Skip to main content
Top

Open Access 26-04-2024 | Melanoma | Research

Targeting Dectin-1 and or VISTA enhances anti-tumor immunity in melanoma but not colorectal cancer model

Authors: Siavash Mashhouri, Amirhossein Rahmati, Ako Azimi, Roy A. Fava, Ismail Hassan Ismail, John Walker, Shokrollah Elahi

Published in: Cellular Oncology

Login to get access

Abstract

Purpose

Acquired resistance to immune checkpoint blockers (ICBs) is a major barrier in cancer treatment, emphasizing the need for innovative strategies. Dectin-1 (gene Clec7a) is a C-type lectin receptor best known for its ability to recognize β-glucan-rich structures in fungal cell walls. While Dectin-1 is expressed in myeloid cells and tumor cells, its significance in cancer remains the subject of controversy.

Methods

Using Celc7a-/- mice and curdlan administration to stimulate Dectin-1 signaling, we explored its impact. VISTA KO mice were employed to assess VISTA’s role, and bulk RNAseq analyzed curdlan effects on neutrophils.

Results

Our findings reveal myeloid cells as primary Dectin-1 expressing cells in the tumor microenvironment (TME), displaying an activated phenotype. Strong Dectin-1 co-expression/co-localization with VISTA and PD-L1 in TME myeloid cells was observed. While Dectin-1 deletion lacked protective effects, curdlan stimulation significantly curtailed B16-F10 tumor progression. RNAseq and pathway analyses supported curdlan’s role in triggering a cascade of events leading to increased production of pro-inflammatory mediators, potentially resulting in the recruitment and activation of immune cells. Moreover, we identified a heterogeneous subset of Dectin-1+ effector T cells in the TME. Similar to mice, human myeloid cells are the prominent cells expressing Dectin-1 in cancer patients.

Conclusion

Our study proposes Dectin-1 as a potential adjunctive target with ICBs, orchestrating a comprehensive engagement of innate and adaptive immune responses in melanoma. This innovative approach holds promise for overcoming acquired resistance to ICBs in cancer treatment, offering avenues for further exploration and development.
Appendix
Available only for authorised users
Literature
3.
go back to reference F. Veglia, E. Sanseviero, D.I. Gabrilovich, Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21(8), 485–498 (2021)PubMedPubMedCentralCrossRef F. Veglia, E. Sanseviero, D.I. Gabrilovich, Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21(8), 485–498 (2021)PubMedPubMedCentralCrossRef
4.
go back to reference Y. Yang, C. Li, T. Liu, X. Dai, A.V. Bazhin, Myeloid-derived suppressor cells in tumors: From mechanisms to antigen specificity and microenvironmental regulation. Front. Immunol. 11, 1371 (2020)PubMedPubMedCentralCrossRef Y. Yang, C. Li, T. Liu, X. Dai, A.V. Bazhin, Myeloid-derived suppressor cells in tumors: From mechanisms to antigen specificity and microenvironmental regulation. Front. Immunol. 11, 1371 (2020)PubMedPubMedCentralCrossRef
6.
go back to reference Y. Lin, J. Xu, H. Lan, Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12(1), 76 (2019)PubMedPubMedCentralCrossRef Y. Lin, J. Xu, H. Lan, Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12(1), 76 (2019)PubMedPubMedCentralCrossRef
7.
go back to reference Y.-C. Chuang, J.-C. Tseng, L.-R. Huang, C.-M. Huang, C.-Y.F. Huang, T.-H. Chuang, Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front. Immunol. 11, 1075 (2020)PubMedPubMedCentralCrossRef Y.-C. Chuang, J.-C. Tseng, L.-R. Huang, C.-M. Huang, C.-Y.F. Huang, T.-H. Chuang, Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front. Immunol. 11, 1075 (2020)PubMedPubMedCentralCrossRef
8.
9.
go back to reference T. Shekarian, S. Valsesia-Wittmann, J. Brody, M.C. Michallet, S. Depil, C. Caux, et al., Pattern recognition receptors: Immune targets to enhance cancer immunotherapy. Ann. Oncol. 28(8), 1756–1766 (2017)PubMedCrossRef T. Shekarian, S. Valsesia-Wittmann, J. Brody, M.C. Michallet, S. Depil, C. Caux, et al., Pattern recognition receptors: Immune targets to enhance cancer immunotherapy. Ann. Oncol. 28(8), 1756–1766 (2017)PubMedCrossRef
10.
go back to reference G.P. Amarante-Mendes, S. Adjemian, L.M. Branco, L.C. Zanetti, R. Weinlich, K.R. Bortoluci, Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 9, 2379 (2018)PubMedPubMedCentralCrossRef G.P. Amarante-Mendes, S. Adjemian, L.M. Branco, L.C. Zanetti, R. Weinlich, K.R. Bortoluci, Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 9, 2379 (2018)PubMedPubMedCentralCrossRef
12.
go back to reference B. Huang, J. Zhao, J.C. Unkeless, Z.H. Feng, H. Xiong, TLR signaling by tumor and immune cells: a double-edged sword. Oncogene. 27(2), 218–224 (2008)PubMedCrossRef B. Huang, J. Zhao, J.C. Unkeless, Z.H. Feng, H. Xiong, TLR signaling by tumor and immune cells: a double-edged sword. Oncogene. 27(2), 218–224 (2008)PubMedCrossRef
13.
go back to reference Z. Urban-Wojciuk, M.M. Khan, B.L. Oyler, R. Fåhraeus, N. Marek-Trzonkowska, A. Nita-Lazar, et al., The role of TLRs in anti-cancer immunity and tumor rejection. Front. Immunol. 10, 2388 (2019)PubMedPubMedCentralCrossRef Z. Urban-Wojciuk, M.M. Khan, B.L. Oyler, R. Fåhraeus, N. Marek-Trzonkowska, A. Nita-Lazar, et al., The role of TLRs in anti-cancer immunity and tumor rejection. Front. Immunol. 10, 2388 (2019)PubMedPubMedCentralCrossRef
14.
go back to reference E. Chiffoleau, C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front. Immunol. 9, 227 (2018)PubMedPubMedCentralCrossRef E. Chiffoleau, C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front. Immunol. 9, 227 (2018)PubMedPubMedCentralCrossRef
15.
