Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2024

Open Access 01-12-2024 | Melanoma | Research

Augmenting MEK inhibitor efficacy in BRAF wild-type melanoma: synergistic effects of disulfiram combination therapy

Authors: Francisco Meraz-Torres, Heike Niessner, Sarah Plöger, Simon Riel, Barbara Schörg, Nicolas Casadei, Manfred Kneilling, Martin Schaller, Lukas Flatz, Boris Macek, Thomas Eigentler, Olaf Rieß, Claus Garbe, Teresa Amaral, Tobias Sinnberg

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Background

MEK inhibitors (MEKi) were shown to be clinically insufficiently effective in patients suffering from BRAF wild-type (BRAF WT) melanoma, even if the MAPK pathway was constitutively activated due to mutations in NRAS or NF-1. Thus, novel combinations are needed to increase the efficacy and duration of response to MEKi in BRAF WT melanoma. Disulfiram and its metabolite diethyldithiocarbamate are known to have antitumor effects related to cellular stress, and induction of endoplasmic reticulum (ER) stress was found to synergize with MEK inhibitors in NRAS-mutated melanoma cells. Therefore, we investigated the combination of both therapeutics to test their effects on BRAF-WT melanoma cells and compared them with monotherapy using the MEKi trametinib.

Methods

The effects of combined therapy with disulfiram or its metabolite diethyldithiocarbamate and the MEKi trametinib were evaluated in a series of BRAF-WT melanoma cell lines by measuring cell viability and apoptosis induction. Cytotoxicity was additionally assessed in 3D spheroids, ex vivo melanoma slice cultures, and in vivo xenograft mouse models. The response of melanoma cells to treatment was studied at the RNA and protein levels to decipher the mode of action. Intracellular and intratumoral copper measurements were performed to investigate the role of copper ions in the antitumor cytotoxicity of disulfiram and its combination with the MEKi.

Results

Diethyldithiocarbamate enhanced trametinib-induced cytotoxicity and apoptosis induction in 2D and 3D melanoma culture models. Mechanistically, copper-dependent induction of oxidative stress and ER stress led to Janus kinase (JNK)-mediated apoptosis in melanoma cells. This mechanism was also detectable in patient-derived xenograft melanoma models and resulted in a significantly improved therapeutic effect compared to monotherapy with the MEKi trametinib.

Conclusions

Disulfiram and its metabolite represent an attractive pharmaceutical approach to induce ER stress in melanoma cells that potentiates the antitumor effect of MEK inhibition and may be an interesting candidate for combination therapy of BRAF WT melanoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.PubMedCrossRef Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.PubMedCrossRef
2.
go back to reference Robert C, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.PubMedCrossRef Robert C, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.PubMedCrossRef
5.
go back to reference Wolchok JD, et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J Clin Oncol. 2022;40(2):127–37.PubMedCrossRef Wolchok JD, et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J Clin Oncol. 2022;40(2):127–37.PubMedCrossRef
6.
go back to reference Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022;23(5):660–70.PubMedPubMedCentralCrossRef Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022;23(5):660–70.PubMedPubMedCentralCrossRef
7.
go back to reference Vesely MD, Zhang T, Chen L. Resistance mechanisms to anti-PD cancer immunotherapy. Annu Rev Immunol. 2022;40:45–74.PubMedCrossRef Vesely MD, Zhang T, Chen L. Resistance mechanisms to anti-PD cancer immunotherapy. Annu Rev Immunol. 2022;40:45–74.PubMedCrossRef
9.
go back to reference Martins F, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–80.PubMedCrossRef Martins F, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–80.PubMedCrossRef
11.
go back to reference Rohaan MW, et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N Engl J Med. 2022;387(23):2113–25.PubMedCrossRef Rohaan MW, et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N Engl J Med. 2022;387(23):2113–25.PubMedCrossRef
12.
13.
go back to reference Baruch EN, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602–9.PubMedCrossRef Baruch EN, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602–9.PubMedCrossRef
14.
go back to reference Kortylewski M, et al. Mitogen-activated protein kinases control p27/Kip1 expression and growth of human melanoma cells. Biochem J. 2001;357(Pt 1):297–303.PubMedPubMedCentralCrossRef Kortylewski M, et al. Mitogen-activated protein kinases control p27/Kip1 expression and growth of human melanoma cells. Biochem J. 2001;357(Pt 1):297–303.PubMedPubMedCentralCrossRef
15.
16.
go back to reference Zablocka T, et al. Effects of BRAF V600E and NRAS mutational status on the progression-free survival and clinicopathological characteristics of patients with melanoma. Oncol Lett. 2023;25(1):27.PubMedCrossRef Zablocka T, et al. Effects of BRAF V600E and NRAS mutational status on the progression-free survival and clinicopathological characteristics of patients with melanoma. Oncol Lett. 2023;25(1):27.PubMedCrossRef
17.
go back to reference The Cancer Genome Atlas Network, Cancer Genome Atlas Program Office, National Cancer Institute at NIH. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. The Cancer Genome Atlas Network, Cancer Genome Atlas Program Office, National Cancer Institute at NIH. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96.
18.
go back to reference Urbonas V, et al. Paclitaxel with or without trametinib or pazopanib in advanced wild-type BRAF melanoma (PACMEL): a multicentre, open-label, randomised, controlled phase II trial. Ann Oncol. 2019;30(2):317–24.PubMedCrossRef Urbonas V, et al. Paclitaxel with or without trametinib or pazopanib in advanced wild-type BRAF melanoma (PACMEL): a multicentre, open-label, randomised, controlled phase II trial. Ann Oncol. 2019;30(2):317–24.PubMedCrossRef
19.
go back to reference Massa RC, Kirkwood JM. Targeting the MAPK pathway in advanced BRAF wild-type melanoma. Ann Oncol. 2019;30(4):503–5.PubMedCrossRef Massa RC, Kirkwood JM. Targeting the MAPK pathway in advanced BRAF wild-type melanoma. Ann Oncol. 2019;30(4):503–5.PubMedCrossRef
20.
go back to reference Falchook GS, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(8):782–9.PubMedPubMedCentralCrossRef Falchook GS, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(8):782–9.PubMedPubMedCentralCrossRef
21.
go back to reference Kim KB, et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 2013;31(4):482–9.PubMedCrossRef Kim KB, et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 2013;31(4):482–9.PubMedCrossRef
23.
go back to reference Flaherty KT, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–14.PubMedCrossRef Flaherty KT, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–14.PubMedCrossRef
24.
go back to reference Dummer R, et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(4):435–45.PubMedCrossRef Dummer R, et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(4):435–45.PubMedCrossRef
25.
go back to reference Gonzalez-Del Pino GL, et al. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. Proc Natl Acad Sci USA. 2021;118(36):e2107207118.PubMedPubMedCentralCrossRef Gonzalez-Del Pino GL, et al. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. Proc Natl Acad Sci USA. 2021;118(36):e2107207118.PubMedPubMedCentralCrossRef
26.
go back to reference Schulz A, et al. Head-to-head comparison of BRAF/MEK inhibitor combinations proposes superiority of encorafenib plus trametinib in melanoma. Cancers (Basel). 2022;14(19):4930.PubMedCrossRef Schulz A, et al. Head-to-head comparison of BRAF/MEK inhibitor combinations proposes superiority of encorafenib plus trametinib in melanoma. Cancers (Basel). 2022;14(19):4930.PubMedCrossRef
27.
go back to reference Salzmann M, et al. MEK inhibitors for pre-treated, NRAS-mutated metastatic melanoma: a multi-centre, retrospective study. Eur J Cancer. 2022;166:24–32.PubMedCrossRef Salzmann M, et al. MEK inhibitors for pre-treated, NRAS-mutated metastatic melanoma: a multi-centre, retrospective study. Eur J Cancer. 2022;166:24–32.PubMedCrossRef
29.
31.
go back to reference Lu C, et al. Disulfiram: a novel repurposed drug for cancer therapy. Cancer Chemother Pharmacol. 2021;87(2):159–72.PubMedCrossRef Lu C, et al. Disulfiram: a novel repurposed drug for cancer therapy. Cancer Chemother Pharmacol. 2021;87(2):159–72.PubMedCrossRef
32.
go back to reference Meraz-Torres F, et al. Disulfiram as a therapeutic agent for metastatic malignant melanoma-old myth or new logos? Cancers (Basel). 2020;12(12):3538.PubMedCrossRef Meraz-Torres F, et al. Disulfiram as a therapeutic agent for metastatic malignant melanoma-old myth or new logos? Cancers (Basel). 2020;12(12):3538.PubMedCrossRef
33.
go back to reference Fernandez Del Ama L, et al. Reprofiling using a zebrafish melanoma model reveals drugs cooperating with targeted therapeutics. Oncotarget. 2016;7(26):40348–61.PubMedCrossRef Fernandez Del Ama L, et al. Reprofiling using a zebrafish melanoma model reveals drugs cooperating with targeted therapeutics. Oncotarget. 2016;7(26):40348–61.PubMedCrossRef
34.
go back to reference Skrott Z, et al. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene. 2019;38(40):6711–22.PubMedCrossRef Skrott Z, et al. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene. 2019;38(40):6711–22.PubMedCrossRef
36.
go back to reference Ren L, et al. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Theranostics. 2020;10(14):6384–98.PubMedPubMedCentralCrossRef Ren L, et al. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Theranostics. 2020;10(14):6384–98.PubMedPubMedCentralCrossRef
37.
go back to reference Majera D, et al. Targeting the NPL4 adaptor of p97/VCP Segregase by disulfiram as an emerging cancer vulnerability evokes replication stress and DNA damage while silencing the ATR pathway. Cells. 2020;9(2):469.PubMedPubMedCentralCrossRef Majera D, et al. Targeting the NPL4 adaptor of p97/VCP Segregase by disulfiram as an emerging cancer vulnerability evokes replication stress and DNA damage while silencing the ATR pathway. Cells. 2020;9(2):469.PubMedPubMedCentralCrossRef
38.
go back to reference Li H, et al. The combination of disulfiram and copper for cancer treatment. Drug Discov Today. 2020;25(6):1099–108.PubMedCrossRef Li H, et al. The combination of disulfiram and copper for cancer treatment. Drug Discov Today. 2020;25(6):1099–108.PubMedCrossRef
39.
go back to reference Li Y, et al. Disulfiram/Copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers (Basel). 2020;12(1):138.PubMedCrossRef Li Y, et al. Disulfiram/Copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers (Basel). 2020;12(1):138.PubMedCrossRef
40.
go back to reference Huang J, et al. A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neurooncol. 2019;142(3):537–44.PubMedCrossRef Huang J, et al. A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neurooncol. 2019;142(3):537–44.PubMedCrossRef
41.
go back to reference Jakola AS, et al. Disulfiram repurposing combined with nutritional copper supplement as add-on to chemotherapy in recurrent glioblastoma (DIRECT): Study protocol for a randomized controlled trial. F1000Res. 2018;7:1797.PubMedPubMedCentralCrossRef Jakola AS, et al. Disulfiram repurposing combined with nutritional copper supplement as add-on to chemotherapy in recurrent glioblastoma (DIRECT): Study protocol for a randomized controlled trial. F1000Res. 2018;7:1797.PubMedPubMedCentralCrossRef
42.
go back to reference Nechushtan H, et al. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist. 2015;20(4):366–7.PubMedPubMedCentralCrossRef Nechushtan H, et al. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist. 2015;20(4):366–7.PubMedPubMedCentralCrossRef
43.
go back to reference Hendrych M, et al. Disulfiram increases the efficacy of 5-fluorouracil in organotypic cultures of colorectal carcinoma. Biomed Pharmacother. 2022;153:113465.PubMedCrossRef Hendrych M, et al. Disulfiram increases the efficacy of 5-fluorouracil in organotypic cultures of colorectal carcinoma. Biomed Pharmacother. 2022;153:113465.PubMedCrossRef
44.
go back to reference Navrátilová J, et al. Acidic pH of tumor microenvironment enhances cytotoxicity of the disulfiram/Cu2+ complex to breast and colon cancer cells. Chemotherapy. 2013;59(2):112–20.PubMedCrossRef Navrátilová J, et al. Acidic pH of tumor microenvironment enhances cytotoxicity of the disulfiram/Cu2+ complex to breast and colon cancer cells. Chemotherapy. 2013;59(2):112–20.PubMedCrossRef
45.
go back to reference Kim JY, et al. Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. Cancer Lett. 2016;379(1):39–48.PubMedCrossRef Kim JY, et al. Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. Cancer Lett. 2016;379(1):39–48.PubMedCrossRef
46.
go back to reference Kim YJ, et al. Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells. Biochem Biophys Res Commun. 2017;486(4):1069–76.PubMedCrossRef Kim YJ, et al. Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells. Biochem Biophys Res Commun. 2017;486(4):1069–76.PubMedCrossRef
47.
go back to reference Askgaard G, et al. Use of disulfiram and risk of cancer: a population-based case-control study. Eur J Cancer Prev. 2014;23(3):225–32.PubMedCrossRef Askgaard G, et al. Use of disulfiram and risk of cancer: a population-based case-control study. Eur J Cancer Prev. 2014;23(3):225–32.PubMedCrossRef
48.
go back to reference Lasithiotakis KG, et al. Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells. J Invest Dermatol. 2008;128(8):2013–23.PubMedCrossRef Lasithiotakis KG, et al. Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells. J Invest Dermatol. 2008;128(8):2013–23.PubMedCrossRef
49.
go back to reference Sinnberg T, et al. A nexus consisting of beta-catenin and Stat3 attenuates BRAF inhibitor efficacy and mediates acquired resistance to vemurafenib. EBioMedicine. 2016;8:132–49.PubMedPubMedCentralCrossRef Sinnberg T, et al. A nexus consisting of beta-catenin and Stat3 attenuates BRAF inhibitor efficacy and mediates acquired resistance to vemurafenib. EBioMedicine. 2016;8:132–49.PubMedPubMedCentralCrossRef
50.
go back to reference Makino E, et al. Melanoma cells resistant towards MAPK inhibitors exhibit reduced TAp73 expression mediating enhanced sensitivity to platinum-based drugs. Cell Death Dis. 2018;9(9):930.PubMedPubMedCentralCrossRef Makino E, et al. Melanoma cells resistant towards MAPK inhibitors exhibit reduced TAp73 expression mediating enhanced sensitivity to platinum-based drugs. Cell Death Dis. 2018;9(9):930.PubMedPubMedCentralCrossRef
51.
52.
53.
go back to reference Wang YF, et al. Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1. Clin Cancer Res. 2007;13(16):4934–42.PubMedCrossRef Wang YF, et al. Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1. Clin Cancer Res. 2007;13(16):4934–42.PubMedCrossRef
54.
go back to reference Niessner H, et al. BRAF inhibitors amplify the proapoptotic activity of MEK inhibitors by inducing ER stress in NRAS-mutant melanoma. Clin Cancer Res. 2017;23(20):6203–14.PubMedPubMedCentralCrossRef Niessner H, et al. BRAF inhibitors amplify the proapoptotic activity of MEK inhibitors by inducing ER stress in NRAS-mutant melanoma. Clin Cancer Res. 2017;23(20):6203–14.PubMedPubMedCentralCrossRef
55.
go back to reference Cen D, et al. Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. J Med Chem. 2004;47(27):6914–20.PubMedCrossRef Cen D, et al. Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. J Med Chem. 2004;47(27):6914–20.PubMedCrossRef
56.
go back to reference Morrison BW, et al. Disulfiram induces copper-dependent stimulation of reactive oxygen species and activation of the extrinsic apoptotic pathway in melanoma. Melanoma Res. 2010;20(1):11–20.PubMedCrossRef Morrison BW, et al. Disulfiram induces copper-dependent stimulation of reactive oxygen species and activation of the extrinsic apoptotic pathway in melanoma. Melanoma Res. 2010;20(1):11–20.PubMedCrossRef
57.
59.
go back to reference Amaral T, Meraz-Torres F, Garbe C. Immunotherapy in managing metastatic melanoma: which treatment when? Expert Opin Biol Ther. 2017;17(12):1523–38.PubMedCrossRef Amaral T, Meraz-Torres F, Garbe C. Immunotherapy in managing metastatic melanoma: which treatment when? Expert Opin Biol Ther. 2017;17(12):1523–38.PubMedCrossRef
60.
go back to reference McClure E, Carr MJ, Zager JS. The MAP kinase signal transduction pathway: promising therapeutic targets used in the treatment of melanoma. Expert Rev Anticancer Ther. 2020;20(8):687–701.PubMedCrossRef McClure E, Carr MJ, Zager JS. The MAP kinase signal transduction pathway: promising therapeutic targets used in the treatment of melanoma. Expert Rev Anticancer Ther. 2020;20(8):687–701.PubMedCrossRef
61.
go back to reference Burotto M, et al. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120(22):3446–56.PubMedCrossRef Burotto M, et al. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120(22):3446–56.PubMedCrossRef
62.
go back to reference Amaral T, et al. The mitogen-activated protein kinase pathway in melanoma part I - Activation and primary resistance mechanisms to BRAF inhibition. Eur J Cancer. 2017;73:85–92.PubMedCrossRef Amaral T, et al. The mitogen-activated protein kinase pathway in melanoma part I - Activation and primary resistance mechanisms to BRAF inhibition. Eur J Cancer. 2017;73:85–92.PubMedCrossRef
63.
go back to reference Amaral T, et al. MAPK pathway in melanoma part II-secondary and adaptive resistance mechanisms to BRAF inhibition. Eur J Cancer. 2017;73:93–101.PubMedCrossRef Amaral T, et al. MAPK pathway in melanoma part II-secondary and adaptive resistance mechanisms to BRAF inhibition. Eur J Cancer. 2017;73:93–101.PubMedCrossRef
64.
go back to reference Hayward NK, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.PubMedCrossRef Hayward NK, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.PubMedCrossRef
65.
go back to reference Sabbah M, et al. RTK inhibitors in melanoma: from bench to bedside. Cancers (Basel). 2021;13(7):1685.PubMedCrossRef Sabbah M, et al. RTK inhibitors in melanoma: from bench to bedside. Cancers (Basel). 2021;13(7):1685.PubMedCrossRef
66.
go back to reference Yip NC, et al. Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 2011;104(10):1564–74.PubMedPubMedCentralCrossRef Yip NC, et al. Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 2011;104(10):1564–74.PubMedPubMedCentralCrossRef
67.
go back to reference Zha J, et al. Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition. J Transl Med. 2014;12:163.PubMedPubMedCentralCrossRef Zha J, et al. Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition. J Transl Med. 2014;12:163.PubMedPubMedCentralCrossRef
68.
go back to reference Calderon-Aparicio A, Strasberg-Rieber M, Rieber M. Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate. Oncotarget. 2015;6(30):29771–81.PubMedPubMedCentralCrossRef Calderon-Aparicio A, Strasberg-Rieber M, Rieber M. Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate. Oncotarget. 2015;6(30):29771–81.PubMedPubMedCentralCrossRef
69.
go back to reference Cen D, et al. Disulfiram induces apoptosis in human melanoma cells: a redox-related process. Mol Cancer Ther. 2002;1(3):197–204.PubMed Cen D, et al. Disulfiram induces apoptosis in human melanoma cells: a redox-related process. Mol Cancer Ther. 2002;1(3):197–204.PubMed
70.
go back to reference Xu B, et al. Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis. 2017;8(5):e2797.PubMedPubMedCentralCrossRef Xu B, et al. Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis. 2017;8(5):e2797.PubMedPubMedCentralCrossRef
71.
go back to reference Illés E, et al. The Fe(II)(citrate) Fenton reaction under physiological conditions. J Inorg Biochem. 2020;206:111018.PubMedCrossRef Illés E, et al. The Fe(II)(citrate) Fenton reaction under physiological conditions. J Inorg Biochem. 2020;206:111018.PubMedCrossRef
72.
go back to reference Jia C, Guo Y, Wu FG. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small. 2022;18(6):e2103868.PubMedCrossRef Jia C, Guo Y, Wu FG. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small. 2022;18(6):e2103868.PubMedCrossRef
73.
go back to reference Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–208.PubMedCrossRef Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–208.PubMedCrossRef
74.
go back to reference Cesi G, et al. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Mol Cancer. 2017;16(1):102.PubMedPubMedCentralCrossRef Cesi G, et al. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Mol Cancer. 2017;16(1):102.PubMedPubMedCentralCrossRef
75.
go back to reference Corazao-Rozas P, et al. Mitochondrial oxidative stress is the Achille’s heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget. 2013;4(11):1986–98.PubMedPubMedCentralCrossRef Corazao-Rozas P, et al. Mitochondrial oxidative stress is the Achille’s heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget. 2013;4(11):1986–98.PubMedPubMedCentralCrossRef
76.
go back to reference Yuan L, et al. BRAF mutant melanoma adjusts to BRAF/MEK inhibitors via dependence on increased antioxidant SOD2 and increased reactive oxygen species Levels. Cancers (Basel). 2020;12(6):1661.PubMedCrossRef Yuan L, et al. BRAF mutant melanoma adjusts to BRAF/MEK inhibitors via dependence on increased antioxidant SOD2 and increased reactive oxygen species Levels. Cancers (Basel). 2020;12(6):1661.PubMedCrossRef
78.
go back to reference Brady DC, et al. Copper chelation inhibits BRAF(V600E)-driven Melanomagenesis and counters resistance to BRAF(V600E) and MEK1/2 Inhibitors. Cancer Res. 2017;77(22):6240–52.PubMedPubMedCentralCrossRef Brady DC, et al. Copper chelation inhibits BRAF(V600E)-driven Melanomagenesis and counters resistance to BRAF(V600E) and MEK1/2 Inhibitors. Cancer Res. 2017;77(22):6240–52.PubMedPubMedCentralCrossRef
79.
go back to reference Sammons S, et al. Copper suppression as cancer therapy: the rationale for copper chelating agents in BRAF(V600) mutated melanoma. Melanoma Manag. 2016;3(3):207–16.PubMedPubMedCentralCrossRef Sammons S, et al. Copper suppression as cancer therapy: the rationale for copper chelating agents in BRAF(V600) mutated melanoma. Melanoma Manag. 2016;3(3):207–16.PubMedPubMedCentralCrossRef
80.
go back to reference Prohaska JR. Role of copper transporters in copper homeostasis. Am J Clin Nutr. 2008;88(3):826s–9s.PubMedCrossRef Prohaska JR. Role of copper transporters in copper homeostasis. Am J Clin Nutr. 2008;88(3):826s–9s.PubMedCrossRef
81.
go back to reference Chen L, et al. APEX2-based proximity labeling of Atox1 identifies CRIP2 as a nuclear copper-binding protein that regulates autophagy activation. Angew Chem Int Ed Engl. 2021;60(48):25346–55.PubMedCrossRef Chen L, et al. APEX2-based proximity labeling of Atox1 identifies CRIP2 as a nuclear copper-binding protein that regulates autophagy activation. Angew Chem Int Ed Engl. 2021;60(48):25346–55.PubMedCrossRef
82.
go back to reference Setty SR, et al. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature. 2008;454(7208):1142–6.PubMedCrossRef Setty SR, et al. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature. 2008;454(7208):1142–6.PubMedCrossRef
83.
go back to reference Wiriyasermkul P, Moriyama S, Nagamori S. Membrane transport proteins in melanosomes: regulation of ions for pigmentation. Biochim Biophys Acta Biomembr. 2020;1862(12):183318.PubMedPubMedCentralCrossRef Wiriyasermkul P, Moriyama S, Nagamori S. Membrane transport proteins in melanosomes: regulation of ions for pigmentation. Biochim Biophys Acta Biomembr. 2020;1862(12):183318.PubMedPubMedCentralCrossRef
84.
go back to reference Bhattacharjee A, et al. The activity of Menkes disease protein ATP7A is essential for redox balance in mitochondria. J Biol Chem. 2016;291(32):16644–58.PubMedPubMedCentralCrossRef Bhattacharjee A, et al. The activity of Menkes disease protein ATP7A is essential for redox balance in mitochondria. J Biol Chem. 2016;291(32):16644–58.PubMedPubMedCentralCrossRef
86.
go back to reference Hamza I, Prohaska J, Gitlin JD. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci U S A. 2003;100(3):1215–20.PubMedPubMedCentralCrossRef Hamza I, Prohaska J, Gitlin JD. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci U S A. 2003;100(3):1215–20.PubMedPubMedCentralCrossRef
87.
go back to reference Erxleben A. Interactions of copper complexes with nucleic acids. Coord Chem Rev. 2018;360:92–121.CrossRef Erxleben A. Interactions of copper complexes with nucleic acids. Coord Chem Rev. 2018;360:92–121.CrossRef
88.
89.
go back to reference Ong G, Logue SE. Unfolding the interactions between endoplasmic reticulum stress and oxidative stress. Antioxidants (Basel). 2023;12(5):981.PubMedCrossRef Ong G, Logue SE. Unfolding the interactions between endoplasmic reticulum stress and oxidative stress. Antioxidants (Basel). 2023;12(5):981.PubMedCrossRef
90.
go back to reference Hersey P, Zhang XD. Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma. Pigment Cell Melanoma Res. 2008;21(3):358–67.PubMedCrossRef Hersey P, Zhang XD. Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma. Pigment Cell Melanoma Res. 2008;21(3):358–67.PubMedCrossRef
91.
go back to reference Song S, et al. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J Cell Physiol. 2018;233(5):3867–74.PubMedCrossRef Song S, et al. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J Cell Physiol. 2018;233(5):3867–74.PubMedCrossRef
92.
93.
go back to reference Makhov P, et al. The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 2018;9(3):374.PubMedPubMedCentralCrossRef Makhov P, et al. The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 2018;9(3):374.PubMedPubMedCentralCrossRef
94.
95.
go back to reference Sisinni L, et al. Endoplasmic reticulum stress and unfolded protein response in breast cancer: the balance between apoptosis and autophagy and its role in drug resistance. Int J Mol Sci. 2019;20(4):857.PubMedPubMedCentralCrossRef Sisinni L, et al. Endoplasmic reticulum stress and unfolded protein response in breast cancer: the balance between apoptosis and autophagy and its role in drug resistance. Int J Mol Sci. 2019;20(4):857.PubMedPubMedCentralCrossRef
96.
go back to reference Jia S, et al. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis. 2019;10(2):142.PubMedPubMedCentralCrossRef Jia S, et al. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis. 2019;10(2):142.PubMedPubMedCentralCrossRef
97.
go back to reference Leppä S, Bohmann D. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene. 1999;18(45):6158–62.PubMedCrossRef Leppä S, Bohmann D. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene. 1999;18(45):6158–62.PubMedCrossRef
99.
go back to reference Cai DT, et al. ER stress and ASK1-JNK activation contribute to oridonin-induced apoptosis and growth inhibition in cultured human hepatoblastoma HuH-6 cells. Mol Cell Biochem. 2013;379(1–2):161–9.PubMedCrossRef Cai DT, et al. ER stress and ASK1-JNK activation contribute to oridonin-induced apoptosis and growth inhibition in cultured human hepatoblastoma HuH-6 cells. Mol Cell Biochem. 2013;379(1–2):161–9.PubMedCrossRef
100.
go back to reference Yang TY, et al. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways. Toxicol Appl Pharmacol. 2016;294:54–64.PubMedCrossRef Yang TY, et al. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways. Toxicol Appl Pharmacol. 2016;294:54–64.PubMedCrossRef
103.
go back to reference Wang N, et al. c-Jun triggers apoptosis in human vascular endothelial cells. Circ Res. 1999;85(5):387–93.PubMedCrossRef Wang N, et al. c-Jun triggers apoptosis in human vascular endothelial cells. Circ Res. 1999;85(5):387–93.PubMedCrossRef
104.
go back to reference Podar K, et al. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma. Cancer Res. 2007;67(4):1680–8.PubMedCrossRef Podar K, et al. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma. Cancer Res. 2007;67(4):1680–8.PubMedCrossRef
106.
go back to reference Huang YC, et al. c-Jun NH2-terminal kinase suppression significantly inhibits the growth of transplanted breast tumors in mice. J Int Med Res. 2020;48(6):300060520929858.PubMedCrossRef Huang YC, et al. c-Jun NH2-terminal kinase suppression significantly inhibits the growth of transplanted breast tumors in mice. J Int Med Res. 2020;48(6):300060520929858.PubMedCrossRef
107.
109.
go back to reference Pathria G, et al. Dual c-Jun N-terminal kinase-cyclin D1 and extracellular signal-related kinase-c-Jun disjunction in human melanoma. Br J Dermatol. 2016;175(6):1221–31.PubMedCrossRef Pathria G, et al. Dual c-Jun N-terminal kinase-cyclin D1 and extracellular signal-related kinase-c-Jun disjunction in human melanoma. Br J Dermatol. 2016;175(6):1221–31.PubMedCrossRef
110.
Metadata
Title
Augmenting MEK inhibitor efficacy in BRAF wild-type melanoma: synergistic effects of disulfiram combination therapy
Authors
Francisco Meraz-Torres
Heike Niessner
Sarah Plöger
Simon Riel
Barbara Schörg
Nicolas Casadei
Manfred Kneilling
Martin Schaller
Lukas Flatz
Boris Macek
Thomas Eigentler
Olaf Rieß
Claus Garbe
Teresa Amaral
Tobias Sinnberg
Publication date
01-12-2024
Publisher
BioMed Central
Keywords
Melanoma
Melanoma
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-023-02941-5

Other articles of this Issue 1/2024

Journal of Experimental & Clinical Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine