Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2024

Open Access 01-12-2024 | Research

Targeting cancer stem cell OXPHOS with tailored ruthenium complexes as a new anti-cancer strategy

Authors: Sonia Alcalá, Lara Villarino, Laura Ruiz-Cañas, José R. Couceiro, Miguel Martínez-Calvo, Adrián Palencia-Campos, Diego Navarro, Pablo Cabezas-Sainz, Iker Rodriguez-Arabaolaza, Alfonso Cordero-Barreal, Lucia Trilla-Fuertes, Juan A. Rubiolo, Sandra Batres-Ramos, Mireia Vallespinos, Cristina González-Páramos, Jéssica Rodríguez, Angelo Gámez-Pozo, Juan Ángel Fresno Vara, Sara Fra Fernández, Amparo Benito Berlinches, Nicolás Moreno-Mata, Ana María Torres Redondo, Alfredo Carrato, Patrick C. Hermann, Laura Sánchez, Susana Torrente, Miguel Ángel Fernández-Moreno, José L. Mascareñas, Bruno Sainz Jr.

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Background

Previous studies by our group have shown that oxidative phosphorylation (OXPHOS) is the main pathway by which pancreatic cancer stem cells (CSCs) meet their energetic requirements; therefore, OXPHOS represents an Achille’s heel of these highly tumorigenic cells. Unfortunately, therapies that target OXPHOS in CSCs are lacking.

Methods

The safety and anti-CSC activity of a ruthenium complex featuring bipyridine and terpyridine ligands and one coordination labile position (Ru1) were evaluated across primary pancreatic cancer cultures and in vivo, using 8 patient-derived xenografts (PDXs). RNAseq analysis followed by mitochondria-specific molecular assays were used to determine the mechanism of action.

Results

We show that Ru1 is capable of inhibiting CSC OXPHOS function in vitro, and more importantly, it presents excellent anti-cancer activity, with low toxicity, across a large panel of human pancreatic PDXs, as well as in colorectal cancer and osteosarcoma PDXs. Mechanistic studies suggest that this activity stems from Ru1 binding to the D-loop region of the mitochondrial DNA of CSCs, inhibiting OXPHOS complex-associated transcription, leading to reduced mitochondrial oxygen consumption, membrane potential, and ATP production, all of which are necessary for CSCs, which heavily depend on mitochondrial respiration.

Conclusions

Overall, the coordination complex Ru1 represents not only an exciting new anti-cancer agent, but also a molecular tool to dissect the role of OXPHOS in CSCs. Results indicating that the compound is safe, non-toxic and highly effective in vivo are extremely exciting, and have allowed us to uncover unprecedented mechanistic possibilities to fight different cancer types based on targeting CSC OXPHOS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gasch C, Ffrench B, O’Leary JJ, Gallagher MF. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention. Mol Cancer. 2017;16(1):43.PubMedPubMedCentralCrossRef Gasch C, Ffrench B, O’Leary JJ, Gallagher MF. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention. Mol Cancer. 2017;16(1):43.PubMedPubMedCentralCrossRef
2.
go back to reference Hermann PC, Sainz B Jr. Pancreatic cancer stem cells: a state or an entity? Semin Cancer Biol. 2018;53:223–31.PubMedCrossRef Hermann PC, Sainz B Jr. Pancreatic cancer stem cells: a state or an entity? Semin Cancer Biol. 2018;53:223–31.PubMedCrossRef
5.
go back to reference Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell. 2019;24(1):25–40.PubMedCrossRef Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell. 2019;24(1):25–40.PubMedCrossRef
6.
go back to reference Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013;34(6):732–40.PubMedPubMedCentralCrossRef Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013;34(6):732–40.PubMedPubMedCentralCrossRef
8.
go back to reference Valle S, Martin-Hijano L, Alcala S, Alonso-Nocelo M, Sainz B, Jr. The Ever-Evolving Concept of the Cancer Stem Cell in Pancreatic Cancer. Cancers (Basel) 2018;10(2):33. Valle S, Martin-Hijano L, Alcala S, Alonso-Nocelo M, Sainz B, Jr. The Ever-Evolving Concept of the Cancer Stem Cell in Pancreatic Cancer. Cancers (Basel) 2018;10(2):33.
9.
go back to reference Sancho P, Alcala S, Usachov V, Hermann PC, Sainz B Jr. The ever-changing landscape of pancreatic cancer stem cells. Pancreatology. 2016;16(14):489–96.PubMedCrossRef Sancho P, Alcala S, Usachov V, Hermann PC, Sainz B Jr. The ever-changing landscape of pancreatic cancer stem cells. Pancreatology. 2016;16(14):489–96.PubMedCrossRef
10.
go back to reference Alcala S, Sancho P, Martinelli P, Navarro D, Pedrero C, Martin-Hijano L, et al. ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity. Nat Commun. 2020;11(1):2682.PubMedPubMedCentralCrossRef Alcala S, Sancho P, Martinelli P, Navarro D, Pedrero C, Martin-Hijano L, et al. ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity. Nat Commun. 2020;11(1):2682.PubMedPubMedCentralCrossRef
11.
go back to reference Zagorac S, Alcala S, Fernandez Bayon G, Bou Kheir T, Schoenhals M, Gonzalez-Neira A, et al. DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the miR-17-92 cluster. Cancer Res. 2016;76(15):4546–58.PubMedPubMedCentralCrossRef Zagorac S, Alcala S, Fernandez Bayon G, Bou Kheir T, Schoenhals M, Gonzalez-Neira A, et al. DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the miR-17-92 cluster. Cancer Res. 2016;76(15):4546–58.PubMedPubMedCentralCrossRef
12.
go back to reference Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, et al. MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22(4):590–605.PubMedCrossRef Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, et al. MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22(4):590–605.PubMedCrossRef
13.
go back to reference Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A. 2011;108(38):16062–7.PubMedPubMedCentralCrossRef Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A. 2011;108(38):16062–7.PubMedPubMedCentralCrossRef
14.
go back to reference Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF. Cytometric assessment of mitochondria using fluorescent probes. Cytometry A. 2011;79(6):405–25.PubMedCrossRef Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF. Cytometric assessment of mitochondria using fluorescent probes. Cytometry A. 2011;79(6):405–25.PubMedCrossRef
15.
go back to reference Rodriguez J, Mosquera J, Couceiro JR, Vazquez ME, Mascarenas JL. Ruthenation of Non-stacked Guanines in DNA G-Quadruplex Structures: Enhancement of c-MYC Expression. Angew Chem Int Ed Engl. 2016;55(50):15615–8.PubMedPubMedCentralCrossRef Rodriguez J, Mosquera J, Couceiro JR, Vazquez ME, Mascarenas JL. Ruthenation of Non-stacked Guanines in DNA G-Quadruplex Structures: Enhancement of c-MYC Expression. Angew Chem Int Ed Engl. 2016;55(50):15615–8.PubMedPubMedCentralCrossRef
16.
go back to reference Martinez-Calvo M, Guerrini L, Rodriguez J, Alvarez-Puebla RA, Mascarenas JL. Surface-enhanced Raman scattering detection of nucleic acids exhibiting sterically accessible guanines using ruthenium-polypyridyl reagents. J Phys Chem Lett. 2020;11(17):7218–23.PubMedCrossRef Martinez-Calvo M, Guerrini L, Rodriguez J, Alvarez-Puebla RA, Mascarenas JL. Surface-enhanced Raman scattering detection of nucleic acids exhibiting sterically accessible guanines using ruthenium-polypyridyl reagents. J Phys Chem Lett. 2020;11(17):7218–23.PubMedCrossRef
17.
go back to reference Murat P, Balasubramanian S. Existence and consequences of G-quadruplex structures in DNA. Curr Opin Genet Dev. 2014;25:22–9.PubMedCrossRef Murat P, Balasubramanian S. Existence and consequences of G-quadruplex structures in DNA. Curr Opin Genet Dev. 2014;25:22–9.PubMedCrossRef
18.
go back to reference Falabella M, Kolesar JE, Wallace C, de Jesus D, Sun L, Taguchi YV, et al. G-quadruplex dynamics contribute to regulation of mitochondrial gene expression. Sci Rep. 2019;9(1):5605.PubMedPubMedCentralCrossRef Falabella M, Kolesar JE, Wallace C, de Jesus D, Sun L, Taguchi YV, et al. G-quadruplex dynamics contribute to regulation of mitochondrial gene expression. Sci Rep. 2019;9(1):5605.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Li Y, Wu Q, Yu G, Li L, Zhao X, Huang X, et al. Polypyridyl Ruthenium(II) complex-induced mitochondrial membrane potential dissipation activates DNA damage-mediated apoptosis to inhibit liver cancer. Eur J Med Chem. 2019;164:282–91.PubMedCrossRef Li Y, Wu Q, Yu G, Li L, Zhao X, Huang X, et al. Polypyridyl Ruthenium(II) complex-induced mitochondrial membrane potential dissipation activates DNA damage-mediated apoptosis to inhibit liver cancer. Eur J Med Chem. 2019;164:282–91.PubMedCrossRef
21.
go back to reference Laws K, Bineva-Todd G, Eskandari A, Lu C, O’Reilly N, Suntharalingam K. A Copper(II) phenanthroline metallopeptide that targets and disrupts mitochondrial function in breast cancer stem cells. Angew Chem Int Ed Engl. 2018;57(1):287–91. Laws K, Bineva-Todd G, Eskandari A, Lu C, O’Reilly N, Suntharalingam K. A Copper(II) phenanthroline metallopeptide that targets and disrupts mitochondrial function in breast cancer stem cells. Angew Chem Int Ed Engl. 2018;57(1):287–91.
22.
go back to reference Laws K, Eskandari A, Lu C, Suntharalingam K. Highly Charged, cytotoxic, cyclometalated iridium(III) complexes as cancer stem cell mitochondriotropics. Chemistry. 2018;24(57):15205–10.PubMedCrossRef Laws K, Eskandari A, Lu C, Suntharalingam K. Highly Charged, cytotoxic, cyclometalated iridium(III) complexes as cancer stem cell mitochondriotropics. Chemistry. 2018;24(57):15205–10.PubMedCrossRef
23.
go back to reference Takeuchi KJ, Thompson MS, Pipes DW, Meyer TJ. Redox and spectral properties of monooxo polypyridyl complexes of ruthenium and osmium in aqueous media. Inorg Chem. 1984;23(13):1845–51.CrossRef Takeuchi KJ, Thompson MS, Pipes DW, Meyer TJ. Redox and spectral properties of monooxo polypyridyl complexes of ruthenium and osmium in aqueous media. Inorg Chem. 1984;23(13):1845–51.CrossRef
24.
go back to reference D’Errico G, Alonso-Nocelo M, Vallespinos M, Hermann PC, Alcala S, Garcia CP, et al. Tumor-associated macrophage-secreted 14-3-3zeta signals via AXL to promote pancreatic cancer chemoresistance. Oncogene. 2019;38(27):5469–85. D’Errico G, Alonso-Nocelo M, Vallespinos M, Hermann PC, Alcala S, Garcia CP, et al. Tumor-associated macrophage-secreted 14-3-3zeta signals via AXL to promote pancreatic cancer chemoresistance. Oncogene. 2019;38(27):5469–85.
25.
go back to reference Sanchez MI, Martinez-Costas J, Mascarenas JL, Vazquez ME. MitoBlue: a nontoxic and photostable blue-emitting dye that selectively labels functional mitochondria. ACS Chem Biol. 2014;9(12):2742–7.PubMedPubMedCentralCrossRef Sanchez MI, Martinez-Costas J, Mascarenas JL, Vazquez ME. MitoBlue: a nontoxic and photostable blue-emitting dye that selectively labels functional mitochondria. ACS Chem Biol. 2014;9(12):2742–7.PubMedPubMedCentralCrossRef
26.
go back to reference Sanchez MI, Vida Y, Perez-Inestrosa E, Mascarenas JL, Vazquez ME, Sugiura A, et al. MitoBlue as a tool to analyze the mitochondria-lysosome communication. Scientific reports. 2020;10(1):3528.PubMedPubMedCentralCrossRef Sanchez MI, Vida Y, Perez-Inestrosa E, Mascarenas JL, Vazquez ME, Sugiura A, et al. MitoBlue as a tool to analyze the mitochondria-lysosome communication. Scientific reports. 2020;10(1):3528.PubMedPubMedCentralCrossRef
27.
go back to reference Cabezas-Sainz P, Guerra-Varela J, Carreira MJ, Mariscal J, Roel M, Rubiolo JA, et al. Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool. BMC Cancer. 2018;18(1):3.PubMedPubMedCentralCrossRef Cabezas-Sainz P, Guerra-Varela J, Carreira MJ, Mariscal J, Roel M, Rubiolo JA, et al. Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool. BMC Cancer. 2018;18(1):3.PubMedPubMedCentralCrossRef
28.
go back to reference Butler AA, Kozak LP. A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes. 2010;59(2):323–9.PubMedPubMedCentralCrossRef Butler AA, Kozak LP. A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes. 2010;59(2):323–9.PubMedPubMedCentralCrossRef
29.
go back to reference Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.PubMedCrossRef Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.PubMedCrossRef
30.
go back to reference Graña O, Rubio-Camarillo M, Fdez-Riverola F, Pisano DG, Glez-Peña D. Nextpresso: next generation sequencing expression analysis pipeline. Curr Bioinformatics. 2018;13(6):583–91.CrossRef Graña O, Rubio-Camarillo M, Fdez-Riverola F, Pisano DG, Glez-Peña D. Nextpresso: next generation sequencing expression analysis pipeline. Curr Bioinformatics. 2018;13(6):583–91.CrossRef
31.
go back to reference Abreu G, Edwards D, Labouriau R. High-Dimensional Graphical Model Search with the gRapHD R Package. J Stat Softw. 2010;37:1–18.CrossRef Abreu G, Edwards D, Labouriau R. High-Dimensional Graphical Model Search with the gRapHD R Package. J Stat Softw. 2010;37:1–18.CrossRef
32.
33.
go back to reference Gámez-Pozo A, Berges-Soria J, Arevalillo JM, Nanni P, López-Vacas R, Navarro H, et al. Combined label-free quantitative proteomics and microRNA expression analysis of breast cancer unravel molecular differences with clinical implications. Cancer Res. 2015;75:2243–53.PubMedCrossRef Gámez-Pozo A, Berges-Soria J, Arevalillo JM, Nanni P, López-Vacas R, Navarro H, et al. Combined label-free quantitative proteomics and microRNA expression analysis of breast cancer unravel molecular differences with clinical implications. Cancer Res. 2015;75:2243–53.PubMedCrossRef
34.
go back to reference Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.PubMedCrossRef Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.PubMedCrossRef
36.
go back to reference Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Drager A, Mih N, et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol. 2018;36(3):272–81.PubMedPubMedCentralCrossRef Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Drager A, Mih N, et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol. 2018;36(3):272–81.PubMedPubMedCentralCrossRef
37.
go back to reference Schellenberger J, Que R, Fleming R, Thiele I, Orth J, Feist A, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011;6:1290–307.PubMedPubMedCentralCrossRef Schellenberger J, Que R, Fleming R, Thiele I, Orth J, Feist A, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011;6:1290–307.PubMedPubMedCentralCrossRef
38.
go back to reference Trilla-Fuertes L, Gámez-Pozo A, Díaz-Almirón M, Prado-Vázquez G, Zapater-Moros A, López-Vacas R, et al. Computational metabolism predicts risk of distant relapse-free survival in breast cancer patients. Future Oncol. 2019;30:3483–90.CrossRef Trilla-Fuertes L, Gámez-Pozo A, Díaz-Almirón M, Prado-Vázquez G, Zapater-Moros A, López-Vacas R, et al. Computational metabolism predicts risk of distant relapse-free survival in breast cancer patients. Future Oncol. 2019;30:3483–90.CrossRef
39.
go back to reference Trilla-Fuertes L, Gámez-Pozo A, Arevalillo JM, Díaz-Almirón M, Prado-Vázquez G, Zapater-Moros A, et al. Molecular characterization of breast cancer cell response to metabolic drugs. Oncotarget. 2018;9(11):9645–60.PubMedPubMedCentralCrossRef Trilla-Fuertes L, Gámez-Pozo A, Arevalillo JM, Díaz-Almirón M, Prado-Vázquez G, Zapater-Moros A, et al. Molecular characterization of breast cancer cell response to metabolic drugs. Oncotarget. 2018;9(11):9645–60.PubMedPubMedCentralCrossRef
40.
go back to reference Barker BE, Sadagopan N, Wang Y, Smallbone K, Myers CR, Xi H, et al. A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data. Comput Biol Chem. 2015;59 Pt B:98–112.PubMedCrossRef Barker BE, Sadagopan N, Wang Y, Smallbone K, Myers CR, Xi H, et al. A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data. Comput Biol Chem. 2015;59 Pt B:98–112.PubMedCrossRef
41.
go back to reference Colijn C, Brandes A, Zucker J, Lun D, Weiner B, Farhat M, et al. Interpreting expression data with metabolic flux models: Predicting Mycobacterium tuberculosis mycolic acid production. PLOS Comput Bio; 2009; 5. Colijn C, Brandes A, Zucker J, Lun D, Weiner B, Farhat M, et al. Interpreting expression data with metabolic flux models: Predicting Mycobacterium tuberculosis mycolic acid production. PLOS Comput Bio; 2009; 5.
42.
go back to reference Fernández-Vizarra E, Fernández-Silva P, Enríquez JA. Chapter 10 - Isolation of Mitochondria from Mammalian Tissues and Cultured Cells. In: Celis JE, editor. Cell Biology. 3rd ed. Burlington: Academic Press; 2006. p. 69–77.CrossRef Fernández-Vizarra E, Fernández-Silva P, Enríquez JA. Chapter 10 - Isolation of Mitochondria from Mammalian Tissues and Cultured Cells. In: Celis JE, editor. Cell Biology. 3rd ed. Burlington: Academic Press; 2006. p. 69–77.CrossRef
43.
go back to reference Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc. 2007;2(2):287–95.PubMedCrossRef Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc. 2007;2(2):287–95.PubMedCrossRef
44.
go back to reference Chrzanowska M, Katafias A, Impert O, Kozakiewicz A, Surdykowski A, Brzozowska P, et al. Structure and reactivity of [Ru(II)(terpy)(N^N)Cl]Cl complexes: consequences for biological applications. Dalton Trans. 2017;46(31):10264–80.PubMedCrossRef Chrzanowska M, Katafias A, Impert O, Kozakiewicz A, Surdykowski A, Brzozowska P, et al. Structure and reactivity of [Ru(II)(terpy)(N^N)Cl]Cl complexes: consequences for biological applications. Dalton Trans. 2017;46(31):10264–80.PubMedCrossRef
45.
go back to reference Novakova O, Kasparkova J, Vrana O, van Vliet PM, Reedijk J, Brabec V. Correlation between cytotoxicity and DNA binding of polypyridyl ruthenium complexes. Biochemistry. 1995;34(38):12369–78.PubMedCrossRef Novakova O, Kasparkova J, Vrana O, van Vliet PM, Reedijk J, Brabec V. Correlation between cytotoxicity and DNA binding of polypyridyl ruthenium complexes. Biochemistry. 1995;34(38):12369–78.PubMedCrossRef
46.
go back to reference Miranda-Lorenzo I, Dorado J, Lonardo E, Alcala S, Serrano AG, Clausell-Tormos J, et al. Intracellular autofluorescence: a biomarker for epithelial cancer stem cells. Nat Methods. 2014;11(11):1161–9.PubMedCrossRef Miranda-Lorenzo I, Dorado J, Lonardo E, Alcala S, Serrano AG, Clausell-Tormos J, et al. Intracellular autofluorescence: a biomarker for epithelial cancer stem cells. Nat Methods. 2014;11(11):1161–9.PubMedCrossRef
47.
go back to reference Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.PubMedCrossRef Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.PubMedCrossRef
48.
go back to reference O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.
49.
go back to reference Brown HK, Tellez-Gabriel M, Heymann D. Cancer stem cells in osteosarcoma. Cancer Lett. 2017;386:189–95.PubMedCrossRef Brown HK, Tellez-Gabriel M, Heymann D. Cancer stem cells in osteosarcoma. Cancer Lett. 2017;386:189–95.PubMedCrossRef
50.
go back to reference Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312.PubMedCrossRef Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312.PubMedCrossRef
51.
go back to reference Wang JQ, Zhang PY, Qian C, Hou XJ, Ji LN, Chao H. Mitochondria are the primary target in the induction of apoptosis by chiral ruthenium(II) polypyridyl complexes in cancer cells. J Biol Inorg Chem. 2014;19(3):335–48.PubMedCrossRef Wang JQ, Zhang PY, Qian C, Hou XJ, Ji LN, Chao H. Mitochondria are the primary target in the induction of apoptosis by chiral ruthenium(II) polypyridyl complexes in cancer cells. J Biol Inorg Chem. 2014;19(3):335–48.PubMedCrossRef
52.
go back to reference Uhler JP, Falkenberg M. Primer removal during mammalian mitochondrial DNA replication. DNA Repair (Amst). 2015;34:28–38.PubMedCrossRef Uhler JP, Falkenberg M. Primer removal during mammalian mitochondrial DNA replication. DNA Repair (Amst). 2015;34:28–38.PubMedCrossRef
53.
go back to reference Brazda V, Kolomaznik J, Lysek J, Bartas M, Fojta M, Stastny J, et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019;35(18):3493–5.PubMedPubMedCentralCrossRef Brazda V, Kolomaznik J, Lysek J, Bartas M, Fojta M, Stastny J, et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019;35(18):3493–5.PubMedPubMedCentralCrossRef
54.
go back to reference Fernandez-Silva P, Enriquez JA, Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol. 2003;88(1):41–56.PubMedCrossRef Fernandez-Silva P, Enriquez JA, Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol. 2003;88(1):41–56.PubMedCrossRef
55.
56.
go back to reference Alessio E, Messori L. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry. Molecules 2019;24(10):1995. Alessio E, Messori L. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry. Molecules 2019;24(10):1995.
57.
go back to reference Zeng L, Chen Y, Huang H, Wang J, Zhao D, Ji L, et al. Cyclometalated ruthenium(II) anthraquinone complexes exhibit strong anticancer activity in hypoxic tumor cells. Chemistry. 2015;21(43):15308–19.PubMedCrossRef Zeng L, Chen Y, Huang H, Wang J, Zhao D, Ji L, et al. Cyclometalated ruthenium(II) anthraquinone complexes exhibit strong anticancer activity in hypoxic tumor cells. Chemistry. 2015;21(43):15308–19.PubMedCrossRef
58.
go back to reference Zeng L, Li J, Zhang C, Zhang YK, Zhang W, Huang J, et al. An organoruthenium complex overcomes ABCG2-mediated multidrug resistance via multiple mechanisms. Chem Commun (Camb). 2019;55(26):3833–6.PubMedCrossRef Zeng L, Li J, Zhang C, Zhang YK, Zhang W, Huang J, et al. An organoruthenium complex overcomes ABCG2-mediated multidrug resistance via multiple mechanisms. Chem Commun (Camb). 2019;55(26):3833–6.PubMedCrossRef
59.
go back to reference Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 2021;11(1):142–57.PubMedCrossRef Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 2021;11(1):142–57.PubMedCrossRef
60.
go back to reference Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24(7):954–60.PubMedCrossRef Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24(7):954–60.PubMedCrossRef
61.
go back to reference Valle S, Alcala S, Martin-Hijano L, Cabezas-Sainz P, Navarro D, Munoz ER, et al. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells. Nat Commun. 2020;11(1):5265.PubMedPubMedCentralCrossRef Valle S, Alcala S, Martin-Hijano L, Cabezas-Sainz P, Navarro D, Munoz ER, et al. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells. Nat Commun. 2020;11(1):5265.PubMedPubMedCentralCrossRef
62.
go back to reference Zhu Z, Wang Z, Zhang C, Wang Y, Zhang H, Gan Z, et al. Mitochondrion-targeted platinum complexes suppressing lung cancer through multiple pathways involving energy metabolism. Chem Sci. 2019;10(10):3089–95.PubMedPubMedCentralCrossRef Zhu Z, Wang Z, Zhang C, Wang Y, Zhang H, Gan Z, et al. Mitochondrion-targeted platinum complexes suppressing lung cancer through multiple pathways involving energy metabolism. Chem Sci. 2019;10(10):3089–95.PubMedPubMedCentralCrossRef
63.
go back to reference Notaro A, Jakubaszek M, Koch S, Rubbiani R, Domotor O, Enyedy EA, et al. A maltol-containing Ruthenium Polypyridyl Complex as a Potential Anticancer Agent. Chemistry. 2020;26(22):4997–5009. Notaro A, Jakubaszek M, Koch S, Rubbiani R, Domotor O, Enyedy EA, et al. A maltol-containing Ruthenium Polypyridyl Complex as a Potential Anticancer Agent. Chemistry. 2020;26(22):4997–5009.
64.
go back to reference Karakas D, Cevatemre B, Aztopal N, Ari F, Yilmaz VT, Ulukaya E. Addition of niclosamide to palladium(II) saccharinate complex of terpyridine results in enhanced cytotoxic activity inducing apoptosis on cancer stem cells of breast cancer. Bioorg Med Chem. 2015;23(17):5580–6.PubMedCrossRef Karakas D, Cevatemre B, Aztopal N, Ari F, Yilmaz VT, Ulukaya E. Addition of niclosamide to palladium(II) saccharinate complex of terpyridine results in enhanced cytotoxic activity inducing apoptosis on cancer stem cells of breast cancer. Bioorg Med Chem. 2015;23(17):5580–6.PubMedCrossRef
65.
go back to reference Xue D, Xu Y, Kyani A, Roy J, Dai L, Sun D, et al. Multiparameter optimization of oxidative phosphorylation inhibitors for the treatment of pancreatic cancer. J Med Chem. 2022;65(4):3404–19.PubMedPubMedCentralCrossRef Xue D, Xu Y, Kyani A, Roy J, Dai L, Sun D, et al. Multiparameter optimization of oxidative phosphorylation inhibitors for the treatment of pancreatic cancer. J Med Chem. 2022;65(4):3404–19.PubMedPubMedCentralCrossRef
Metadata
Title
Targeting cancer stem cell OXPHOS with tailored ruthenium complexes as a new anti-cancer strategy
Authors
Sonia Alcalá
Lara Villarino
Laura Ruiz-Cañas
José R. Couceiro
Miguel Martínez-Calvo
Adrián Palencia-Campos
Diego Navarro
Pablo Cabezas-Sainz
Iker Rodriguez-Arabaolaza
Alfonso Cordero-Barreal
Lucia Trilla-Fuertes
Juan A. Rubiolo
Sandra Batres-Ramos
Mireia Vallespinos
Cristina González-Páramos
Jéssica Rodríguez
Angelo Gámez-Pozo
Juan Ángel Fresno Vara
Sara Fra Fernández
Amparo Benito Berlinches
Nicolás Moreno-Mata
Ana María Torres Redondo
Alfredo Carrato
Patrick C. Hermann
Laura Sánchez
Susana Torrente
Miguel Ángel Fernández-Moreno
José L. Mascareñas
Bruno Sainz Jr.
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-023-02931-7

Other articles of this Issue 1/2024

Journal of Experimental & Clinical Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine