Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2017

Open Access 01-12-2017 | Review

Targeting psychologic stress signaling pathways in Alzheimer’s disease

Authors: Hunter S. Futch, Cara L. Croft, Van Q. Truong, Eric G. Krause, Todd E. Golde

Published in: Molecular Neurodegeneration | Issue 1/2017

Login to get access

Abstract

Alzheimer’s Disease (AD) is the most prevalent progressive neurodegenerative disease; to date, no AD therapy has proven effective in delaying or preventing the disease course. In the search for novel therapeutic targets in AD, it has been shown that increased chronic psychologic stress is associated with AD risk. Subsequently, biologic pathways underlying psychologic stress have been identified and shown to be able to exacerbate AD relevant pathologies. In this review, we summarize the literature relevant to the association between psychologic stress and AD, focusing on studies investigating the effects of stress paradigms on transgenic mouse models of Amyloid-β (Aβ) and tau pathologies. In recent years, a substantial amount of research has been done investigating a key stress-response mediator, corticotropin-releasing hormone (CRH), and its interactions with AD relevant processes. We highlight attempts to target the CRH signaling pathway as a therapeutic intervention in these transgenic mouse models and discuss how targeting this pathway is a promising avenue for further investigation.
Literature
1.
go back to reference 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016;12:459–509. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016;12:459–509.
2.
go back to reference Aguzzi A, O’Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov. 2010;9:237–48.CrossRefPubMed Aguzzi A, O’Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov. 2010;9:237–48.CrossRefPubMed
5.
go back to reference Iacono D, Volkman I, Nennesmo I, Pedersen NL, Fratiglioni L, Johansson B, et al. Neuropathologic assessment of dementia markers in identical and fraternal twins: AD and non-AD pathologies in older twins. Brain Pathol. 2014;24:317–33.CrossRefPubMedPubMedCentral Iacono D, Volkman I, Nennesmo I, Pedersen NL, Fratiglioni L, Johansson B, et al. Neuropathologic assessment of dementia markers in identical and fraternal twins: AD and non-AD pathologies in older twins. Brain Pathol. 2014;24:317–33.CrossRefPubMedPubMedCentral
7.
go back to reference Kaup AR, Byers AL, Falvey C, Simonsick EM, Satterfield S, Ayonayon HN, et al. Trajectories of depressive symptoms in older adults and risk of dementia. JAMA Psychiatry. 2016;73:525.CrossRefPubMedPubMedCentral Kaup AR, Byers AL, Falvey C, Simonsick EM, Satterfield S, Ayonayon HN, et al. Trajectories of depressive symptoms in older adults and risk of dementia. JAMA Psychiatry. 2016;73:525.CrossRefPubMedPubMedCentral
8.
go back to reference Wilson RS, Evans DA, Bienias JL, De Leon CM, Schneider JA, Bennett DA. Proneness to psychological distress is associated with risk of Alzheimer’s disease. Neurology. 2003;61:1479–85.CrossRefPubMed Wilson RS, Evans DA, Bienias JL, De Leon CM, Schneider JA, Bennett DA. Proneness to psychological distress is associated with risk of Alzheimer’s disease. Neurology. 2003;61:1479–85.CrossRefPubMed
9.
go back to reference Johansson L, Guo X, Duberstein PR, Hällström T, Waern M, Östling S, et al. Midlife personality and risk of Alzheimer disease and distress a 38-year follow-up. Neurology. 2014;83:1538–44.CrossRefPubMed Johansson L, Guo X, Duberstein PR, Hällström T, Waern M, Östling S, et al. Midlife personality and risk of Alzheimer disease and distress a 38-year follow-up. Neurology. 2014;83:1538–44.CrossRefPubMed
10.
go back to reference Xu W, Tan L, Wang H-F, Jiang T, Tan M-S, Tan L, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry. 2015;jnnp-2015-310548. Xu W, Tan L, Wang H-F, Jiang T, Tan M-S, Tan L, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry. 2015;jnnp-2015-310548.
11.
go back to reference Andel R, Crowe M, Hahn EA, Mortimer JA, Pedersen NL, Fratiglioni L, et al. Work-related stress may increase the risk of vascular dementia. J Am Geriatr Soc. 2012;60:60–7.CrossRefPubMed Andel R, Crowe M, Hahn EA, Mortimer JA, Pedersen NL, Fratiglioni L, et al. Work-related stress may increase the risk of vascular dementia. J Am Geriatr Soc. 2012;60:60–7.CrossRefPubMed
12.
go back to reference Tsolaki M, Papaliagkas V, Kounti F, Messini C, Boziki M, Anogianakis G, et al. Severely stressful events and dementia: a study of an elderly Greek demented population. Psychiatry Res. 2010;176:51–4.CrossRefPubMed Tsolaki M, Papaliagkas V, Kounti F, Messini C, Boziki M, Anogianakis G, et al. Severely stressful events and dementia: a study of an elderly Greek demented population. Psychiatry Res. 2010;176:51–4.CrossRefPubMed
13.
go back to reference Bangen KJ, Clark AL, Werhane M, Edmonds EC, Nation DA, Evangelista N, et al. Cortical amyloid burden differences across empirically-derived mild cognitive impairment subtypes and interaction with APOE ɛ4 genotype. Brandt J, editor. J. Alzheimers Dis. 2016;52:849–61.CrossRef Bangen KJ, Clark AL, Werhane M, Edmonds EC, Nation DA, Evangelista N, et al. Cortical amyloid burden differences across empirically-derived mild cognitive impairment subtypes and interaction with APOE ɛ4 genotype. Brandt J, editor. J. Alzheimers Dis. 2016;52:849–61.CrossRef
14.
go back to reference Loring DW, Goldstein FC, Chen C, Drane DL, Lah JJ, Zhao L, et al. False-positive error rates for reliable digit span and auditory verbal learning test performance validity measures in amnestic mild cognitive impairment and early Alzheimer disease. Arch Clin Neuropsychol. 2016;31:313–31.CrossRefPubMedPubMedCentral Loring DW, Goldstein FC, Chen C, Drane DL, Lah JJ, Zhao L, et al. False-positive error rates for reliable digit span and auditory verbal learning test performance validity measures in amnestic mild cognitive impairment and early Alzheimer disease. Arch Clin Neuropsychol. 2016;31:313–31.CrossRefPubMedPubMedCentral
15.
go back to reference Dautzenberg FM, Hauger RL. The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci. 2002;23:71–7.CrossRefPubMed Dautzenberg FM, Hauger RL. The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci. 2002;23:71–7.CrossRefPubMed
16.
go back to reference Hauger RL, Risbrough V, Oakley RH, Olivares-Reyes JA, Dautzenberg FM. Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann N Y Acad Sci. 2009;1179:120–43.CrossRefPubMedPubMedCentral Hauger RL, Risbrough V, Oakley RH, Olivares-Reyes JA, Dautzenberg FM. Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann N Y Acad Sci. 2009;1179:120–43.CrossRefPubMedPubMedCentral
17.
go back to reference Hauger RL, Risbrough V, Brauns O, Dautzenberg FM. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol. Disord.-Drug targets former. Curr. Drug targets-CNS Neurol. Disord. 2006;5:453–79. Hauger RL, Risbrough V, Brauns O, Dautzenberg FM. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol. Disord.-Drug targets former. Curr. Drug targets-CNS Neurol. Disord. 2006;5:453–79.
18.
go back to reference Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. In: Terjung R, editor. Compr. Physiol. [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2016 [cited 2016 Sep 30]. p. 603–21. Available from: http://doi.wiley.com/10.1002/cphy.c150015. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. In: Terjung R, editor. Compr. Physiol. [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2016 [cited 2016 Sep 30]. p. 603–21. Available from: http://​doi.​wiley.​com/​10.​1002/​cphy.​c150015.
19.
go back to reference Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305:325–7.CrossRefPubMed Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305:325–7.CrossRefPubMed
20.
go back to reference Potter E, Sutton S, Donaldson C, Chen R, Perrin M, Lewis K, et al. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci U S A. 1994;91:8777–81.CrossRefPubMedPubMedCentral Potter E, Sutton S, Donaldson C, Chen R, Perrin M, Lewis K, et al. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci U S A. 1994;91:8777–81.CrossRefPubMedPubMedCentral
21.
go back to reference Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci. 1995;15:6340–50.PubMed Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci. 1995;15:6340–50.PubMed
22.
go back to reference Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol. 2000;428:191–212.CrossRefPubMed Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol. 2000;428:191–212.CrossRefPubMed
23.
go back to reference Refojo D, Schweizer M, Kuehne C, Ehrenberg S, Thoeringer C, Vogl AM, et al. Glutamatergic and dopaminergic neurons mediate Anxiogenic and anxiolytic effects of CRHR1. Science. 2011;333:1903–7.CrossRefPubMed Refojo D, Schweizer M, Kuehne C, Ehrenberg S, Thoeringer C, Vogl AM, et al. Glutamatergic and dopaminergic neurons mediate Anxiogenic and anxiolytic effects of CRHR1. Science. 2011;333:1903–7.CrossRefPubMed
24.
go back to reference Sapolsky RM. Stress and the brain: individual variability and the inverted-U. Nat Neurosci. 2015;18:1344–6.CrossRefPubMed Sapolsky RM. Stress and the brain: individual variability and the inverted-U. Nat Neurosci. 2015;18:1344–6.CrossRefPubMed
25.
go back to reference Bamberger CM, Bamberger A. The peripheral CRH/urocortin system. Ann N Y Acad Sci. 2000;917:290–6.CrossRefPubMed Bamberger CM, Bamberger A. The peripheral CRH/urocortin system. Ann N Y Acad Sci. 2000;917:290–6.CrossRefPubMed
26.
go back to reference Inda C, dos Santos Claro PA, Bonfiglio JJ, Senin SA, Maccarrone G, Turck CW, et al. Different cAMP sources are critically involved in G protein–coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181–95.CrossRefPubMedPubMedCentral Inda C, dos Santos Claro PA, Bonfiglio JJ, Senin SA, Maccarrone G, Turck CW, et al. Different cAMP sources are critically involved in G protein–coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181–95.CrossRefPubMedPubMedCentral
28.
go back to reference Hoare SRJ, Sullivan SK, Schwarz DA, Ling N, Vale WW, Crowe PD, et al. Ligand affinity for amino-terminal and Juxtamembrane domains of the Corticotropin releasing factor type I receptor: Regulation by G-protein and Nonpeptide antagonists. Biochemistry (Mosc). 2004;43:3996–4011.CrossRef Hoare SRJ, Sullivan SK, Schwarz DA, Ling N, Vale WW, Crowe PD, et al. Ligand affinity for amino-terminal and Juxtamembrane domains of the Corticotropin releasing factor type I receptor: Regulation by G-protein and Nonpeptide antagonists. Biochemistry (Mosc). 2004;43:3996–4011.CrossRef
29.
go back to reference Höschl C, Hajek T. Hippocampal damage mediated by corticosteroids—a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci. 2001;251:81–8.CrossRef Höschl C, Hajek T. Hippocampal damage mediated by corticosteroids—a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci. 2001;251:81–8.CrossRef
30.
go back to reference Sousa N, Lukoyanov NV, Madeira MD, Almeida OFX, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience. 2000;97:253–66.CrossRefPubMed Sousa N, Lukoyanov NV, Madeira MD, Almeida OFX, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience. 2000;97:253–66.CrossRefPubMed
31.
go back to reference Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.CrossRefPubMed Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.CrossRefPubMed
32.
go back to reference Pardon M-C, Rattray I. What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci Biobehav Rev. 2008;32:1103–20.CrossRefPubMed Pardon M-C, Rattray I. What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci Biobehav Rev. 2008;32:1103–20.CrossRefPubMed
33.
go back to reference Landfield PW, Blalock EM, Chen K-C, Porter NM. A new glucocorticoid hypothesis of brain aging: implications for Alzheimer’s disease. Curr Alzheimer Res. 2007;4:205–12.CrossRefPubMedPubMedCentral Landfield PW, Blalock EM, Chen K-C, Porter NM. A new glucocorticoid hypothesis of brain aging: implications for Alzheimer’s disease. Curr Alzheimer Res. 2007;4:205–12.CrossRefPubMedPubMedCentral
34.
go back to reference Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36:601–7.CrossRefPubMed Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36:601–7.CrossRefPubMed
35.
go back to reference Ennis GE, An Y, Resnick SM, Ferrucci L, O’Brien RJ, Moffat SD. Long-term cortisol measures predict Alzheimer disease risk. Neurology. 2016:10–1212. Ennis GE, An Y, Resnick SM, Ferrucci L, O’Brien RJ, Moffat SD. Long-term cortisol measures predict Alzheimer disease risk. Neurology. 2016:10–1212.
36.
go back to reference Green KN. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2006;26:9047–56.CrossRefPubMed Green KN. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2006;26:9047–56.CrossRefPubMed
37.
go back to reference Catania C, Sotiropoulos I, Silva R, Onofri C, Breen KC, Sousa N, et al. The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry. 2009;14:95–105.CrossRefPubMed Catania C, Sotiropoulos I, Silva R, Onofri C, Breen KC, Sousa N, et al. The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry. 2009;14:95–105.CrossRefPubMed
38.
go back to reference Pinheiro S, Silva J, Mota C, Vaz-Silva J, Veloso A, Pinto V, et al. Tau Mislocation in glucocorticoid-triggered hippocampal pathology. Mol Neurobiol. 2016;53:4745–53.CrossRefPubMed Pinheiro S, Silva J, Mota C, Vaz-Silva J, Veloso A, Pinto V, et al. Tau Mislocation in glucocorticoid-triggered hippocampal pathology. Mol Neurobiol. 2016;53:4745–53.CrossRefPubMed
39.
go back to reference Sotiropoulos I, Catania C, Pinto LG, Silva R, Pollerberg GE, Takashima A, et al. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J Neurosci. 2011;31:7840–7.CrossRefPubMed Sotiropoulos I, Catania C, Pinto LG, Silva R, Pollerberg GE, Takashima A, et al. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J Neurosci. 2011;31:7840–7.CrossRefPubMed
40.
go back to reference Baglietto-Vargas D, Medeiros R, Martinez-Coria H, LaFerla FM, Green KN. Mifepristone alters amyloid precursor protein processing to preclude amyloid Beta and Also reduces tau pathology. Biol Psychiatry. 2013;74:357–66.CrossRefPubMedPubMedCentral Baglietto-Vargas D, Medeiros R, Martinez-Coria H, LaFerla FM, Green KN. Mifepristone alters amyloid precursor protein processing to preclude amyloid Beta and Also reduces tau pathology. Biol Psychiatry. 2013;74:357–66.CrossRefPubMedPubMedCentral
41.
go back to reference Näsman B, Olsson T, Fagerlund M, Eriksson S, Viitanen M, Carlström K. Blunted adrenocorticotropin and increased adrenal steroid response to human corticotropin-releasing hormone in Alzheimer’s disease. Biol Pyschiatry. 1996;39:311–8.CrossRef Näsman B, Olsson T, Fagerlund M, Eriksson S, Viitanen M, Carlström K. Blunted adrenocorticotropin and increased adrenal steroid response to human corticotropin-releasing hormone in Alzheimer’s disease. Biol Pyschiatry. 1996;39:311–8.CrossRef
42.
go back to reference Bernardi F, Lanzone A, Cento RM, Spada RS, Pezzani I, Genazzani AD, et al. Allopregnanolone and dehydroepiandrosterone response to corticotropin-releasing factor in patients suffering from Alzheimer’s disease and vascular dementia. Eur J Endocrinol. 2000;142:466–71.CrossRefPubMed Bernardi F, Lanzone A, Cento RM, Spada RS, Pezzani I, Genazzani AD, et al. Allopregnanolone and dehydroepiandrosterone response to corticotropin-releasing factor in patients suffering from Alzheimer’s disease and vascular dementia. Eur J Endocrinol. 2000;142:466–71.CrossRefPubMed
43.
go back to reference Dong H, Wang S, Zeng Z, Li F, Montalvo-Ortiz J, Tucker C, et al. Effects of corticotrophin-releasing factor receptor 1 antagonists on amyloid-β and behavior in Tg2576 mice. Psychopharmacology. 2014;231:4711–22.CrossRefPubMedPubMedCentral Dong H, Wang S, Zeng Z, Li F, Montalvo-Ortiz J, Tucker C, et al. Effects of corticotrophin-releasing factor receptor 1 antagonists on amyloid-β and behavior in Tg2576 mice. Psychopharmacology. 2014;231:4711–22.CrossRefPubMedPubMedCentral
44.
go back to reference Park H-J, Ran Y, Jung JI, Holmes O, Price AR, Smithson L, et al. The stress response neuropeptide CRF increases amyloid- production by regulating -secretase activity. EMBO J. 2015;34:1674–86.CrossRefPubMedPubMedCentral Park H-J, Ran Y, Jung JI, Holmes O, Price AR, Smithson L, et al. The stress response neuropeptide CRF increases amyloid- production by regulating -secretase activity. EMBO J. 2015;34:1674–86.CrossRefPubMedPubMedCentral
45.
go back to reference Chen Y, Peng Y, Che P, Gannon M, Liu Y, Li L, et al. α 2A adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction. Proc. Natl. Acad. Sci. 2014;111:17296–301. Chen Y, Peng Y, Che P, Gannon M, Liu Y, Li L, et al. α 2A adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction. Proc. Natl. Acad. Sci. 2014;111:17296–301.
46.
go back to reference Thathiah A, Horré K, Snellinx A, Vandewyer E, Huang Y, Ciesielska M, et al. β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer’s disease. Nat. Med. 2012;19:43–9. Thathiah A, Horré K, Snellinx A, Vandewyer E, Huang Y, Ciesielska M, et al. β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer’s disease. Nat. Med. 2012;19:43–9.
47.
go back to reference Kang JE, Cirrito JR, Dong H, Csernsnsky JG, Holtzman DM. Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity. Proc Natl Acad Sci. 2007;104:10673–8.CrossRefPubMedPubMedCentral Kang JE, Cirrito JR, Dong H, Csernsnsky JG, Holtzman DM. Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity. Proc Natl Acad Sci. 2007;104:10673–8.CrossRefPubMedPubMedCentral
48.
go back to reference Dong H, Yuede CM, Yoo H-S, Martin MV, Deal C, Mace AG, et al. Corticosterone and related receptor expression are associated with increased β-amyloid plaques in isolated Tg2576 mice. Neuroscience. 2008;155:154–63.CrossRefPubMedPubMedCentral Dong H, Yuede CM, Yoo H-S, Martin MV, Deal C, Mace AG, et al. Corticosterone and related receptor expression are associated with increased β-amyloid plaques in isolated Tg2576 mice. Neuroscience. 2008;155:154–63.CrossRefPubMedPubMedCentral
49.
go back to reference Dong H, Murphy KM, Meng L, Montalvo-Ortiz J, Zeng Z, Kolber BJ, et al. Corticotrophin releasing factor accelerates neuropathology and cognitive decline in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2012;28:579–92.PubMedPubMedCentral Dong H, Murphy KM, Meng L, Montalvo-Ortiz J, Zeng Z, Kolber BJ, et al. Corticotrophin releasing factor accelerates neuropathology and cognitive decline in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2012;28:579–92.PubMedPubMedCentral
50.
go back to reference Ray B, Gaskins DL, Sajdyk TJ, Spence JP, Fitz SD, Shekhar A, et al. Restraint stress and repeated corticotrophin-releasing factor receptor activation in the amygdala both increase amyloid-β precursor protein and amyloid-β peptide but have divergent effects on brain-derived neurotrophic factor and pre-synaptic proteins in the prefrontal cortex of rats. Neuroscience. 2011;184:139–50.CrossRefPubMedPubMedCentral Ray B, Gaskins DL, Sajdyk TJ, Spence JP, Fitz SD, Shekhar A, et al. Restraint stress and repeated corticotrophin-releasing factor receptor activation in the amygdala both increase amyloid-β precursor protein and amyloid-β peptide but have divergent effects on brain-derived neurotrophic factor and pre-synaptic proteins in the prefrontal cortex of rats. Neuroscience. 2011;184:139–50.CrossRefPubMedPubMedCentral
51.
go back to reference Campbell SN, Zhang C, Roe AD, Lee N, Lao KU, Monte L, et al. Impact of CRFR1 ablation on amyloid-β production and accumulation in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2015;45:1175–84.PubMedPubMedCentral Campbell SN, Zhang C, Roe AD, Lee N, Lao KU, Monte L, et al. Impact of CRFR1 ablation on amyloid-β production and accumulation in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2015;45:1175–84.PubMedPubMedCentral
52.
go back to reference Iqbal K, Liu F, Gong C-X. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2015;12:15–27.CrossRefPubMed Iqbal K, Liu F, Gong C-X. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2015;12:15–27.CrossRefPubMed
53.
go back to reference Rothman SM, Herdener N, Frankola KA, Mughal MR, Mattson MP. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Aβ and pTau in a mouse model of Alzheimer’s disease. Brain Res. 2013;1529:200–8.CrossRefPubMedPubMedCentral Rothman SM, Herdener N, Frankola KA, Mughal MR, Mattson MP. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Aβ and pTau in a mouse model of Alzheimer’s disease. Brain Res. 2013;1529:200–8.CrossRefPubMedPubMedCentral
54.
go back to reference Carroll JC, Iba M, Bangasser DA, Valentino RJ, James MJ, Brunden KR, et al. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a Corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of Tauopathy. J Neurosci. 2011;31:14436–49.CrossRefPubMedPubMedCentral Carroll JC, Iba M, Bangasser DA, Valentino RJ, James MJ, Brunden KR, et al. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a Corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of Tauopathy. J Neurosci. 2011;31:14436–49.CrossRefPubMedPubMedCentral
55.
go back to reference Rissman RA, Lee K-F, Vale W, Sawchenko PE. Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation. J Neurosci. 2007;27:6552–62.CrossRefPubMed Rissman RA, Lee K-F, Vale W, Sawchenko PE. Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation. J Neurosci. 2007;27:6552–62.CrossRefPubMed
56.
go back to reference Campbell SN, Zhang C, Monte L, Roe AD, Rice KC, Taché Y, et al. Increased tau phosphorylation and aggregation in the hippocampus of mice overexpressing corticotropin-releasing factor. J Alzheimers Dis. 2015;43:967–76.PubMedPubMedCentral Campbell SN, Zhang C, Monte L, Roe AD, Rice KC, Taché Y, et al. Increased tau phosphorylation and aggregation in the hippocampus of mice overexpressing corticotropin-releasing factor. J Alzheimers Dis. 2015;43:967–76.PubMedPubMedCentral
57.
go back to reference Filipcik P, Novak P, Mravec B, Ondicova K, Krajciova G, Novak M, et al. Tau protein phosphorylation in diverse brain areas of normal and CRH deficient mice: up-Regulation by stress. Cell Mol Neurobiol. 2012;32:837–45.CrossRefPubMed Filipcik P, Novak P, Mravec B, Ondicova K, Krajciova G, Novak M, et al. Tau protein phosphorylation in diverse brain areas of normal and CRH deficient mice: up-Regulation by stress. Cell Mol Neurobiol. 2012;32:837–45.CrossRefPubMed
58.
go back to reference Le MH, Weissmiller AM, Monte L, Lin PH, Hexom TC, Natera O, et al. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport. Ryabinin AE, editor. PLOS ONE. 2016;11:e0147250. Le MH, Weissmiller AM, Monte L, Lin PH, Hexom TC, Natera O, et al. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport. Ryabinin AE, editor. PLOS ONE. 2016;11:e0147250.
59.
go back to reference Rissman RA, Staup MA, Lee AR, Justice NJ, Rice KC, Vale W, et al. Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proc Natl Acad Sci. 2012;109:6277–82.CrossRefPubMedPubMedCentral Rissman RA, Staup MA, Lee AR, Justice NJ, Rice KC, Vale W, et al. Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proc Natl Acad Sci. 2012;109:6277–82.CrossRefPubMedPubMedCentral
60.
go back to reference Kvetnansky R, Novak P, Vargovic P, Lejavova K, Horvathova L, Ondicova K, et al. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress. Stress. 2016;19:395–405.CrossRefPubMed Kvetnansky R, Novak P, Vargovic P, Lejavova K, Horvathova L, Ondicova K, et al. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress. Stress. 2016;19:395–405.CrossRefPubMed
61.
go back to reference Kehne JH, Cain CK. Therapeutic utility of non-peptidic CRF1 receptor antagonists in anxiety, depression, and stress-related disorders: evidence from animal models. Pharmacol Ther. 2010;128:460–87.CrossRefPubMedPubMedCentral Kehne JH, Cain CK. Therapeutic utility of non-peptidic CRF1 receptor antagonists in anxiety, depression, and stress-related disorders: evidence from animal models. Pharmacol Ther. 2010;128:460–87.CrossRefPubMedPubMedCentral
62.
go back to reference Lowery EG, Thiele TE. Pre-clinical evidence that corticotropin-releasing factor (CRF) receptor antagonists are promising targets for pharmacological treatment of alcoholism. CNS Neurol. Disord.-Drug targets former. Curr. Drug targets-CNS Neurol. Disord. 2010;9:77–86. Lowery EG, Thiele TE. Pre-clinical evidence that corticotropin-releasing factor (CRF) receptor antagonists are promising targets for pharmacological treatment of alcoholism. CNS Neurol. Disord.-Drug targets former. Curr. Drug targets-CNS Neurol. Disord. 2010;9:77–86.
63.
go back to reference Kwako LE, Spagnolo PA, Schwandt ML, Thorsell A, George DT, Momenan R, et al. The corticotropin releasing hormone-1 (CRH1) receptor antagonist pexacerfont in alcohol dependence: a randomized controlled experimental medicine study. Neuropsychopharmacology. 2015;40:1053–63.CrossRefPubMed Kwako LE, Spagnolo PA, Schwandt ML, Thorsell A, George DT, Momenan R, et al. The corticotropin releasing hormone-1 (CRH1) receptor antagonist pexacerfont in alcohol dependence: a randomized controlled experimental medicine study. Neuropsychopharmacology. 2015;40:1053–63.CrossRefPubMed
64.
go back to reference Zhang C, Kuo C-C, Moghadam SH, Monte L, Campbell SN, Rice KC, et al. Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer’s disease. Alzheimers Dement. 2016;12:527–37.CrossRefPubMed Zhang C, Kuo C-C, Moghadam SH, Monte L, Campbell SN, Rice KC, et al. Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer’s disease. Alzheimers Dement. 2016;12:527–37.CrossRefPubMed
65.
go back to reference Contoreggi C, Lee MR, Chrousos G. Addiction and corticotropin-releasing hormone type 1 receptor antagonist medications: Antistress drugs as treatments for addiction. Ann N Y Acad Sci. 2013;1282:107–18.CrossRefPubMed Contoreggi C, Lee MR, Chrousos G. Addiction and corticotropin-releasing hormone type 1 receptor antagonist medications: Antistress drugs as treatments for addiction. Ann N Y Acad Sci. 2013;1282:107–18.CrossRefPubMed
67.
go back to reference Réus GZ, Titus SE, Abelaira HM, Freitas SM, Tuon T, Quevedo J, et al. Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci. 2016;158:121–9.CrossRefPubMed Réus GZ, Titus SE, Abelaira HM, Freitas SM, Tuon T, Quevedo J, et al. Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci. 2016;158:121–9.CrossRefPubMed
68.
go back to reference Bao A-M, Meynen G, Swaab DF. The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev. 2008;57:531–53.CrossRefPubMed Bao A-M, Meynen G, Swaab DF. The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev. 2008;57:531–53.CrossRefPubMed
69.
go back to reference Austin KW, Ameringer SW, Cloud LJ. An integrated review of psychological stress in Parkinson’s disease: biological mechanisms and symptom and health outcomes. Park Dis. 2016;2016:1–15.CrossRef Austin KW, Ameringer SW, Cloud LJ. An integrated review of psychological stress in Parkinson’s disease: biological mechanisms and symptom and health outcomes. Park Dis. 2016;2016:1–15.CrossRef
70.
go back to reference Hou G, Tian R, Li J, Yuan T-F. Chronic stress and Parkinson’s disease. CNS Neurosci Ther. 2014;20:1–2.CrossRefPubMed Hou G, Tian R, Li J, Yuan T-F. Chronic stress and Parkinson’s disease. CNS Neurosci Ther. 2014;20:1–2.CrossRefPubMed
71.
go back to reference Smith LK, Jadavji NM, Colwell KL, Katrina Perehudoff S, Metz GA. Stress accelerates neural degeneration and exaggerates motor symptoms in a rat model of Parkinson’s disease. Eur J Neurosci. 2008;27:2133–46.CrossRefPubMedPubMedCentral Smith LK, Jadavji NM, Colwell KL, Katrina Perehudoff S, Metz GA. Stress accelerates neural degeneration and exaggerates motor symptoms in a rat model of Parkinson’s disease. Eur J Neurosci. 2008;27:2133–46.CrossRefPubMedPubMedCentral
72.
go back to reference Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson’s disease. Transl Psychiatry. 2016;6:e733.CrossRefPubMedPubMedCentral Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson’s disease. Transl Psychiatry. 2016;6:e733.CrossRefPubMedPubMedCentral
73.
go back to reference Kibel A, Drenjančević-Perić I. Impact of glucocorticoids and chronic stress on progression of Parkinson’s disease. Med Hypotheses. 2008;71:952–6.CrossRefPubMed Kibel A, Drenjančević-Perić I. Impact of glucocorticoids and chronic stress on progression of Parkinson’s disease. Med Hypotheses. 2008;71:952–6.CrossRefPubMed
74.
go back to reference Wu Q, Yang X, Zhang Y, Zhang L, Feng L. Chronic mild stress accelerates the progression of Parkinson’s disease in A53T α-synuclein transgenic mice. Exp Neurol. 2016;285:61–71.CrossRefPubMed Wu Q, Yang X, Zhang Y, Zhang L, Feng L. Chronic mild stress accelerates the progression of Parkinson’s disease in A53T α-synuclein transgenic mice. Exp Neurol. 2016;285:61–71.CrossRefPubMed
75.
go back to reference Sugama S, Kakinuma Y. Loss of dopaminergic neurons occurs in the ventral tegmental area and hypothalamus of rats following chronic stress: possible pathogenetic loci for depression involved in Parkinson’s disease. Neurosci Res. 2016;111:48–55.CrossRefPubMed Sugama S, Kakinuma Y. Loss of dopaminergic neurons occurs in the ventral tegmental area and hypothalamus of rats following chronic stress: possible pathogenetic loci for depression involved in Parkinson’s disease. Neurosci Res. 2016;111:48–55.CrossRefPubMed
76.
go back to reference Sugama S, Sekiyama K, Kodama T, Takamatsu Y, Takenouchi T, Hashimoto M, et al. Chronic restraint stress triggers dopaminergic and noradrenergic neurodegeneration: possible role of chronic stress in the onset of Parkinson’s disease. Brain Behav Immun. 2016;51:39–46.CrossRefPubMed Sugama S, Sekiyama K, Kodama T, Takamatsu Y, Takenouchi T, Hashimoto M, et al. Chronic restraint stress triggers dopaminergic and noradrenergic neurodegeneration: possible role of chronic stress in the onset of Parkinson’s disease. Brain Behav Immun. 2016;51:39–46.CrossRefPubMed
77.
go back to reference Mo C, Renoir T, Pang TYC, Hannan AJ. Short-term memory acquisition in female Huntington’s disease mice is vulnerable to acute stress. Behav Brain Res. 2013;253:318–22.CrossRefPubMed Mo C, Renoir T, Pang TYC, Hannan AJ. Short-term memory acquisition in female Huntington’s disease mice is vulnerable to acute stress. Behav Brain Res. 2013;253:318–22.CrossRefPubMed
78.
go back to reference Mo C, Renoir T, Hannan AJ. Effects of chronic stress on the onset and progression of Huntington’s disease in transgenic mice. Neurobiol Dis. 2014;71:81–94.CrossRefPubMed Mo C, Renoir T, Hannan AJ. Effects of chronic stress on the onset and progression of Huntington’s disease in transgenic mice. Neurobiol Dis. 2014;71:81–94.CrossRefPubMed
80.
go back to reference Stuller KA, Jarrett B, DeVries AC. Stress and social isolation increase vulnerability to stroke. Exp Neurol. 2012;233:33–9.CrossRefPubMed Stuller KA, Jarrett B, DeVries AC. Stress and social isolation increase vulnerability to stroke. Exp Neurol. 2012;233:33–9.CrossRefPubMed
81.
go back to reference van der Linde RM, Dening T, Stephan BCM, Prina AM, Evans E, Brayne C. Longitudinal course of behavioural and psychological symptoms of dementia: systematic review. Br J Psychiatry. 2016;209:366–77.CrossRefPubMedPubMedCentral van der Linde RM, Dening T, Stephan BCM, Prina AM, Evans E, Brayne C. Longitudinal course of behavioural and psychological symptoms of dementia: systematic review. Br J Psychiatry. 2016;209:366–77.CrossRefPubMedPubMedCentral
82.
go back to reference Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99–102.CrossRefPubMed Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99–102.CrossRefPubMed
83.
go back to reference Lee K-W, Kim J-B, Seo J-S, Kim T-K, Im J-Y, Baek I-S, et al. Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. J Neurochem. 2009;108:165–75.CrossRefPubMed Lee K-W, Kim J-B, Seo J-S, Kim T-K, Im J-Y, Baek I-S, et al. Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. J Neurochem. 2009;108:165–75.CrossRefPubMed
84.
go back to reference Huang H-J, Liang K-C, Ke H-C, Chang Y-Y, Hsieh-Li HM. Long-term social isolation exacerbates the impairment of spatial working memory in APP/PS1 transgenic mice. Brain Res. 2011;1371:150–60.CrossRefPubMed Huang H-J, Liang K-C, Ke H-C, Chang Y-Y, Hsieh-Li HM. Long-term social isolation exacerbates the impairment of spatial working memory in APP/PS1 transgenic mice. Brain Res. 2011;1371:150–60.CrossRefPubMed
85.
go back to reference Borchelt DR, Ratovitski T, Van Lare J, Lee MK, Gonzales V, Jenkins NA, et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron. 1997;19:939–45.CrossRefPubMed Borchelt DR, Ratovitski T, Van Lare J, Lee MK, Gonzales V, Jenkins NA, et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron. 1997;19:939–45.CrossRefPubMed
86.
go back to reference Rothman SM, Herdener N, Camandola S, Texel SJ, Mughal MR, Cong W-N, et al. 3xTgAD mice exhibit altered behavior and elevated Aβ after chronic mild social stress. Neurobiol. Aging. 2012;33:830.e1–830.e12. Rothman SM, Herdener N, Camandola S, Texel SJ, Mughal MR, Cong W-N, et al. 3xTgAD mice exhibit altered behavior and elevated Aβ after chronic mild social stress. Neurobiol. Aging. 2012;33:830.e1–830.e12.
87.
go back to reference Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron. 2003;39:409–21.CrossRefPubMed Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron. 2003;39:409–21.CrossRefPubMed
88.
go back to reference Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci. 1994;14:2579–84.PubMed Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci. 1994;14:2579–84.PubMed
89.
go back to reference Baglietto-Vargas D, Chen Y, Suh D, Ager RR, Rodriguez-Ortiz CJ, Medeiros R, et al. Short-term modern life-like stress exacerbates Aβ-pathology and synapse loss in 3xTg-AD mice. J Neurochem. 2015;134:915–26.CrossRefPubMedPubMedCentral Baglietto-Vargas D, Chen Y, Suh D, Ager RR, Rodriguez-Ortiz CJ, Medeiros R, et al. Short-term modern life-like stress exacerbates Aβ-pathology and synapse loss in 3xTg-AD mice. J Neurochem. 2015;134:915–26.CrossRefPubMedPubMedCentral
90.
go back to reference Justice NJ, Huang L, Tian J-B, Cole A, Pruski M, Hunt AJ, et al. Posttraumatic stress disorder-like induction elevates -amyloid levels, which directly activates Corticotropin-releasing factor neurons to exacerbate stress responses. J Neurosci. 2015;35:2612–23.CrossRefPubMedPubMedCentral Justice NJ, Huang L, Tian J-B, Cole A, Pruski M, Hunt AJ, et al. Posttraumatic stress disorder-like induction elevates -amyloid levels, which directly activates Corticotropin-releasing factor neurons to exacerbate stress responses. J Neurosci. 2015;35:2612–23.CrossRefPubMedPubMedCentral
91.
go back to reference Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S Tauopathy mouse model. Neuron. 2007;53:337–51.CrossRefPubMed Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S Tauopathy mouse model. Neuron. 2007;53:337–51.CrossRefPubMed
Metadata
Title
Targeting psychologic stress signaling pathways in Alzheimer’s disease
Authors
Hunter S. Futch
Cara L. Croft
Van Q. Truong
Eric G. Krause
Todd E. Golde
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2017
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-017-0190-z

Other articles of this Issue 1/2017

Molecular Neurodegeneration 1/2017 Go to the issue