taurine is a potent activator of extrasynaptic GABA(A) receptors in the thalamus. J Neurosci 28:106–115PubMed Jia F, Yue M, Chandra D, Keramidas A, Goldstein PA, Homanics GE et al (2008) Taurine is a potent activator of extrasynaptic GABA(A) receptors in the thalamus. J Neurosci 28:106–115PubMed
13.
go back to reference Huxtable R, Bressler R (1973) Effect of taurine on a muscle intracellular membrane. Biochim Biophys Acta 323:573–583PubMed Huxtable R, Bressler R (1973) Effect of taurine on a muscle intracellular membrane. Biochim Biophys Acta 323:573–583PubMed
14.
go back to reference Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F et al (2007) Phenotype of the taurine transporter knockout mouse. Methods Enzymol 428:439–458PubMed Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F et al (2007) Phenotype of the taurine transporter knockout mouse. Methods Enzymol 428:439–458PubMed
15.
go back to reference Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T et al (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937PubMed Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T et al (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937PubMed
16.
go back to reference Ito T, Oishi S, Takai M, Kimura Y, Uozumi Y, Fujio Y et al (2010) Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J Biomed Sci 17:S20PubMedCentralPubMed Ito T, Oishi S, Takai M, Kimura Y, Uozumi Y, Fujio Y et al (2010) Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J Biomed Sci 17:S20PubMedCentralPubMed
17.
go back to reference Lötsch J, Hummel T, Warskulat U, Coste O, Häussinger D, Geisslinger G et al (2014) Congenital taurine deficiency in mice is associated with reduced sensitivity to nociceptive chemical stimulation. Neuroscience 259:63–70PubMed Lötsch J, Hummel T, Warskulat U, Coste O, Häussinger D, Geisslinger G et al (2014) Congenital taurine deficiency in mice is associated with reduced sensitivity to nociceptive chemical stimulation. Neuroscience 259:63–70PubMed
18.
go back to reference Schaffer SW, Shimada K, Jong CJ, Ito T, Azuma J, Takahashi K (2014) Effect of taurine and potential interactions with caffeine on cardiovascular function. Amino Acids 6:1147–1157 Schaffer SW, Shimada K, Jong CJ, Ito T, Azuma J, Takahashi K (2014) Effect of taurine and potential interactions with caffeine on cardiovascular function. Amino Acids 6:1147–1157
19.
go back to reference Shao A, Hathcock JN (2008) Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharmacol 50:376–399PubMed Shao A, Hathcock JN (2008) Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharmacol 50:376–399PubMed
20.
go back to reference Seifert SM, Schaechter JL, Hershorin ER, Lipshultz SE (2011) Health effects of energy drinks on children, adolescents, and young adults. Pediatrics 127:511–528PubMedCentralPubMed Seifert SM, Schaechter JL, Hershorin ER, Lipshultz SE (2011) Health effects of energy drinks on children, adolescents, and young adults. Pediatrics 127:511–528PubMedCentralPubMed
21.
go back to reference Wolk BJ, Ganetsky M, Babu KM (2012) Toxicity of energy drinks. Curr Opin Pediatr 24:243–251PubMed Wolk BJ, Ganetsky M, Babu KM (2012) Toxicity of energy drinks. Curr Opin Pediatr 24:243–251PubMed
22.
go back to reference Gunja N, Brown JA (2012) Energy drinks: health risks and toxicity. Med J Aust 196:46–49PubMed Gunja N, Brown JA (2012) Energy drinks: health risks and toxicity. Med J Aust 196:46–49PubMed
23.
go back to reference Taranukhin AG, Saransaari P, Oja SS (2013) Lethality of taurine and alcohol coadministration in mice. Adv Exp Med Biol 776:29–38PubMed Taranukhin AG, Saransaari P, Oja SS (2013) Lethality of taurine and alcohol coadministration in mice. Adv Exp Med Biol 776:29–38PubMed
24.
go back to reference El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of epileptic seizures by taurine. Adv Exp Med Biol 526:515–525PubMed El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of epileptic seizures by taurine. Adv Exp Med Biol 526:515–525PubMed
26.
go back to reference Conte Camerino D, Tricarico D, Desaphy JF (2007) Ion channel pharmacology. Neurotherapeutics 4:184–198 Conte Camerino D, Tricarico D, Desaphy JF (2007) Ion channel pharmacology. Neurotherapeutics 4:184–198
27.
go back to reference Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36PubMed Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36PubMed
28.
go back to reference Conte Camerino D, Franconi F, Mambrini M, Bennardini F, Failli P, Bryant SH et al (1987) The action of taurine on chloride conductance and excitability characteristics of rat striated muscle fibers. Pharmacol Res Commun 19:685–701PubMed Conte Camerino D, Franconi F, Mambrini M, Bennardini F, Failli P, Bryant SH et al (1987) The action of taurine on chloride conductance and excitability characteristics of rat striated muscle fibers. Pharmacol Res Commun 19:685–701PubMed
29.
go back to reference Conte Camerino D, Franconi F, Mambrini M, Mitolo-Chieppa D, Bennardini F, Failli P et al (1987) Effect of taurine on chloride conductance and excitability of rat skeletal muscle fibers. Adv Exp Med Biol 217:207–216PubMed Conte Camerino D, Franconi F, Mambrini M, Mitolo-Chieppa D, Bennardini F, Failli P et al (1987) Effect of taurine on chloride conductance and excitability of rat skeletal muscle fibers. Adv Exp Med Biol 217:207–216PubMed
30.
go back to reference Conte Camerino D, De Luca A, Mambrini M, Ferrannini E, Franconi F, Giotti A et al (1989) The effects of taurine on pharmacologically induced myotonia. Muscle Nerve 12:898–904PubMed Conte Camerino D, De Luca A, Mambrini M, Ferrannini E, Franconi F, Giotti A et al (1989) The effects of taurine on pharmacologically induced myotonia. Muscle Nerve 12:898–904PubMed
31.
go back to reference Pierno S, Tricarico D, De Luca A, Campagna F, Carotti A, Casini G et al (1994) Effects of taurine analogues on chloride channel conductance of rat skeletal muscle fibers: a structure-activity relationship investigation. Naunyn Schmiedebergs Arch Pharmacol 349:416–421PubMed Pierno S, Tricarico D, De Luca A, Campagna F, Carotti A, Casini G et al (1994) Effects of taurine analogues on chloride channel conductance of rat skeletal muscle fibers: a structure-activity relationship investigation. Naunyn Schmiedebergs Arch Pharmacol 349:416–421PubMed
32.
go back to reference Pusch M, Accardi A, Liantonio A, Ferrera L, De Luca A, Camerino DC et al (2001) Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB). J Gen Physiol 118:45–62PubMedCentralPubMed Pusch M, Accardi A, Liantonio A, Ferrera L, De Luca A, Camerino DC et al (2001) Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB). J Gen Physiol 118:45–62PubMedCentralPubMed
33.
go back to reference Liantonio A, Accardi A, Carbonara G, Fracchiolla G, Loiodice F, Tortorella P et al (2002) Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid. Mol Pharmacol 62:265–271PubMed Liantonio A, Accardi A, Carbonara G, Fracchiolla G, Loiodice F, Tortorella P et al (2002) Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid. Mol Pharmacol 62:265–271PubMed
34.
go back to reference Conte Camerino D, Tricarico D, Pierno S, Desaphy JF, Liantonio A, Pusch M et al (2004) Taurine and skeletal muscle disorders. Neurochem Res 29:135–142PubMed Conte Camerino D, Tricarico D, Pierno S, Desaphy JF, Liantonio A, Pusch M et al (2004) Taurine and skeletal muscle disorders. Neurochem Res 29:135–142PubMed
35.
go back to reference Durelli L, Mutani R, Fassio F, Satta A, Bartoli E (1982) Taurine and hyperexcitable human muscle: effects of taurine on potassium-induced hyperexcitability of dystrophic myotonic and normal muscles. Ann Neurol 11:258–265PubMed Durelli L, Mutani R, Fassio F, Satta A, Bartoli E (1982) Taurine and hyperexcitable human muscle: effects of taurine on potassium-induced hyperexcitability of dystrophic myotonic and normal muscles. Ann Neurol 11:258–265PubMed
36.
go back to reference Durelli L, Mutani R, Fassio F (1983) The treatment of myotonia: evaluation of chronic oral taurine therapy. Neurology. 33:599–603PubMed Durelli L, Mutani R, Fassio F (1983) The treatment of myotonia: evaluation of chronic oral taurine therapy. Neurology. 33:599–603PubMed
37.
go back to reference Trip J, Drost G, van Engelen BG, Faber CG (2006) Drug treatment for myotonia. Cochrane Database Syst Rev (1):CD004762 Trip J, Drost G, van Engelen BG, Faber CG (2006) Drug treatment for myotonia. Cochrane Database Syst Rev (1):CD004762
38.
go back to reference Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT et al (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44PubMed Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT et al (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44PubMed
39.
go back to reference Lueck JD, Lungu C, Mankodi A, Osborne RJ, Welle SL, Dirksen RT et al (2007) Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1. Am J Physiol Cell Physiol 292:C1291–C1297PubMed Lueck JD, Lungu C, Mankodi A, Osborne RJ, Welle SL, Dirksen RT et al (2007) Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1. Am J Physiol Cell Physiol 292:C1291–C1297PubMed
40.
go back to reference Conte Camerino D, Desaphy JF, Tricarico D, Pierno S, Liantonio A (2008) Therapeutic approaches to ion channel diseases. Adv Genet 64:81–145 Conte Camerino D, Desaphy JF, Tricarico D, Pierno S, Liantonio A (2008) Therapeutic approaches to ion channel diseases. Adv Genet 64:81–145
41.
go back to reference De Luca A, Pierno S, Tricarico D, Desaphy JF, Liantonio A, Barbieri M et al (2000) Taurine and skeletal muscle ion channels. Adv Exp Med Biol 483:45–56PubMed De Luca A, Pierno S, Tricarico D, Desaphy JF, Liantonio A, Barbieri M et al (2000) Taurine and skeletal muscle ion channels. Adv Exp Med Biol 483:45–56PubMed
42.
go back to reference Schanne OF, Dumaine R (1992) Interaction of taurine with the fast Na-current in isolated rabbit myocytes. J Pharmacol Exp Ther 263:1233–1240PubMed Schanne OF, Dumaine R (1992) Interaction of taurine with the fast Na-current in isolated rabbit myocytes. J Pharmacol Exp Ther 263:1233–1240PubMed
43.
go back to reference Satoh H (1998) Inhibition of the fast Na+ current by taurine in guinea pig ventricula myocytes. Gen Pharmacol 31:155–157PubMed Satoh H (1998) Inhibition of the fast Na+ current by taurine in guinea pig ventricula myocytes. Gen Pharmacol 31:155–157PubMed
44.
go back to reference De Luca A, Natuzzi F, Desaphy JF, Loni G, Lentini G, Franchini C et al (2000) Molecular determinants of mexiletine structure for potent and use-dependent block of skeletal muscle sodium channels. Mol Pharmacol 57:268–277PubMed De Luca A, Natuzzi F, Desaphy JF, Loni G, Lentini G, Franchini C et al (2000) Molecular determinants of mexiletine structure for potent and use-dependent block of skeletal muscle sodium channels. Mol Pharmacol 57:268–277PubMed
45.
go back to reference De Luca A, Talon S, De Bellis M, Desaphy JF, Lentini G, Corbo F et al (2003) Optimal requirements for high affinity and use-dependent block of skeletal muscle sodium channel by N-benzyl analogs of tocainide-like compounds. Mol Pharmacol 64:932–945PubMed De Luca A, Talon S, De Bellis M, Desaphy JF, Lentini G, Corbo F et al (2003) Optimal requirements for high affinity and use-dependent block of skeletal muscle sodium channel by N-benzyl analogs of tocainide-like compounds. Mol Pharmacol 64:932–945PubMed
46.
go back to reference De Luca A, Pierno S, Liantonio A, Desaphy JF, Natuzzi F, Didonna MP et al (2004) New potent mexiletine and tocainide analogues evaluated in vivo and in vitro as antimyotonic agents on the myotonic ADR mouse. Neuromuscul Disord 14:405–416PubMed De Luca A, Pierno S, Liantonio A, Desaphy JF, Natuzzi F, Didonna MP et al (2004) New potent mexiletine and tocainide analogues evaluated in vivo and in vitro as antimyotonic agents on the myotonic ADR mouse. Neuromuscul Disord 14:405–416PubMed
47.
go back to reference De Luca A, De Bellis M, Corbo F, Franchini C, Muraglia M, Catalano A et al (2012) Searching for novel anti-myotonic agents: pharmacophore requirement for use-dependent block of skeletal muscle sodium channels by N-benzylated cyclic derivatives of tocainide. Neuromuscul Disord 22:56–65PubMedCentralPubMed De Luca A, De Bellis M, Corbo F, Franchini C, Muraglia M, Catalano A et al (2012) Searching for novel anti-myotonic agents: pharmacophore requirement for use-dependent block of skeletal muscle sodium channels by N-benzylated cyclic derivatives of tocainide. Neuromuscul Disord 22:56–65PubMedCentralPubMed
48.
go back to reference De Luca A, Pierno S, Conte Camerino D (1996) Effect of taurine depletion on excitation–contraction coupling and Cl− conductance of rat skeletal muscle. Eur J Pharmacol 296:215–222PubMed De Luca A, Pierno S, Conte Camerino D (1996) Effect of taurine depletion on excitation–contraction coupling and Cl− conductance of rat skeletal muscle. Eur J Pharmacol 296:215–222PubMed
49.
go back to reference Pierno S, De Luca A, Huxtable RJ, Conte Camerino D (1994) Dual effects of taurine on membrane ionic conductances of rat skeletal muscle fibers. Adv Exp Med Biol 359:217–224PubMed Pierno S, De Luca A, Huxtable RJ, Conte Camerino D (1994) Dual effects of taurine on membrane ionic conductances of rat skeletal muscle fibers. Adv Exp Med Biol 359:217–224PubMed
50.
go back to reference Hamilton EJ, Berg HM, Easton CJ, Bakker AJ (2006) The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse. Amino Acids 31:273–278PubMed Hamilton EJ, Berg HM, Easton CJ, Bakker AJ (2006) The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse. Amino Acids 31:273–278PubMed
51.
go back to reference Ito T, Yoshikawa N, Schaffer SW, Azuma J (2014) Tissue taurine depletion alters metabolic response to exercise and reduces running capacity in mice. J Amino Acids. 2014:964680PubMedCentralPubMed Ito T, Yoshikawa N, Schaffer SW, Azuma J (2014) Tissue taurine depletion alters metabolic response to exercise and reduces running capacity in mice. J Amino Acids. 2014:964680PubMedCentralPubMed
52.
go back to reference Bakker AJ, Berg HM (2002) Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J Physiol 538:185–194PubMedCentralPubMed Bakker AJ, Berg HM (2002) Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J Physiol 538:185–194PubMedCentralPubMed
53.
go back to reference Dutka TL, Lamboley CR, Murphy RM, Lamb GD (2014) Acute effects of taurine on sarcoplasmic reticulum Ca2+ accumulation and contractility in human type I and type II skeletal muscle fibers. J Appl Physiol (1985) 117:797–805 Dutka TL, Lamboley CR, Murphy RM, Lamb GD (2014) Acute effects of taurine on sarcoplasmic reticulum Ca2+ accumulation and contractility in human type I and type II skeletal muscle fibers. J Appl Physiol (1985) 117:797–805
54.
go back to reference Goodman CA, Horvath D, Stathis C, Mori T, Croft K, Murphy RM et al (2009) Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J Appl Physiol 107:144–154PubMedCentralPubMed Goodman CA, Horvath D, Stathis C, Mori T, Croft K, Murphy RM et al (2009) Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J Appl Physiol 107:144–154PubMedCentralPubMed
55.
go back to reference Silva LA, Silveira PC, Ronsani MM, Souza PS, Scheffer D, Vieira LC et al (2011) Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise. Cell Biochem Funct 29:43–49PubMed Silva LA, Silveira PC, Ronsani MM, Souza PS, Scheffer D, Vieira LC et al (2011) Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise. Cell Biochem Funct 29:43–49PubMed
56.
go back to reference Sugiura H, Okita S, Kato T, Naka T, Kawanishi S, Ohnishi S et al (2013) Protection by taurine against INOS-dependent DNA damage in heavily exercised skeletal muscle by inhibition of the NF-κB signaling pathway. Adv Exp Med Biol 775:237–246PubMed Sugiura H, Okita S, Kato T, Naka T, Kawanishi S, Ohnishi S et al (2013) Protection by taurine against INOS-dependent DNA damage in heavily exercised skeletal muscle by inhibition of the NF-κB signaling pathway. Adv Exp Med Biol 775:237–246PubMed
57.
go back to reference Tallis J, Higgins MF, Cox VM, Duncan MJ, James RS (2014) Does a physiological concentration of taurine increase acute muscle power output, time to fatigue, and recovery in isolated mouse soleus (slow) muscle with or without the presence of caffeine? Can J Physiol Pharmacol 92:42–49PubMed Tallis J, Higgins MF, Cox VM, Duncan MJ, James RS (2014) Does a physiological concentration of taurine increase acute muscle power output, time to fatigue, and recovery in isolated mouse soleus (slow) muscle with or without the presence of caffeine? Can J Physiol Pharmacol 92:42–49PubMed
58.
go back to reference Cozzoli A, Rolland JF, Caporosso RF, Sblendorio VT, Longo V, Simonetti S et al (2011) Evaluation of potential synergistic action of a combined treatment with alpha-methyl-prednisolone and taurine on the mdx mouse model of Duchenne muscular dystrophy. Neuropathol Appl Neurobiol 37:243–256PubMed Cozzoli A, Rolland JF, Caporosso RF, Sblendorio VT, Longo V, Simonetti S et al (2011) Evaluation of potential synergistic action of a combined treatment with alpha-methyl-prednisolone and taurine on the mdx mouse model of Duchenne muscular dystrophy. Neuropathol Appl Neurobiol 37:243–256PubMed
59.
go back to reference Pierno S, Liantonio A, Camerino GM, De Bellis M, Cannone M, Gramegna G et al (2012) Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids 43:431–445PubMed Pierno S, Liantonio A, Camerino GM, De Bellis M, Cannone M, Gramegna G et al (2012) Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids 43:431–445PubMed
60.
go back to reference Dawson R Jr, Biasetti M, Messina S, Dominy J (2002) The cytoprotective role of taurine in exercise-induced muscle injury. Amino Acids 22:309–324PubMed Dawson R Jr, Biasetti M, Messina S, Dominy J (2002) The cytoprotective role of taurine in exercise-induced muscle injury. Amino Acids 22:309–324PubMed
61.
go back to reference Yatabe Y, Miyakawa S, Ohmori H, Mishima H, Adachi T (2009) Effects of taurine administration on exercise. Adv Exp Med Biol 643:245–252PubMed Yatabe Y, Miyakawa S, Ohmori H, Mishima H, Adachi T (2009) Effects of taurine administration on exercise. Adv Exp Med Biol 643:245–252PubMed
62.
go back to reference Nanobashvili J, Neumayer C, Fugl A, Punz A, Blumer R, Prager M et al (2003) Ischemia/reperfusion injury of skeletal muscle: plasma taurine as a measure of tissue damage. Surgery 133:91–100PubMed Nanobashvili J, Neumayer C, Fugl A, Punz A, Blumer R, Prager M et al (2003) Ischemia/reperfusion injury of skeletal muscle: plasma taurine as a measure of tissue damage. Surgery 133:91–100PubMed
63.
go back to reference Takahashi K, Ohyabu Y, Takahashi K, Solodushko V, Takatani T, Itoh T et al (2003) Taurine renders the cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 41:726–733PubMed Takahashi K, Ohyabu Y, Takahashi K, Solodushko V, Takatani T, Itoh T et al (2003) Taurine renders the cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 41:726–733PubMed
64.
go back to reference Tricarico D, Barbieri M, Camerino DC (2000) Taurine blocks ATP-sensitive potassium channels of rat skeletal muscle fibres interfering with the sulphonylurea receptor. Br J Pharmacol 130:827–834PubMedCentralPubMed Tricarico D, Barbieri M, Camerino DC (2000) Taurine blocks ATP-sensitive potassium channels of rat skeletal muscle fibres interfering with the sulphonylurea receptor. Br J Pharmacol 130:827–834PubMedCentralPubMed
65.
go back to reference Tricarico D, Barbieri M, Conte Camerino D (2001) Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers. J Pharmacol Exp Ther 298:1167–1171PubMed Tricarico D, Barbieri M, Conte Camerino D (2001) Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers. J Pharmacol Exp Ther 298:1167–1171PubMed
66.
go back to reference Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdiscip Rev RNA 2:376–386PubMed Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdiscip Rev RNA 2:376–386PubMed
68.
go back to reference Wharton BA, Morley R, Isaacs EB, Cole TJ, Lucas A (2004) Low plasma taurine and later neurodevelopment. Arch Dis Child Fetal Neonatal Ed 89:F497–F498PubMedCentralPubMed Wharton BA, Morley R, Isaacs EB, Cole TJ, Lucas A (2004) Low plasma taurine and later neurodevelopment. Arch Dis Child Fetal Neonatal Ed 89:F497–F498PubMedCentralPubMed
69.
go back to reference Martin-Gronert MS, Ozanne SE (2007) Experimental IUGR and later diabetes. J Intern Med 261:437–452PubMed Martin-Gronert MS, Ozanne SE (2007) Experimental IUGR and later diabetes. J Intern Med 261:437–452PubMed
70.
go back to reference Merezak S, Reusens B, Renard A, Goosse K, Kalbe L, Ahn MT et al (2004) Effect of maternal low-protein diet and taurine on the vulnerability of adult Wistar rat islets to cytokines. Diabetologia 47:669–675PubMed Merezak S, Reusens B, Renard A, Goosse K, Kalbe L, Ahn MT et al (2004) Effect of maternal low-protein diet and taurine on the vulnerability of adult Wistar rat islets to cytokines. Diabetologia 47:669–675PubMed
71.
go back to reference Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, Grunnet N et al (2010) Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring’s liver and skeletal muscle; protective effect of taurine. Pediatr Res 67:47–53PubMed Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, Grunnet N et al (2010) Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring’s liver and skeletal muscle; protective effect of taurine. Pediatr Res 67:47–53PubMed
72.
go back to reference Reusens B, Sparre T, Kalbe L, Bouckenooghe T, Theys N, Kruhøffer M et al (2008) The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation. Diabetologia 51:836–845PubMed Reusens B, Sparre T, Kalbe L, Bouckenooghe T, Theys N, Kruhøffer M et al (2008) The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation. Diabetologia 51:836–845PubMed
73.
go back to reference De Luca A, Conte Camerino D, Failli P, Franconi F, Giotti A (1990) Effects of taurine on mammalian skeletal muscle fiber during development. Prog Clin Biol Res 351:163–173PubMed De Luca A, Conte Camerino D, Failli P, Franconi F, Giotti A (1990) Effects of taurine on mammalian skeletal muscle fiber during development. Prog Clin Biol Res 351:163–173PubMed
74.
go back to reference Conte Camerino D, De Luca A, Mambrini M, Vrbova G (1989) Membrane ionic conductances in normal and denervated skeletal muscle of the rat during development. Pflugers Archiv. 413:568–570PubMed Conte Camerino D, De Luca A, Mambrini M, Vrbova G (1989) Membrane ionic conductances in normal and denervated skeletal muscle of the rat during development. Pflugers Archiv. 413:568–570PubMed
75.
go back to reference Steinmeyer K, Ortland C, Jentsch TJ (1991) Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354:301–304PubMed Steinmeyer K, Ortland C, Jentsch TJ (1991) Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354:301–304PubMed
76.
go back to reference Yoshioka Y, Masuda T, Nakano H, Miura H, Nakaya S, Itazawa S (2002) In vitro 1H-NMR spectroscopic analysis of metabolites in fast- and slow-twitch muscles of young rats. Magn Reson Med Sci 1:7–13PubMed Yoshioka Y, Masuda T, Nakano H, Miura H, Nakaya S, Itazawa S (2002) In vitro 1H-NMR spectroscopic analysis of metabolites in fast- and slow-twitch muscles of young rats. Magn Reson Med Sci 1:7–13PubMed
77.
go back to reference Hammarqvist F, Angsten G, Meurling S, Andersson K, Wernerman J (2010) Age-related changes of muscle and plasma amino acids in healthy children. Amino Acids 39:359–366PubMed Hammarqvist F, Angsten G, Meurling S, Andersson K, Wernerman J (2010) Age-related changes of muscle and plasma amino acids in healthy children. Amino Acids 39:359–366PubMed
78.
go back to reference de Boo HA, Harding JE (2007) Taurine as a marker for foetal wellbeing? Neonatology 91:145–154PubMed de Boo HA, Harding JE (2007) Taurine as a marker for foetal wellbeing? Neonatology 91:145–154PubMed
79.
go back to reference Uozumi Y, Ito T, Hoshino Y, Mohri T, Maeda M, Takahashi K et al (2006) Myogenic differentiation induces taurine transporter in association with taurine mediated cytoprotection in skeletal muscles. Biochem J 394:699–706PubMedCentralPubMed Uozumi Y, Ito T, Hoshino Y, Mohri T, Maeda M, Takahashi K et al (2006) Myogenic differentiation induces taurine transporter in association with taurine mediated cytoprotection in skeletal muscles. Biochem J 394:699–706PubMedCentralPubMed
80.
go back to reference Miyazaki T, Honda A, Ikegami T, Matsuzaki Y (2013) The role of taurine on skeletal muscle cell differentiation. Adv Exp Med Biol 776:321–328PubMed Miyazaki T, Honda A, Ikegami T, Matsuzaki Y (2013) The role of taurine on skeletal muscle cell differentiation. Adv Exp Med Biol 776:321–328PubMed
81.
go back to reference Stuerenburg HJ, Stangneth B, Schoser BG (2006) Age related profiles of free amino acids in human skeletal muscle. Neuro Endocrinol Lett 27:133–136PubMed Stuerenburg HJ, Stangneth B, Schoser BG (2006) Age related profiles of free amino acids in human skeletal muscle. Neuro Endocrinol Lett 27:133–136PubMed
82.
go back to reference De Luca A, Conte Camerino D (1992) Effects of aging on the mechanical threshold of rat skeletal muscle fibers. Pflugers Arch 420:407–409PubMed De Luca A, Conte Camerino D (1992) Effects of aging on the mechanical threshold of rat skeletal muscle fibers. Pflugers Arch 420:407–409PubMed
83.
go back to reference De Luca A, Tricarico D, Pierno S, Conte Camerino D (1994) Aging and chloride channel regulation in rat fast-twitch muscle fibres. Pflugers Arch 427:80–85PubMed De Luca A, Tricarico D, Pierno S, Conte Camerino D (1994) Aging and chloride channel regulation in rat fast-twitch muscle fibres. Pflugers Arch 427:80–85PubMed
84.
go back to reference Pierno S, De Luca A, Camerino C, Huxtable RJ, Conte Camerino D (1998) Chronic administration of taurine to aged rats improves the electrical and contractile properties of skeletal muscle fibers. J Pharmacol Exp Ther 286:1183–1190PubMed Pierno S, De Luca A, Camerino C, Huxtable RJ, Conte Camerino D (1998) Chronic administration of taurine to aged rats improves the electrical and contractile properties of skeletal muscle fibers. J Pharmacol Exp Ther 286:1183–1190PubMed
85.
go back to reference Ito T, Yoshikawa N, Inui T, Miyazaki N, Schaffer SW, Azuma J (2014) Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS One 9:e107409PubMedCentralPubMed Ito T, Yoshikawa N, Inui T, Miyazaki N, Schaffer SW, Azuma J (2014) Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS One 9:e107409PubMedCentralPubMed
86.
go back to reference Rolland JF, De Luca A, Burdi R, Andreetta F, Confalonieri P, Conte Camerino D (2006) Overactivity of exercise-sensitive cation channels and their impaired modulation by IGF-1 in mdx native muscle fibers: beneficial effect of pentoxifylline. Neurobiol Dis 24:466–474PubMed Rolland JF, De Luca A, Burdi R, Andreetta F, Confalonieri P, Conte Camerino D (2006) Overactivity of exercise-sensitive cation channels and their impaired modulation by IGF-1 in mdx native muscle fibers: beneficial effect of pentoxifylline. Neurobiol Dis 24:466–474PubMed
87.
go back to reference Grounds MD, Radley HG, Lynch GS, Nagaraju K, De Luca A (2008) Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol Dis 31:1–19PubMedCentralPubMed Grounds MD, Radley HG, Lynch GS, Nagaraju K, De Luca A (2008) Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol Dis 31:1–19PubMedCentralPubMed
88.
go back to reference Allen DG, Whitehead NP (2011) Duchenne muscular dystrophy–what causes the increased membrane permeability in skeletal muscle? Int J Biochem Cell Biol 43:290–294PubMed Allen DG, Whitehead NP (2011) Duchenne muscular dystrophy–what causes the increased membrane permeability in skeletal muscle? Int J Biochem Cell Biol 43:290–294PubMed
89.
go back to reference De Luca A, Pierno S, Liantonio A, Cetrone M, Camerino C, Simonetti S et al (2001) Alteration of excitation–contraction coupling mechanism in extensor digitorum longus muscle fibres of dystrophic mdx mouse and potential efficacy of taurine. Br J Pharmacol 132:1047–1054PubMedCentralPubMed De Luca A, Pierno S, Liantonio A, Cetrone M, Camerino C, Simonetti S et al (2001) Alteration of excitation–contraction coupling mechanism in extensor digitorum longus muscle fibres of dystrophic mdx mouse and potential efficacy of taurine. Br J Pharmacol 132:1047–1054PubMedCentralPubMed
90.
go back to reference De Luca A, Pierno S, Liantonio A, Cetrone M, Camerino C, Fraysse B et al (2003) Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. J Pharmacol Exp Ther 304:453–463PubMed De Luca A, Pierno S, Liantonio A, Cetrone M, Camerino C, Fraysse B et al (2003) Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. J Pharmacol Exp Ther 304:453–463PubMed
91.
go back to reference McIntosh L, Granberg KE, Brière KM, Anderson JE (1998) Nuclear magnetic resonance spectroscopy study of muscle growth, mdx dystrophy and glucocorticoid treatments: correlation with repair. NMR Biomed 11:1–10PubMed McIntosh L, Granberg KE, Brière KM, Anderson JE (1998) Nuclear magnetic resonance spectroscopy study of muscle growth, mdx dystrophy and glucocorticoid treatments: correlation with repair. NMR Biomed 11:1–10PubMed
92.
go back to reference McIntosh LM, Baker RE, Anderson JE (1998) Magnetic resonance imaging of regenerating and dystrophic mouse muscle. Biochem Cell Biol 76:532–541PubMed McIntosh LM, Baker RE, Anderson JE (1998) Magnetic resonance imaging of regenerating and dystrophic mouse muscle. Biochem Cell Biol 76:532–541PubMed
93.
go back to reference Griffin JL, Des Rosiers C (2009) Applications of metabolomics and proteomics to the mdxmouse model of Duchenne muscular dystrophy: lessons from downstream of the transcriptome. Genome Med 1:32PubMedCentralPubMed Griffin JL, Des Rosiers C (2009) Applications of metabolomics and proteomics to the mdxmouse model of Duchenne muscular dystrophy: lessons from downstream of the transcriptome. Genome Med 1:32PubMedCentralPubMed
94.
go back to reference Martins-Bach AB, Bloise AC, Vainzof M, Rahnamaye Rabbani S (2012) Metabolic profile of dystrophic mdx mouse muscles analyzed with in vitro magnetic resonance spectroscopy (MRS). Magn Reson Imaging 30:1167–1176PubMed Martins-Bach AB, Bloise AC, Vainzof M, Rahnamaye Rabbani S (2012) Metabolic profile of dystrophic mdx mouse muscles analyzed with in vitro magnetic resonance spectroscopy (MRS). Magn Reson Imaging 30:1167–1176PubMed
95.
go back to reference Xu S, Pratt SJ, Spangenburg EE, Lovering RM (2012) Early metabolic changes measured by 1H MRS in healthy and dystrophic muscle after injury. J Appl Physiol 113:808–816PubMedCentralPubMed Xu S, Pratt SJ, Spangenburg EE, Lovering RM (2012) Early metabolic changes measured by 1H MRS in healthy and dystrophic muscle after injury. J Appl Physiol 113:808–816PubMedCentralPubMed
96.
go back to reference Burdi R, Rolland JF, Fraysse B, Litvinova K, Cozzoli A, Giannuzzi V et al (2009) Multiple pathological events in exercised dystrophic mdx mice are targeted by pentoxifylline: outcome of a large array of in vivo and ex vivo tests. J Appl Physiol 106:1311–1324PubMed Burdi R, Rolland JF, Fraysse B, Litvinova K, Cozzoli A, Giannuzzi V et al (2009) Multiple pathological events in exercised dystrophic mdx mice are targeted by pentoxifylline: outcome of a large array of in vivo and ex vivo tests. J Appl Physiol 106:1311–1324PubMed
97.
go back to reference Horvath DM (2011) The effect of taurine on dystrophic muscle tissue function. PhD thesis. Victoria University Horvath DM (2011) The effect of taurine on dystrophic muscle tissue function. PhD thesis. Victoria University
98.
go back to reference Fraysse B, Liantonio A, Cetrone M, Burdi R, Pierno S, Frigeri A et al (2004) The alteration of calcium homeostasis in adult dystrophic mdx muscle fibers is worsened by a chronic exercise in vivo. Neurobiol Dis 17:144–154PubMed Fraysse B, Liantonio A, Cetrone M, Burdi R, Pierno S, Frigeri A et al (2004) The alteration of calcium homeostasis in adult dystrophic mdx muscle fibers is worsened by a chronic exercise in vivo. Neurobiol Dis 17:144–154PubMed
99.
go back to reference Shkryl VM, Martins AS, Ullrich ND, Nowycky MC, Niggli E, Shirokova N (2009) Reciprocal amplification of ROS and Ca(2+) signals in stressed mdx dystrophic skeletal muscle fibers. Pflugers Arch 458:915–928PubMed Shkryl VM, Martins AS, Ullrich ND, Nowycky MC, Niggli E, Shirokova N (2009) Reciprocal amplification of ROS and Ca(2+) signals in stressed mdx dystrophic skeletal muscle fibers. Pflugers Arch 458:915–928PubMed
100.
go back to reference Whitehead NP, Yeung EW, Froehner SC, Allen DG (2010) Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. PLoS One 5:e15354PubMedCentralPubMed Whitehead NP, Yeung EW, Froehner SC, Allen DG (2010) Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. PLoS One 5:e15354PubMedCentralPubMed
101.
go back to reference Khairallah RJ, Shi G, Sbrana F, Prosser BL, Borroto C, Mazaitis MJ et al (2012) Microtubules underlie dysfunction in duchenne muscular dystrophy. Sci Signal 5:ra56 Khairallah RJ, Shi G, Sbrana F, Prosser BL, Borroto C, Mazaitis MJ et al (2012) Microtubules underlie dysfunction in duchenne muscular dystrophy. Sci Signal 5:ra56
103.
go back to reference Song MK, Salam NK, Roufogalis BD, Huang TH (2011) Lycium barbarum (Goji Berry) extracts and its taurine component inhibit PPAR-γ-dependent gene transcription in human retinal pigment epithelial cells: possible implications for diabetic retinopathy treatment. Biochem Pharmacol 82:1209–1218PubMed Song MK, Salam NK, Roufogalis BD, Huang TH (2011) Lycium barbarum (Goji Berry) extracts and its taurine component inhibit PPAR-γ-dependent gene transcription in human retinal pigment epithelial cells: possible implications for diabetic retinopathy treatment. Biochem Pharmacol 82:1209–1218PubMed
104.
go back to reference Pierno S, Nico B, Burdi R, Liantonio A, Didonna MP, Cippone V et al (2007) Role of tumour necrosis factor alpha, but not of cyclo-oxygenase-2-derived eicosanoids, on functional and morphological indices of dystrophic progression in mdx mice: a pharmacological approach. Neuropathol Appl Neurobiol 33:344–359PubMed Pierno S, Nico B, Burdi R, Liantonio A, Didonna MP, Cippone V et al (2007) Role of tumour necrosis factor alpha, but not of cyclo-oxygenase-2-derived eicosanoids, on functional and morphological indices of dystrophic progression in mdx mice: a pharmacological approach. Neuropathol Appl Neurobiol 33:344–359PubMed
105.
go back to reference De Luca A, Nico B, Rolland JF, Cozzoli A, Burdi R, Mangieri D et al (2008) Gentamicin treatment in exercised mdx mice: identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle. Neurobiol Dis 32:243–253PubMed De Luca A, Nico B, Rolland JF, Cozzoli A, Burdi R, Mangieri D et al (2008) Gentamicin treatment in exercised mdx mice: identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle. Neurobiol Dis 32:243–253PubMed
106.
go back to reference Gehrig SM, van der Poel C, Sayer TA, Schertzer JD, Henstridge DC, Church JE et al (2012) Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 4(484):394–398 Gehrig SM, van der Poel C, Sayer TA, Schertzer JD, Henstridge DC, Church JE et al (2012) Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 4(484):394–398
107.
go back to reference Terrill JR, Boyatzis A, Grounds MD, Arthur PG (2013) Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice. Int J Biochem Cell Biol 45:2097–2108PubMed Terrill JR, Boyatzis A, Grounds MD, Arthur PG (2013) Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice. Int J Biochem Cell Biol 45:2097–2108PubMed
108.
go back to reference Pan C, Giraldo GS, Prentice H, Wu JY (2010) Taurine protection of PC12 cells against endoplasmic reticulum stress induced by oxidative stress. J Biomed Sci 17:S17PubMedCentralPubMed Pan C, Giraldo GS, Prentice H, Wu JY (2010) Taurine protection of PC12 cells against endoplasmic reticulum stress induced by oxidative stress. J Biomed Sci 17:S17PubMedCentralPubMed
109.
go back to reference Batista TM, da Silva PM, Amaral AG, Ribeiro RA, Boschero AC, Carneiro EM (2013) Taurine supplementation restores insulin secretion and reduces ER stress markers in protein-malnourished mice. Adv Exp Med Biol 776:129–139PubMed Batista TM, da Silva PM, Amaral AG, Ribeiro RA, Boschero AC, Carneiro EM (2013) Taurine supplementation restores insulin secretion and reduces ER stress markers in protein-malnourished mice. Adv Exp Med Biol 776:129–139PubMed
110.
go back to reference Abebe W, Mozaffari MS (2011) Role of taurine in the vasculature: an overview of experimental and human studies. Am J Cardiovasc Dis 1:293–311PubMedCentralPubMed Abebe W, Mozaffari MS (2011) Role of taurine in the vasculature: an overview of experimental and human studies. Am J Cardiovasc Dis 1:293–311PubMedCentralPubMed
111.
go back to reference Pierno S, Desaphy JF, Liantonio A, De Bellis M, Bianco G, De Luca A et al (2002) Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain 125:1510–1521PubMed Pierno S, Desaphy JF, Liantonio A, De Bellis M, Bianco G, De Luca A et al (2002) Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain 125:1510–1521PubMed
112.
go back to reference Desaphy JF, Pierno S, Liantonio A, Giannuzzi V, Digennaro C, Dinardo MM et al (2010) Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacol Res 61:553–563PubMed Desaphy JF, Pierno S, Liantonio A, Giannuzzi V, Digennaro C, Dinardo MM et al (2010) Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacol Res 61:553–563PubMed
113.
go back to reference Desaphy JF, Pierno S, Léoty C, George AL Jr, De Luca A, Camerino DC (2001) Skeletal muscle disuse induces fibre type-dependent enhancement of Na(+) channel expression. Brain. 124:1100–1113PubMed Desaphy JF, Pierno S, Léoty C, George AL Jr, De Luca A, Camerino DC (2001) Skeletal muscle disuse induces fibre type-dependent enhancement of Na(+) channel expression. Brain. 124:1100–1113PubMed
114.
go back to reference Bastide B, Kischel P, Puterflam J, Stevens L, Pette D, Jin JP et al (2002) Expression and functional implications of troponin T isoforms in soleus muscle fibers of rat after unloading. Pflugers Arch 444:345–352PubMed Bastide B, Kischel P, Puterflam J, Stevens L, Pette D, Jin JP et al (2002) Expression and functional implications of troponin T isoforms in soleus muscle fibers of rat after unloading. Pflugers Arch 444:345–352PubMed
115.
go back to reference Desaphy JF, Pierno S, Liantonio A, De Luca A, Didonna MP, Frigeri A et al (2005) Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile. Neurobiol Dis 18:356–365PubMed Desaphy JF, Pierno S, Liantonio A, De Luca A, Didonna MP, Frigeri A et al (2005) Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile. Neurobiol Dis 18:356–365PubMed
116.
go back to reference Fraysse B, Desaphy JF, Pierno S, De Luca A, Liantonio A, Mitolo CI et al (2003) Decrease in resting calcium and calcium entry associated with slow-to-fast transition in unloaded rat soleus muscle. FASEB J. 17:1916–1918PubMed Fraysse B, Desaphy JF, Pierno S, De Luca A, Liantonio A, Mitolo CI et al (2003) Decrease in resting calcium and calcium entry associated with slow-to-fast transition in unloaded rat soleus muscle. FASEB J. 17:1916–1918PubMed
117.
go back to reference Schulte LM, Navarro J, Kandarian SC (1993) Regulation of sarcoplasmic reticulum calcium pump gene expression by hindlimb unweighting. Am J Physiol 264:C1308–C1315PubMed Schulte LM, Navarro J, Kandarian SC (1993) Regulation of sarcoplasmic reticulum calcium pump gene expression by hindlimb unweighting. Am J Physiol 264:C1308–C1315PubMed
118.
go back to reference Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol Sep 204:3201–3208 Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol Sep 204:3201–3208
119.
go back to reference Adams GR, Caiozzo VJ, Baldwin KM (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95:2185–2201PubMed Adams GR, Caiozzo VJ, Baldwin KM (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95:2185–2201PubMed
120.
go back to reference Paddon-Jones D, Sheffield-Moore M, Urban RJ, Sanford AP, Aarsland A, Wolfe RR et al (2004) Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. J Clin Endocrinol Metab 89:4351–4358PubMed Paddon-Jones D, Sheffield-Moore M, Urban RJ, Sanford AP, Aarsland A, Wolfe RR et al (2004) Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. J Clin Endocrinol Metab 89:4351–4358PubMed
121.
go back to reference Fitts RH, Romatowski JG, Peters JR, Paddon-Jones D, Wolfe RR, Ferrando AA (2007) The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Physiol Cell Physiol 293:C313–C320PubMed Fitts RH, Romatowski JG, Peters JR, Paddon-Jones D, Wolfe RR, Ferrando AA (2007) The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Physiol Cell Physiol 293:C313–C320PubMed
122.
go back to reference Leach CS, Rambaut PC, Fischer CL (1975) A comparative study of two methods of urine preservation. Clin Biochem 8:108–117PubMed Leach CS, Rambaut PC, Fischer CL (1975) A comparative study of two methods of urine preservation. Clin Biochem 8:108–117PubMed
123.
go back to reference Grichko VP, Heywood-Cooksey A, Kidd KR, Fitts RH (2000) Substrate profile in rat soleus muscle fibers after hindlimb unloading and fatigue. J Appl Physiol 88:473–478PubMed Grichko VP, Heywood-Cooksey A, Kidd KR, Fitts RH (2000) Substrate profile in rat soleus muscle fibers after hindlimb unloading and fatigue. J Appl Physiol 88:473–478PubMed
124.
go back to reference Ojala BE, Page LA, Moore MA, Thompson LV (2001) Effects of inactivity on glycolytic capacity of single skeletal muscle fibers in adult and aged rats. Biol Res Nurs 3:88–95PubMed Ojala BE, Page LA, Moore MA, Thompson LV (2001) Effects of inactivity on glycolytic capacity of single skeletal muscle fibers in adult and aged rats. Biol Res Nurs 3:88–95PubMed
125.
go back to reference Stein TP, Wade CE (2005) Metabolic consequences of muscle disuse atrophy. J Nutr 135:1824S–1828SPubMed Stein TP, Wade CE (2005) Metabolic consequences of muscle disuse atrophy. J Nutr 135:1824S–1828SPubMed
126.
go back to reference Murton AJ, Constantin D, Greenhaff PL (2008) The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta 1782:730–743PubMed Murton AJ, Constantin D, Greenhaff PL (2008) The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta 1782:730–743PubMed
127.
go back to reference Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019PubMed Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019PubMed
128.
go back to reference Yamamoto D, Ikeshita N, Matsubara T, Tasaki H, Herningtyas EH, Toda K et al (2008) GHRP-2, a GHS-R agonist, directly acts on myocytes to attenuate the dexamethasone-induced expressions of muscle-specific ubiquitin ligases, Atrogin-1 and MuRF1. Life Sci 82:460–466PubMed Yamamoto D, Ikeshita N, Matsubara T, Tasaki H, Herningtyas EH, Toda K et al (2008) GHRP-2, a GHS-R agonist, directly acts on myocytes to attenuate the dexamethasone-induced expressions of muscle-specific ubiquitin ligases, Atrogin-1 and MuRF1. Life Sci 82:460–466PubMed
129.
go back to reference Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42:1529–1539PubMedCentralPubMed Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42:1529–1539PubMedCentralPubMed
130.
go back to reference Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M et al (1995) Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 61:1115–1119PubMed Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M et al (1995) Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 61:1115–1119PubMed
131.
go back to reference Elizarova EP, Nedosugova LV (1996) First experiments in taurine administration for diabetes mellitus. The effect on erythrocyte membranes. Adv Exp Med Biol 403:583–588PubMed Elizarova EP, Nedosugova LV (1996) First experiments in taurine administration for diabetes mellitus. The effect on erythrocyte membranes. Adv Exp Med Biol 403:583–588PubMed
132.
go back to reference Nakamura T, Ushiyama C, Suzuki S, Shimada N, Ohmuro H, Ebihara I et al (1999) Effects of taurine and vitamin E on microalbuminuria, plasma metalloproteinase-9, and serum type IV collagen concentrations in patients with diabetic nephropathy. Nephron. 83:361–362PubMed Nakamura T, Ushiyama C, Suzuki S, Shimada N, Ohmuro H, Ebihara I et al (1999) Effects of taurine and vitamin E on microalbuminuria, plasma metalloproteinase-9, and serum type IV collagen concentrations in patients with diabetic nephropathy. Nephron. 83:361–362PubMed
133.
go back to reference Chauncey KB, Tenner TE Jr, Lombardini JB, Jones BG, Brooks ML, Warner RD et al (2003) The effect of taurine supplementation on patients with type 2 diabetes mellitus. Adv Exp Med Biol 526:91–96PubMed Chauncey KB, Tenner TE Jr, Lombardini JB, Jones BG, Brooks ML, Warner RD et al (2003) The effect of taurine supplementation on patients with type 2 diabetes mellitus. Adv Exp Med Biol 526:91–96PubMed
134.
go back to reference Brøns C, Spohr C, Storgaard H, Dyerberg J, Vaag A (2004) Effect of taurine treatment on insulin secretion and action, and on serum lipid levels in overweight men with a genetic predisposition for type II diabetes mellitus. Eur J Clin Nutr 58:1239–1247PubMed Brøns C, Spohr C, Storgaard H, Dyerberg J, Vaag A (2004) Effect of taurine treatment on insulin secretion and action, and on serum lipid levels in overweight men with a genetic predisposition for type II diabetes mellitus. Eur J Clin Nutr 58:1239–1247PubMed
135.
go back to reference Moloney MA, Casey RG, O’Donnell DH, Fitzgerald P, Thompson C, Bouchier-Hayes DJ (2010) Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics. Diab Vasc Dis Res 7:300–310PubMed Moloney MA, Casey RG, O’Donnell DH, Fitzgerald P, Thompson C, Bouchier-Hayes DJ (2010) Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics. Diab Vasc Dis Res 7:300–310PubMed
136.
go back to reference Xiao C, Giacca A, Lewis GF (2008) Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men. Diabetologia 51:139–146PubMed Xiao C, Giacca A, Lewis GF (2008) Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men. Diabetologia 51:139–146PubMed
137.
go back to reference Bergamini L, Mutani R, Delsedime M, Durelli L (1974) First clinical experience on the antiepileptic action of taurine. Eur Neurol 11:261–269PubMed Bergamini L, Mutani R, Delsedime M, Durelli L (1974) First clinical experience on the antiepileptic action of taurine. Eur Neurol 11:261–269PubMed
138.
go back to reference Azuma J, Sawamura A, Awata N, Ohta H, Hamaguchi T, Harada H et al (1985) Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial. Clin Cardiol 8:276–282PubMed Azuma J, Sawamura A, Awata N, Ohta H, Hamaguchi T, Harada H et al (1985) Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial. Clin Cardiol 8:276–282PubMed
139.
go back to reference Fujita T, Ando K, Noda H, Ito Y, Sato Y (1987) Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension. Circulation 75:525–532PubMed Fujita T, Ando K, Noda H, Ito Y, Sato Y (1987) Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension. Circulation 75:525–532PubMed
140.
go back to reference Dunn-Lewis C, Kraemer WJ, Kupchak BR, Kelly NA, Creighton BA, Luk HY et al (2011) A multi-nutrient supplement reduced markers of inflammation and improved physical performance in active individuals of middle to older age: a randomized, double-blind, placebo-controlled study. Nutr J 10:90PubMedCentralPubMed Dunn-Lewis C, Kraemer WJ, Kupchak BR, Kelly NA, Creighton BA, Luk HY et al (2011) A multi-nutrient supplement reduced markers of inflammation and improved physical performance in active individuals of middle to older age: a randomized, double-blind, placebo-controlled study. Nutr J 10:90PubMedCentralPubMed
141.
go back to reference Pearl PL, Schreiber J, Theodore WH, McCarter R, Barrios ES, Yu J et al (2014) Taurine trial in succinic semialdehyde dehydrogenase deficiency and elevated CNS GABA. Neurology 18(82):940–944 Pearl PL, Schreiber J, Theodore WH, McCarter R, Barrios ES, Yu J et al (2014) Taurine trial in succinic semialdehyde dehydrogenase deficiency and elevated CNS GABA. Neurology 18(82):940–944
142.
go back to reference González-Contreras J, Villalobos Gámez JL, Gómez-Sánchez AI, García-Almeida JM, Enguix Armanda A, Rius Díaz F et al (2012) Cholestasis induced by total parenteral nutrition: effects of the addition of Taurine (Tauramin®) on hepatic function parameters; possible synergistic action of structured lipids (SMOFlipid®). Nutr Hosp 27:1900–1907PubMed González-Contreras J, Villalobos Gámez JL, Gómez-Sánchez AI, García-Almeida JM, Enguix Armanda A, Rius Díaz F et al (2012) Cholestasis induced by total parenteral nutrition: effects of the addition of Taurine (Tauramin®) on hepatic function parameters; possible synergistic action of structured lipids (SMOFlipid®). Nutr Hosp 27:1900–1907PubMed
143.
go back to reference Rosa FT, Freitas EC, Deminice R, Jordão AA, Marchini JS (2014) Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr 53:823–830PubMed Rosa FT, Freitas EC, Deminice R, Jordão AA, Marchini JS (2014) Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr 53:823–830PubMed
144.
go back to reference Galloway SD, Talanian JL, Shoveller AK, Heigenhauser GJ, Spriet LL (2008) Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. J Appl Physiol 105:643–651PubMed Galloway SD, Talanian JL, Shoveller AK, Heigenhauser GJ, Spriet LL (2008) Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. J Appl Physiol 105:643–651PubMed
145.
go back to reference Spriet LL, Whitfield J (2015) Taurine and skeletal muscle function. Curr Opin Clin Nutr Metab Care. 18:96–101PubMed Spriet LL, Whitfield J (2015) Taurine and skeletal muscle function. Curr Opin Clin Nutr Metab Care. 18:96–101PubMed
146.
go back to reference Tappaz ML (2004) Taurine biosynthetic enzymes and taurine transporter: molecular identification and regulations. Neurochem Res 29:83–96PubMed Tappaz ML (2004) Taurine biosynthetic enzymes and taurine transporter: molecular identification and regulations. Neurochem Res 29:83–96PubMed
147.
go back to reference Ghandforoush-Sattari M, Mashayekhi S, Krishna CV, Thompson JP, Routledge PA (2010) Pharmacokinetics of oral taurine in healthy volunteers. J Amino Acids 346237 Ghandforoush-Sattari M, Mashayekhi S, Krishna CV, Thompson JP, Routledge PA (2010) Pharmacokinetics of oral taurine in healthy volunteers. J Amino Acids 346237
148.
go back to reference Balshaw TG, Bampouras TM, Barry TJ, Sparks SA (2013) The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids 44:555–561PubMed Balshaw TG, Bampouras TM, Barry TJ, Sparks SA (2013) The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids 44:555–561PubMed
149.
go back to reference Ra SG, Miyazaki T, Ishikura K, Nagayama H, Suzuki T, Maeda S et al (2013) Additional effects of taurine on the benefits of BCAA intake for the delayed-onset muscle soreness and muscle damage induced by high-intensity eccentric exercise. Adv Exp Med Biol 776:179–187PubMed Ra SG, Miyazaki T, Ishikura K, Nagayama H, Suzuki T, Maeda S et al (2013) Additional effects of taurine on the benefits of BCAA intake for the delayed-onset muscle soreness and muscle damage induced by high-intensity eccentric exercise. Adv Exp Med Biol 776:179–187PubMed
150.
go back to reference da Silva LA, Tromm CB, Bom KF, Mariano I, Pozzi B, da Rosa GL et al (2014) Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab 39:101–104PubMed da Silva LA, Tromm CB, Bom KF, Mariano I, Pozzi B, da Rosa GL et al (2014) Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab 39:101–104PubMed
151.
go back to reference Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, Veselkov K et al (2013) 1H NMR study on the short- and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum. J Proteome Res 4(12):470–480 Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, Veselkov K et al (2013) 1H NMR study on the short- and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum. J Proteome Res 4(12):470–480
152.
go back to reference Gregor P, Hoff M, Holik J, Hadley D, Fang N, Coon H et al (1994) Dinucleotide repeat polymorphism in the human taurine transporter gene (TAUT). Hum Mol Genet 3:2263PubMed Gregor P, Hoff M, Holik J, Hadley D, Fang N, Coon H et al (1994) Dinucleotide repeat polymorphism in the human taurine transporter gene (TAUT). Hum Mol Genet 3:2263PubMed
153.
go back to reference Han X, Patters AB, Jones DP, Zelikovic I, Chesney RW (2006) The taurine transporter: mechanisms of regulation. Acta Physiol (Oxf) 187:61–73 Han X, Patters AB, Jones DP, Zelikovic I, Chesney RW (2006) The taurine transporter: mechanisms of regulation. Acta Physiol (Oxf) 187:61–73
154.
go back to reference Finlay EK, Berry DP, Wickham B, Gormley EP, Bradley DG (2012) A genome wide association scan of bovine tuberculosis susceptibility in Holstein-Friesian dairy cattle. PLoS One 7:e30545PubMedCentralPubMed Finlay EK, Berry DP, Wickham B, Gormley EP, Bradley DG (2012) A genome wide association scan of bovine tuberculosis susceptibility in Holstein-Friesian dairy cattle. PLoS One 7:e30545PubMedCentralPubMed
Metadata
Title
Taurine: the appeal of a safe amino acid for skeletal muscle disorders
Authors
Annamaria De Luca
Sabata Pierno
Diana Conte Camerino
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0610-1

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.