16.
go back to reference F. Osorio, C. Reis E Sousa, Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 34(5), 651–664 (2011)PubMedCrossRef F. Osorio, C. Reis E Sousa, Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 34(5), 651–664 (2011)PubMedCrossRef
17.
go back to reference D. Daley, V.R. Mani, N. Mohan, N. Akkad, A. Ochi, D.W. Heindel, et al., Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 23(5), 556–567 (2017)PubMedPubMedCentralCrossRef D. Daley, V.R. Mani, N. Mohan, N. Akkad, A. Ochi, D.W. Heindel, et al., Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 23(5), 556–567 (2017)PubMedPubMedCentralCrossRef
18.
go back to reference R. Kiyotake, M. Oh-Hora, E. Ishikawa, T. Miyamoto, T. Ishibashi, S. Yamasaki, Human mincle binds to cholesterol crystals and triggers innate immune responses. J. Biol. Chem. 290(42), 25322–25332 (2015)PubMedPubMedCentralCrossRef R. Kiyotake, M. Oh-Hora, E. Ishikawa, T. Miyamoto, T. Ishibashi, S. Yamasaki, Human mincle binds to cholesterol crystals and triggers innate immune responses. J. Biol. Chem. 290(42), 25322–25332 (2015)PubMedPubMedCentralCrossRef
19.
go back to reference S. Mayer, M.-K. Raulf, B. Lepenies, C-type lectins: Their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 147(2), 223–237 (2016)PubMedCrossRef S. Mayer, M.-K. Raulf, B. Lepenies, C-type lectins: Their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 147(2), 223–237 (2016)PubMedCrossRef
21.
go back to reference S.E.M. Heinsbroek, P.R. Taylor, M. Rosas, J.A. Willment, D.L. Williams, S. Gordon, et al., Expression of functionally different Dectin-1 isoforms by murine macrophages. J. Immunol. 176(9), 5513–5518 (2006)PubMedCrossRef S.E.M. Heinsbroek, P.R. Taylor, M. Rosas, J.A. Willment, D.L. Williams, S. Gordon, et al., Expression of functionally different Dectin-1 isoforms by murine macrophages. J. Immunol. 176(9), 5513–5518 (2006)PubMedCrossRef
22.
go back to reference J.A. Willment, A.S.J. Marshall, D.M. Reid, D.L. Williams, S.Y.C. Wong, S. Gordon, et al., The human?-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur. J. Immunol. 35(5), 1539–1547 (2005)PubMedCrossRef J.A. Willment, A.S.J. Marshall, D.M. Reid, D.L. Williams, S.Y.C. Wong, S. Gordon, et al., The human?-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur. J. Immunol. 35(5), 1539–1547 (2005)PubMedCrossRef
23.
24.
go back to reference E.L. Adams, P.J. Rice, B. Graves, H.E. Ensley, H. Yu, G.D. Brown, et al., Differential high-affinity interaction of Dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J. Pharmacol. Exp. Ther. 325(1), 115–123 (2008)PubMedCrossRef E.L. Adams, P.J. Rice, B. Graves, H.E. Ensley, H. Yu, G.D. Brown, et al., Differential high-affinity interaction of Dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J. Pharmacol. Exp. Ther. 325(1), 115–123 (2008)PubMedCrossRef
25.
go back to reference S. Chiba, H. Ikushima, H. Ueki, H. Yanai, Y. Kimura, S. Hangai, et al., Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife 3, e04177–e (2014)PubMedPubMedCentralCrossRef S. Chiba, H. Ikushima, H. Ueki, H. Yanai, Y. Kimura, S. Hangai, et al., Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife 3, e04177–e (2014)PubMedPubMedCentralCrossRef
26.
go back to reference M. Liu, F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, et al., Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype. J. Immunol. 195(10), 5055–5065 (2015)PubMedCrossRef M. Liu, F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, et al., Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype. J. Immunol. 195(10), 5055–5065 (2015)PubMedCrossRef
27.
go back to reference P. Allavena, M. Chieppa, G. Bianchi, G. Solinas, M. Fabbri, G. Laskarin, et al., Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin. Dev. Immunol. 2010, 547179 (2010)PubMedCrossRef P. Allavena, M. Chieppa, G. Bianchi, G. Solinas, M. Fabbri, G. Laskarin, et al., Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin. Dev. Immunol. 2010, 547179 (2010)PubMedCrossRef
28.
go back to reference K. Bode, F. Bujupi, C. Link, T. Hein, S. Zimmermann, D. Peiris, et al., Dectin-1 binding to annexins on apoptotic cells induces peripheral immune tolerance via NADPH oxidase-2. Cell Rep. 29(13), 4435–46.e9 (2019)PubMedCrossRef K. Bode, F. Bujupi, C. Link, T. Hein, S. Zimmermann, D. Peiris, et al., Dectin-1 binding to annexins on apoptotic cells induces peripheral immune tolerance via NADPH oxidase-2. Cell Rep. 29(13), 4435–46.e9 (2019)PubMedCrossRef
29.
go back to reference S. Shahbaz, N. Bozorgmehr, P. Koleva, A. Namdar, J. Jovel, R.A. Fava, et al., CD71+VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF-beta. PLoS Biol. 16(12), e2006649 (2018)PubMedPubMedCentralCrossRef S. Shahbaz, N. Bozorgmehr, P. Koleva, A. Namdar, J. Jovel, R.A. Fava, et al., CD71+VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF-beta. PLoS Biol. 16(12), e2006649 (2018)PubMedPubMedCentralCrossRef
30.
go back to reference N. Bozorgmehr, I. Okoye, S. Mashhouri, J. Lu, P. Koleva, J. Walker, et al., CD71(+) erythroid cells suppress T-cell effector functions and predict immunotherapy outcomes in patients with virus-associated solid tumors. J. Immunother. Cancer 11(5) (2023) N. Bozorgmehr, I. Okoye, S. Mashhouri, J. Lu, P. Koleva, J. Walker, et al., CD71(+) erythroid cells suppress T-cell effector functions and predict immunotherapy outcomes in patients with virus-associated solid tumors. J. Immunother. Cancer 11(5) (2023)
31.
go back to reference N. Bozorgmehr, I. Okoye, O. Oyegbami, L. Xu, A. Fontaine, N. Cox-Kennett, et al., Expanded antigen-experienced CD160(+)CD8(+)effector T cells exhibit impaired effector functions in chronic lymphocytic leukemia. J. Immunother. Cancer 9(4) (2021) N. Bozorgmehr, I. Okoye, O. Oyegbami, L. Xu, A. Fontaine, N. Cox-Kennett, et al., Expanded antigen-experienced CD160(+)CD8(+)effector T cells exhibit impaired effector functions in chronic lymphocytic leukemia. J. Immunother. Cancer 9(4) (2021)
32.
go back to reference S.R. Rosenbaum, M. Knecht, M. Mollaee, Z. Zhong, D.A. Erkes, P.A. McCue, et al., FOXD3 regulates VISTA expression in melanoma. Cell Rep. 30(2), 510–24.e6 (2020)PubMedPubMedCentralCrossRef S.R. Rosenbaum, M. Knecht, M. Mollaee, Z. Zhong, D.A. Erkes, P.A. McCue, et al., FOXD3 regulates VISTA expression in melanoma. Cell Rep. 30(2), 510–24.e6 (2020)PubMedPubMedCentralCrossRef
33.
go back to reference S. Mashhouri, P. Koleva, M. Huynh, I. Okoye, S. Shahbaz, S. Elahi, Sex matters: Physiological abundance of immuno-regulatory CD71+ erythroid cells impair immunity in females. Front. Immunol. 12, 705197 (2021)PubMedPubMedCentralCrossRef S. Mashhouri, P. Koleva, M. Huynh, I. Okoye, S. Shahbaz, S. Elahi, Sex matters: Physiological abundance of immuno-regulatory CD71+ erythroid cells impair immunity in females. Front. Immunol. 12, 705197 (2021)PubMedPubMedCentralCrossRef
34.
go back to reference M. Motamedi, S. Shahbaz, L. Fu, G. Dunsmore, L. Xu, R. Harrington, et al., Galectin-9 expression defines a subpopulation of NK cells with impaired cytotoxic effector molecules but enhanced IFN-gamma production, dichotomous to TIGIT, in HIV-1 infection. Immunohorizons 3(11), 531–546 (2019)PubMedCrossRef M. Motamedi, S. Shahbaz, L. Fu, G. Dunsmore, L. Xu, R. Harrington, et al., Galectin-9 expression defines a subpopulation of NK cells with impaired cytotoxic effector molecules but enhanced IFN-gamma production, dichotomous to TIGIT, in HIV-1 infection. Immunohorizons 3(11), 531–546 (2019)PubMedCrossRef
35.
go back to reference I. Okoye, L. Xu, M. Motamedi, P. Parashar, J.W. Walker, S. Elahi, Galectin-9 expression defines exhausted T cells and impaired cytotoxic NK cells in patients with virus-associated solid tumors. J. Immuno. Ther. Cancer 8(2), e001849 (2020)CrossRef I. Okoye, L. Xu, M. Motamedi, P. Parashar, J.W. Walker, S. Elahi, Galectin-9 expression defines exhausted T cells and impaired cytotoxic NK cells in patients with virus-associated solid tumors. J. Immuno. Ther. Cancer 8(2), e001849 (2020)CrossRef
36.
go back to reference S. Shahbaz, J. Jovel, S. Elahi, Differential transcriptional and functional properties of regulatory T cells in HIV-infected individuals on antiretroviral therapy and long-term non-progressors. Clin. Transl. Immunol. 10(5), e1289 (2021)CrossRef S. Shahbaz, J. Jovel, S. Elahi, Differential transcriptional and functional properties of regulatory T cells in HIV-infected individuals on antiretroviral therapy and long-term non-progressors. Clin. Transl. Immunol. 10(5), e1289 (2021)CrossRef
37.
go back to reference S. Shahbaz, I. Okoye, G. Blevins, S. Elahi, Elevated ATP via enhanced miRNA-30b, 30c, and 30e downregulates the expression of CD73 in CD8+ T cells of HIV-infected individuals. PLoS Pathog. 18(3), e1010378 (2022)PubMedPubMedCentralCrossRef S. Shahbaz, I. Okoye, G. Blevins, S. Elahi, Elevated ATP via enhanced miRNA-30b, 30c, and 30e downregulates the expression of CD73 in CD8+ T cells of HIV-infected individuals. PLoS Pathog. 18(3), e1010378 (2022)PubMedPubMedCentralCrossRef
38.
go back to reference G. Dunsmore, N. Bozorgmehr, C. Delyea, P. Koleva, A. Namdar, S. Elahi, Erythroid suppressor cells compromise neonatal immune response against bordetella pertussis. J. Iimmunol. 199(6), 2081–2095 (2017)CrossRef G. Dunsmore, N. Bozorgmehr, C. Delyea, P. Koleva, A. Namdar, S. Elahi, Erythroid suppressor cells compromise neonatal immune response against bordetella pertussis. J. Iimmunol. 199(6), 2081–2095 (2017)CrossRef
39.
go back to reference N.L. Bray, H. Pimentel, P. Melsted, L. Pachter, Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527 (2016)PubMedCrossRef N.L. Bray, H. Pimentel, P. Melsted, L. Pachter, Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527 (2016)PubMedCrossRef
40.
41.
go back to reference Y. Zhao, X. Chu, J. Chen, Y. Wang, S. Gao, Y. Jiang, et al., Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat. Commun. 7, 12368 (2016)PubMedPubMedCentralCrossRef Y. Zhao, X. Chu, J. Chen, Y. Wang, S. Gao, Y. Jiang, et al., Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat. Commun. 7, 12368 (2016)PubMedPubMedCentralCrossRef
42.
go back to reference Y. Xia, L. Liu, Q. Bai, J. Wang, W. Xi, Y. Qu, et al., Dectin-1 predicts adverse postoperative prognosis of patients with clear cell renal cell carcinoma. Sci. Rep. 6, 32657 (2016)PubMedPubMedCentralCrossRef Y. Xia, L. Liu, Q. Bai, J. Wang, W. Xi, Y. Qu, et al., Dectin-1 predicts adverse postoperative prognosis of patients with clear cell renal cell carcinoma. Sci. Rep. 6, 32657 (2016)PubMedPubMedCentralCrossRef
43.
go back to reference P.R. Taylor, G.D. Brown, D.M. Reid, J.A. Willment, L. Martinez-Pomares, S. Gordon, et al., The β-glucan receptor, Dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169(7), 3876–3882 (2002)PubMedCrossRef P.R. Taylor, G.D. Brown, D.M. Reid, J.A. Willment, L. Martinez-Pomares, S. Gordon, et al., The β-glucan receptor, Dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169(7), 3876–3882 (2002)PubMedCrossRef
44.
go back to reference W. Fan, X. Yang, F. Huang, X. Tong, L. Zhu, S. Wang, Identification of CD206 as a potential biomarker of cancer stem-like cells and therapeutic agent in liver cancer. Oncol. Lett. 18(3), 3218–3226 (2019)PubMedPubMedCentral W. Fan, X. Yang, F. Huang, X. Tong, L. Zhu, S. Wang, Identification of CD206 as a potential biomarker of cancer stem-like cells and therapeutic agent in liver cancer. Oncol. Lett. 18(3), 3218–3226 (2019)PubMedPubMedCentral
45.
go back to reference F. Maibach, H. Sadozai, S.M. Seyed Jafari, R.E. Hunger, M. Schenk, Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front. Immunol. 11, 2105 (2020)PubMedPubMedCentralCrossRef F. Maibach, H. Sadozai, S.M. Seyed Jafari, R.E. Hunger, M. Schenk, Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front. Immunol. 11, 2105 (2020)PubMedPubMedCentralCrossRef
46.
go back to reference M. Peled, A. Onn, R.S. Herbst, Tumor-infiltrating lymphocytes—location for prognostic evaluation. Clin. Cancer Res. 25(5), 1449–1451 (2019)PubMedCrossRef M. Peled, A. Onn, R.S. Herbst, Tumor-infiltrating lymphocytes—location for prognostic evaluation. Clin. Cancer Res. 25(5), 1449–1451 (2019)PubMedCrossRef
47.
go back to reference E.K. Holl, V.N. Frazier, K. Landa, G.M. Beasley, E.S. Hwang, S.K. Nair, Examining peripheral and tumor cellular immunome in patients with cancer. Front. Immunol. 10, 1767 (2019)PubMedPubMedCentralCrossRef E.K. Holl, V.N. Frazier, K. Landa, G.M. Beasley, E.S. Hwang, S.K. Nair, Examining peripheral and tumor cellular immunome in patients with cancer. Front. Immunol. 10, 1767 (2019)PubMedPubMedCentralCrossRef
48.
go back to reference A. Schnell, C. Schmidl, W. Herr, P.J. Siska, The peripheral and intratumoral immune cell landscape in cancer patients: A proxy for tumor biology and a tool for outcome prediction. Biomedicines. 6(1), 25 (2018)PubMedPubMedCentralCrossRef A. Schnell, C. Schmidl, W. Herr, P.J. Siska, The peripheral and intratumoral immune cell landscape in cancer patients: A proxy for tumor biology and a tool for outcome prediction. Biomedicines. 6(1), 25 (2018)PubMedPubMedCentralCrossRef
49.
go back to reference B. Martin, K. Hirota, D.J. Cua, B. Stockinger, M. Veldhoen, Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31(2), 321–330 (2009)PubMedCrossRef B. Martin, K. Hirota, D.J. Cua, B. Stockinger, M. Veldhoen, Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31(2), 321–330 (2009)PubMedCrossRef
50.
go back to reference J. Liu, Y. Yuan, W. Chen, J. Putra, A.A. Suriawinata, A.D. Schenk, et al., Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc. Natl. Acad. Sci. U. S. A. 112(21), 6682–6687 (2015)PubMedPubMedCentralCrossRef J. Liu, Y. Yuan, W. Chen, J. Putra, A.A. Suriawinata, A.D. Schenk, et al., Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc. Natl. Acad. Sci. U. S. A. 112(21), 6682–6687 (2015)PubMedPubMedCentralCrossRef
51.
go back to reference L. Wang, I. Le Mercier, J. Putra, W. Chen, J. Liu, A.D. Schenk, et al., Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc. Natl. Acad. Sci. U. S. A. 111(41), 14846–14851 (2014)PubMedPubMedCentralCrossRef L. Wang, I. Le Mercier, J. Putra, W. Chen, J. Liu, A.D. Schenk, et al., Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc. Natl. Acad. Sci. U. S. A. 111(41), 14846–14851 (2014)PubMedPubMedCentralCrossRef
52.
go back to reference H.S. Kim, K.H. Park, H.K. Lee, J.S. Kim, Y.G. Kim, J.H. Lee, et al., Curdlan activates dendritic cells through dectin-1 and toll-like receptor 4 signaling. Int. Immunopharmacol. 39, 71–78 (2016)PubMedCrossRef H.S. Kim, K.H. Park, H.K. Lee, J.S. Kim, Y.G. Kim, J.H. Lee, et al., Curdlan activates dendritic cells through dectin-1 and toll-like receptor 4 signaling. Int. Immunopharmacol. 39, 71–78 (2016)PubMedCrossRef
53.
go back to reference W.Q. Li, J. Yan, Y. Yu, Geometrical reorganization of Dectin-1 and TLR2 on single phagosomes alters their synergistic immune signaling. Proc. Natl. Acad. Sci. U. S. A. 116(50), 25106–25114 (2019)PubMedPubMedCentralCrossRef W.Q. Li, J. Yan, Y. Yu, Geometrical reorganization of Dectin-1 and TLR2 on single phagosomes alters their synergistic immune signaling. Proc. Natl. Acad. Sci. U. S. A. 116(50), 25106–25114 (2019)PubMedPubMedCentralCrossRef
54.
go back to reference M.E. Deerhake, K. Danzaki, M. Inoue, E.D. Cardakli, T. Nonaka, N. Aggarwal, et al., Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity 54(3), 484–98 e8 (2021)PubMedPubMedCentralCrossRef M.E. Deerhake, K. Danzaki, M. Inoue, E.D. Cardakli, T. Nonaka, N. Aggarwal, et al., Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity 54(3), 484–98 e8 (2021)PubMedPubMedCentralCrossRef
55.
go back to reference T. Liang, J.R. Chen, G.Y. Xu, Z.D. Zhang, J. Xue, H.P. Zeng, et al., STAT1 and CXCL10 involve in M1 macrophage polarization that may affect osteolysis and bone remodeling in extrapulmonary tuberculosis. Gene 809 (2022) T. Liang, J.R. Chen, G.Y. Xu, Z.D. Zhang, J. Xue, H.P. Zeng, et al., STAT1 and CXCL10 involve in M1 macrophage polarization that may affect osteolysis and bone remodeling in extrapulmonary tuberculosis. Gene 809 (2022)
56.
go back to reference M. Rapp, M.W.M. Wintergerst, W.G. Kunz, V.K. Vetter, M.M.L. Knott, D. Lisowski, et al., CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J. Exp. Med. 216(5), 1170–1181 (2019)PubMedPubMedCentralCrossRef M. Rapp, M.W.M. Wintergerst, W.G. Kunz, V.K. Vetter, M.M.L. Knott, D. Lisowski, et al., CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J. Exp. Med. 216(5), 1170–1181 (2019)PubMedPubMedCentralCrossRef
57.
go back to reference A. Garcia-Diaz, D.S. Shin, B.H. Moreno, J. Saco, H. Escuin-Ordinas, G.A. Rodriguez, et al., Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19(6), 1189–1201 (2017)PubMedPubMedCentralCrossRef A. Garcia-Diaz, D.S. Shin, B.H. Moreno, J. Saco, H. Escuin-Ordinas, G.A. Rodriguez, et al., Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19(6), 1189–1201 (2017)PubMedPubMedCentralCrossRef
58.
go back to reference P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, et al., Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 41(1), 14–20 (2014)PubMedPubMedCentralCrossRef P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, et al., Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 41(1), 14–20 (2014)PubMedPubMedCentralCrossRef
59.
go back to reference Y.L. Latour, A.P. Gobert, K.T. Wilson, The role of polyamines in the regulation of macrophage polarization and function. Amino Acids. 52(2), 151–160 (2020)PubMedCrossRef Y.L. Latour, A.P. Gobert, K.T. Wilson, The role of polyamines in the regulation of macrophage polarization and function. Amino Acids. 52(2), 151–160 (2020)PubMedCrossRef
60.
go back to reference C. Tang, H. Sun, M. Kadoki, W. Han, X. Ye, Y. Makusheva, et al., Blocking Dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. Nat. Commun. 14(1), 1493 (2023)PubMedPubMedCentralCrossRef C. Tang, H. Sun, M. Kadoki, W. Han, X. Ye, Y. Makusheva, et al., Blocking Dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. Nat. Commun. 14(1), 1493 (2023)PubMedPubMedCentralCrossRef
61.
go back to reference S. Shalapour, J. Font-Burgada, G. Di Caro, Z. Zhong, E. Sanchez-Lopez, D. Dhar, et al., Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521(7550), 94–98 (2015)PubMedPubMedCentralCrossRef S. Shalapour, J. Font-Burgada, G. Di Caro, Z. Zhong, E. Sanchez-Lopez, D. Dhar, et al., Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521(7550), 94–98 (2015)PubMedPubMedCentralCrossRef
62.
63.
go back to reference N. Bozorgmehr, H. Syed, S. Mashhouri, J. Walker, S. Elahi, Transcriptomic profiling of peripheral blood cells in HPV-associated carcinoma patients receiving combined valproic acid and avelumab. Mol. Oncol. (2023) N. Bozorgmehr, H. Syed, S. Mashhouri, J. Walker, S. Elahi, Transcriptomic profiling of peripheral blood cells in HPV-associated carcinoma patients receiving combined valproic acid and avelumab. Mol. Oncol. (2023)
64.
go back to reference L. Corrales, V. Matson, B. Flood, S. Spranger, T.F. Gajewski, Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 27(1), 96–108 (2017)PubMedCrossRef L. Corrales, V. Matson, B. Flood, S. Spranger, T.F. Gajewski, Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 27(1), 96–108 (2017)PubMedCrossRef
65.
go back to reference O. Demaria, S. Cornen, M. Daëron, Y. Morel, R. Medzhitov, E. Vivier, Harnessing innate immunity in cancer therapy. Nature. 574(7776), 45–56 (2019)PubMedCrossRef O. Demaria, S. Cornen, M. Daëron, Y. Morel, R. Medzhitov, E. Vivier, Harnessing innate immunity in cancer therapy. Nature. 574(7776), 45–56 (2019)PubMedCrossRef
66.
go back to reference J.N. Kather, N. Halama, Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br. J. Cancer. 120(9), 871–882 (2019)PubMedPubMedCentralCrossRef J.N. Kather, N. Halama, Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br. J. Cancer. 120(9), 871–882 (2019)PubMedPubMedCentralCrossRef
67.
go back to reference M.G. Lechner, S.S. Karimi, K. Barry-Holson, T.E. Angell, K.A. Murphy, C.H. Church, et al., Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. J. Immunother. 36(9), 477–489 (2013)PubMedPubMedCentralCrossRef M.G. Lechner, S.S. Karimi, K. Barry-Holson, T.E. Angell, K.A. Murphy, C.H. Church, et al., Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. J. Immunother. 36(9), 477–489 (2013)PubMedPubMedCentralCrossRef
68.
go back to reference S.H. Albeituni, C. Ding, M. Liu, X. Hu, F. Luo, G. Kloecker, et al., Yeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J. Immunol. 196(5), 2167–2180 (2016)PubMedCrossRef S.H. Albeituni, C. Ding, M. Liu, X. Hu, F. Luo, G. Kloecker, et al., Yeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J. Immunol. 196(5), 2167–2180 (2016)PubMedCrossRef
69.
go back to reference G.D. Brown, Dectin-1: A signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6(1), 33–43 (2005)CrossRef G.D. Brown, Dectin-1: A signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6(1), 33–43 (2005)CrossRef
70.
go back to reference J.A. Willment, -H.-H. Lin, D.M. Reid, P.R. Taylor, D.L. Williams, S.Y.C. Wong, et al., Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. J. Immunol. 171(11), 6297 (2003)CrossRef J.A. Willment, -H.-H. Lin, D.M. Reid, P.R. Taylor, D.L. Williams, S.Y.C. Wong, et al., Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. J. Immunol. 171(11), 6297 (2003)CrossRef
71.
go back to reference E. Beyranvand Nejad, T.C. van der Sluis, S. van Duikeren, H. Yagita, G.M. Janssen, P.A. van Veelen, et al., Tumor eradication by cisplatin is sustained by CD80/86-mediated costimulation of CD8+ T cells. Cancer Res. 76(20), 6017–6029 (2016)PubMedCrossRef E. Beyranvand Nejad, T.C. van der Sluis, S. van Duikeren, H. Yagita, G.M. Janssen, P.A. van Veelen, et al., Tumor eradication by cisplatin is sustained by CD80/86-mediated costimulation of CD8+ T cells. Cancer Res. 76(20), 6017–6029 (2016)PubMedCrossRef
72.
go back to reference O.A.W. Haabeth, T.R. Blake, C.J. McKinlay, A.A. Tveita, A. Sallets, R.M. Waymouth, et al., Local delivery of Ox40l, Cd80, and Cd86 mRNA kindles global anticancer immunity. Cancer Res. 79(7), 1624–1634 (2019)PubMedPubMedCentralCrossRef O.A.W. Haabeth, T.R. Blake, C.J. McKinlay, A.A. Tveita, A. Sallets, R.M. Waymouth, et al., Local delivery of Ox40l, Cd80, and Cd86 mRNA kindles global anticancer immunity. Cancer Res. 79(7), 1624–1634 (2019)PubMedPubMedCentralCrossRef
73.
go back to reference J.J. Miret, P. Kirschmeier, S. Koyama, M. Zhu, Y.Y. Li, Y. Naito, et al., Suppression of myeloid cell arginase activity leads to therapeutic response in a NSCLC mouse model by activating anti-tumor immunity. J. Immunother. Cancer 7(1), 32 (2019)PubMedPubMedCentralCrossRef J.J. Miret, P. Kirschmeier, S. Koyama, M. Zhu, Y.Y. Li, Y. Naito, et al., Suppression of myeloid cell arginase activity leads to therapeutic response in a NSCLC mouse model by activating anti-tumor immunity. J. Immunother. Cancer 7(1), 32 (2019)PubMedPubMedCentralCrossRef
74.
75.
go back to reference S. Elahi, J.M. Ertelt, J.M. Kinder, T.T. Jiang, X. Zhang, L. Xin, et al., Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504(7478), 158–162 (2013)PubMedPubMedCentralCrossRef S. Elahi, J.M. Ertelt, J.M. Kinder, T.T. Jiang, X. Zhang, L. Xin, et al., Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504(7478), 158–162 (2013)PubMedPubMedCentralCrossRef
76.
go back to reference S. Elahi, S. Mashhouri, Immunological consequences of extramedullary erythropoiesis: Immunoregulatory functions of CD71(+) erythroid cells. Haematologica. 105(6), 1478–1483 (2020)PubMedPubMedCentralCrossRef S. Elahi, S. Mashhouri, Immunological consequences of extramedullary erythropoiesis: Immunoregulatory functions of CD71(+) erythroid cells. Haematologica. 105(6), 1478–1483 (2020)PubMedPubMedCentralCrossRef
78.
go back to reference C. Bogdan, M. Röllinghoff, A. Diefenbach, Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12(1), 64–76 (2000)PubMedCrossRef C. Bogdan, M. Röllinghoff, A. Diefenbach, Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12(1), 64–76 (2000)PubMedCrossRef
79.
go back to reference Ö. Canli, A.M. Nicolas, J. Gupta, F. Finkelmeier, O. Goncharova, M. Pesic, et al., Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32(6), 869–83.e5 (2017)PubMedCrossRef Ö. Canli, A.M. Nicolas, J. Gupta, F. Finkelmeier, O. Goncharova, M. Pesic, et al., Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32(6), 869–83.e5 (2017)PubMedCrossRef
80.
go back to reference J.D. Lambeth, A.S. Neish, Nox enzymes and new thinking on reactive oxygen: A double-edged sword revisited. Ann. Rev. Pathol. Mech. Dis. 9(1), 119–145 (2014)CrossRef J.D. Lambeth, A.S. Neish, Nox enzymes and new thinking on reactive oxygen: A double-edged sword revisited. Ann. Rev. Pathol. Mech. Dis. 9(1), 119–145 (2014)CrossRef
81.
go back to reference R. Coriat, W. Marut, M. Leconte, L.B. Ba, A. Vienne, C. Chéreau, et al., The organotelluride catalyst LAB027 prevents colon cancer growth in the mice. Cell Death Dis. 2(8), e191–e (2011)PubMedPubMedCentralCrossRef R. Coriat, W. Marut, M. Leconte, L.B. Ba, A. Vienne, C. Chéreau, et al., The organotelluride catalyst LAB027 prevents colon cancer growth in the mice. Cell Death Dis. 2(8), e191–e (2011)PubMedPubMedCentralCrossRef
82.
go back to reference R.M. Brand, P. Wipf, A. Durham, M.W. Epperly, J.S. Greenberger, L.D. Falo Jr, Targeting mitochondrial oxidative stress to mitigate UV-induced skin damage. Front. Pharmacol. 9, 920 (2018)PubMedPubMedCentralCrossRef R.M. Brand, P. Wipf, A. Durham, M.W. Epperly, J.S. Greenberger, L.D. Falo Jr, Targeting mitochondrial oxidative stress to mitigate UV-induced skin damage. Front. Pharmacol. 9, 920 (2018)PubMedPubMedCentralCrossRef
83.
go back to reference A.K.-W. Tse, Y.-J. Chen, F. X-q, T. Su, T. Li, H. Guo, et al., Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKβ inhibition. Redox Biol. 11, 562–576 (2017)PubMedPubMedCentralCrossRef A.K.-W. Tse, Y.-J. Chen, F. X-q, T. Su, T. Li, H. Guo, et al., Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKβ inhibition. Redox Biol. 11, 562–576 (2017)PubMedPubMedCentralCrossRef
84.
go back to reference H.-T. Wang, B. Choi, T. M-s, Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts. Proc. Natl. Acad. Sci. U. S. A. 107(27), 12180–12185 (2010)PubMedPubMedCentralCrossRef H.-T. Wang, B. Choi, T. M-s, Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts. Proc. Natl. Acad. Sci. U. S. A. 107(27), 12180–12185 (2010)PubMedPubMedCentralCrossRef
85.
go back to reference I.S. Okoye, M. Houghton, L. Tyrrell, K. Barakat, S. Elahi, Coinhibitory receptor expression and immune checkpoint blockade: Maintaining a balance in CD8(+) T cell responses to chronic viral infections and cancer. Front. Immunol. 8, 1215 (2017)PubMedPubMedCentralCrossRef I.S. Okoye, M. Houghton, L. Tyrrell, K. Barakat, S. Elahi, Coinhibitory receptor expression and immune checkpoint blockade: Maintaining a balance in CD8(+) T cell responses to chronic viral infections and cancer. Front. Immunol. 8, 1215 (2017)PubMedPubMedCentralCrossRef
86.
go back to reference S. Elahi, W.L. Dinges, N. Lejarcegui, K.J. Laing, A.C. Collier, D.M. Koelle, et al., Protective HIV-specific CD8+ T cells evade Treg cell suppression. Nature Med. 17(8), 989–995 (2011)PubMedCrossRef S. Elahi, W.L. Dinges, N. Lejarcegui, K.J. Laing, A.C. Collier, D.M. Koelle, et al., Protective HIV-specific CD8+ T cells evade Treg cell suppression. Nature Med. 17(8), 989–995 (2011)PubMedCrossRef
87.
go back to reference S. Elahi, S. Shahbaz, S. Houston, Selective upregulation of CTLA-4 on CD8+ T cells restricted by HLA-B*35Px renders them to an exhausted phenotype in HIV-1 infection. PLoS Pathogens. 16(8), e1008696–e (2020)PubMedPubMedCentralCrossRef S. Elahi, S. Shahbaz, S. Houston, Selective upregulation of CTLA-4 on CD8+ T cells restricted by HLA-B*35Px renders them to an exhausted phenotype in HIV-1 infection. PLoS Pathogens. 16(8), e1008696–e (2020)PubMedPubMedCentralCrossRef
88.
go back to reference S. Shahbaz, G. Dunsmore, P. Koleva, L. Xu, S. Houston, S. Elahi, Galectin-9 and VISTA expression define terminally exhausted T cells in HIV-1 infection. J. Immunol. 204(9), 2474–2491 (2020)PubMedCrossRef S. Shahbaz, G. Dunsmore, P. Koleva, L. Xu, S. Houston, S. Elahi, Galectin-9 and VISTA expression define terminally exhausted T cells in HIV-1 infection. J. Immunol. 204(9), 2474–2491 (2020)PubMedCrossRef
89.
go back to reference S. Shahbaz, L. Xu, W. Sligl, M. Osman, N. Bozorgmehr, S. Mashhouri, et al., The quality of SARS-CoV-2–specific T cell functions differs in patients with mild/moderate versus severe disease, and T cells expressing coinhibitory receptors are highly activated. J. Immunol. 207(4), 1099–1111 (2021)PubMedCrossRef S. Shahbaz, L. Xu, W. Sligl, M. Osman, N. Bozorgmehr, S. Mashhouri, et al., The quality of SARS-CoV-2–specific T cell functions differs in patients with mild/moderate versus severe disease, and T cells expressing coinhibitory receptors are highly activated. J. Immunol. 207(4), 1099–1111 (2021)PubMedCrossRef
90.
go back to reference R. Yang, L. Sun, L. C-f, Y.-H. Wang, J. Yao, H. Li, et al., Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 12(1), 832 (2021)PubMedPubMedCentralCrossRef R. Yang, L. Sun, L. C-f, Y.-H. Wang, J. Yao, H. Li, et al., Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 12(1), 832 (2021)PubMedPubMedCentralCrossRef
91.
go back to reference I. Le Mercier, W. Chen, J.L. Lines, M. Day, J. Li, P. Sergent, et al., VISTA regulates the development of protective antitumor immunity. Cancer Res. 74(7), 1933–1944 (2014)PubMedCrossRef I. Le Mercier, W. Chen, J.L. Lines, M. Day, J. Li, P. Sergent, et al., VISTA regulates the development of protective antitumor immunity. Cancer Res. 74(7), 1933–1944 (2014)PubMedCrossRef
92.
go back to reference N. Mehta, S. Maddineni, I.I. Mathews, R. Andres Parra Sperberg, P.-S. Huang, J.R. Cochran, Structure and functional binding epitope of V-domain Ig suppressor of T cell activation. Cell Rep. 28(10), 2509–16.e5 (2019)PubMedCrossRef N. Mehta, S. Maddineni, I.I. Mathews, R. Andres Parra Sperberg, P.-S. Huang, J.R. Cochran, Structure and functional binding epitope of V-domain Ig suppressor of T cell activation. Cell Rep. 28(10), 2509–16.e5 (2019)PubMedCrossRef
93.
94.
go back to reference J. Deng, J. Li, A. Sarde, J.L. Lines, Y.-C. Lee, D.C. Qian, et al., Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Immunol. Res. 7(7), 1079–1090 (2019)PubMedPubMedCentralCrossRef J. Deng, J. Li, A. Sarde, J.L. Lines, Y.-C. Lee, D.C. Qian, et al., Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Immunol. Res. 7(7), 1079–1090 (2019)PubMedPubMedCentralCrossRef
95.
go back to reference J.L. Lines, E. Pantazi, J. Mak, L.F. Sempere, L. Wang, S. O’Connell, et al., VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 74(7), 1924–1932 (2014)PubMedPubMedCentralCrossRef J.L. Lines, E. Pantazi, J. Mak, L.F. Sempere, L. Wang, S. O’Connell, et al., VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 74(7), 1924–1932 (2014)PubMedPubMedCentralCrossRef
96.
go back to reference L. Wu, -W.-W. Deng, C.-F. Huang, B. L-L, Y. G-T, L. Mao, et al., Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunol. Immunother. 66(5), 627–636 (2017)PubMedCrossRef L. Wu, -W.-W. Deng, C.-F. Huang, B. L-L, Y. G-T, L. Mao, et al., Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunol. Immunother. 66(5), 627–636 (2017)PubMedCrossRef
97.
go back to reference W. Xu, J. Dong, Y. Zheng, J. Zhou, Y. Yuan, H.M. Ta, et al., Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol. Res. 7(9), 1497–1510 (2019)PubMedPubMedCentralCrossRef W. Xu, J. Dong, Y. Zheng, J. Zhou, Y. Yuan, H.M. Ta, et al., Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol. Res. 7(9), 1497–1510 (2019)PubMedPubMedCentralCrossRef
98.
go back to reference H. Huang, G.R. Ostroff, C.K. Lee, S. Agarwal, S. Ram, P.A. Rice, et al., Relative contributions of dectin-1 and complement to immune responses to particulate β-glucans. J. Immunol. 189(1), 312–317 (2012)PubMedCrossRef H. Huang, G.R. Ostroff, C.K. Lee, S. Agarwal, S. Ram, P.A. Rice, et al., Relative contributions of dectin-1 and complement to immune responses to particulate β-glucans. J. Immunol. 189(1), 312–317 (2012)PubMedCrossRef
99.
go back to reference X. Qiu, A.S.H. Chan, A.B. Jonas, T. Kangas, N.R. Ottoson, J.R. Graff, et al., Imprime PGG, a yeast β-glucan PAMP elicits a coordinated immune response in combination with anti-PD1 antibody. J. Immunol. 196(1_Supplement), 214.16 (2016)CrossRef X. Qiu, A.S.H. Chan, A.B. Jonas, T. Kangas, N.R. Ottoson, J.R. Graff, et al., Imprime PGG, a yeast β-glucan PAMP elicits a coordinated immune response in combination with anti-PD1 antibody. J. Immunol. 196(1_Supplement), 214.16 (2016)CrossRef
100.
go back to reference M. Zhang, J.A. Kim, A.Y.-C. Huang, Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles. Front. Immunol. 9, 341 (2018)PubMedPubMedCentralCrossRef M. Zhang, J.A. Kim, A.Y.-C. Huang, Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles. Front. Immunol. 9, 341 (2018)PubMedPubMedCentralCrossRef
101.
go back to reference J.M. Zaretsky, A. Garcia-Diaz, D.S. Shin, H. Escuin-Ordinas, W. Hugo, S. Hu-Lieskovan, et al., Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375(9), 819–829 (2016)PubMedPubMedCentralCrossRef J.M. Zaretsky, A. Garcia-Diaz, D.S. Shin, H. Escuin-Ordinas, W. Hugo, S. Hu-Lieskovan, et al., Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375(9), 819–829 (2016)PubMedPubMedCentralCrossRef
102.
go back to reference K.D. Moynihan, C.F. Opel, G.L. Szeto, A. Tzeng, E.F. Zhu, J.M. Engreitz, et al., Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22(12), 1402–1410 (2016)PubMedPubMedCentralCrossRef K.D. Moynihan, C.F. Opel, G.L. Szeto, A. Tzeng, E.F. Zhu, J.M. Engreitz, et al., Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22(12), 1402–1410 (2016)PubMedPubMedCentralCrossRef
Metadata
Title
Targeting Dectin-1 and or VISTA enhances anti-tumor immunity in melanoma but not colorectal cancer model
Authors
Siavash Mashhouri
Amirhossein Rahmati
Ako Azimi
Roy A. Fava
Ismail Hassan Ismail
John Walker
Shokrollah Elahi
Publication date
26-04-2024
Publisher
Springer Netherlands
Keywords
Melanoma
Melanoma
Published in
Cellular Oncology
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-024-00950-w
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine