Skip to main content
Top
Published in: Inflammation 3/2022

01-06-2022 | Systemic Lupus Erythematosus | Review

Emerging Role of LncRNAs in Autoimmune Lupus

Authors: Wangdong Xu, Qian Wu, Anfang Huang

Published in: Inflammation | Issue 3/2022

Login to get access

Abstract

Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs that have been considered as one of the largest and diverse RNA families. lncRNAs participate in dysregulation of post-transcriptional process by both RNA and protein interactions. This group of RNAs also plays essential roles in various cellular activities, such as differentiation, proliferation, and apoptosis. Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease, and evidence has suggested that many lncRNAs are involved in SLE pathogenesis, for instance, several lncRNAs were aberrantly expressed in SLE patients. Moreover, since post-transcriptional process by lncRNAs significantly performs in contributing to lupus progression, it is desirable to continue expanding the search for lncRNAs impacting on lupus development by post-transcriptional mechanisms. Highlighting the implication of lncRNAs in regulation of different immune cells through signaling pathways that have participated in SLE is of importance. Therefore, in this review, we summarized recent advances in lncRNAs and SLE. Hopefully, collection of the information will be better to comprehensively understand the relation of SLE and lncRNAs, and will have potential for investigating target for SLE regarding lncRNAs in the future.
Literature
1.
go back to reference Kamitaki, N., A. Sekar, R.E. Handsaker, H. de Rivera, K. Tooley, D.L. Morris, K.E. Taylor, C.W. Whelan, P. Tombleson, L.M.O. Loohuis, and M. Boehnke. 2020. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582: 577–581.PubMedPubMedCentralCrossRef Kamitaki, N., A. Sekar, R.E. Handsaker, H. de Rivera, K. Tooley, D.L. Morris, K.E. Taylor, C.W. Whelan, P. Tombleson, L.M.O. Loohuis, and M. Boehnke. 2020. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582: 577–581.PubMedPubMedCentralCrossRef
2.
go back to reference Zhang, L.H., B. Xiao, M. Zhong, Q. Li, J.Y. Chen, J.R. Huang, and H. Rao. 2020. LncRNA NEAT1 accelerates renal mesangial cell injury via modulating the miR-146b/TRAF6/NF-kappaB axis in lupus nephritis. Cell and Tissue Research 382: 627–638.PubMedCrossRef Zhang, L.H., B. Xiao, M. Zhong, Q. Li, J.Y. Chen, J.R. Huang, and H. Rao. 2020. LncRNA NEAT1 accelerates renal mesangial cell injury via modulating the miR-146b/TRAF6/NF-kappaB axis in lupus nephritis. Cell and Tissue Research 382: 627–638.PubMedCrossRef
3.
go back to reference Zou, Y., and H. Xu. 2020. Involvement of long noncoding RNAs in the pathogenesis of autoimmune diseases. Journal of Translational Autoimmunity (3):100044. Zou, Y., and H. Xu. 2020. Involvement of long noncoding RNAs in the pathogenesis of autoimmune diseases. Journal of Translational Autoimmunity (3):100044.
4.
go back to reference Zhao, C.N., Y.M. Mao, L.N. Liu, X.M. Li, D.G. Wang, and H.F. Pan. 2018. Emerging role of lncRNAs in systemic lupus erythematosus. Biomedicine and Pharmacotherapy 106: 584–592.PubMedCrossRef Zhao, C.N., Y.M. Mao, L.N. Liu, X.M. Li, D.G. Wang, and H.F. Pan. 2018. Emerging role of lncRNAs in systemic lupus erythematosus. Biomedicine and Pharmacotherapy 106: 584–592.PubMedCrossRef
5.
go back to reference Cao, H.Y., D. Li, Y.P. Wang, H.X. Lu, J. Sun, and H.B. Li. 2020. The protection of NF-kappaB inhibition on kidney injury of systemic lupus erythematosus mice may be correlated with lncRNA TUG1. Kaohsiung Journal of Medical Sciences 36: 354–362.CrossRef Cao, H.Y., D. Li, Y.P. Wang, H.X. Lu, J. Sun, and H.B. Li. 2020. The protection of NF-kappaB inhibition on kidney injury of systemic lupus erythematosus mice may be correlated with lncRNA TUG1. Kaohsiung Journal of Medical Sciences 36: 354–362.CrossRef
6.
go back to reference Lodde, V., G. Murgia, E.R. Simula, M. Steri, M. Floris, and M.L. Idda. 2020. Long noncoding RNAs and circular RANs in autoimmune diseases. Biomolecules 10: 1044.PubMedCentralCrossRef Lodde, V., G. Murgia, E.R. Simula, M. Steri, M. Floris, and M.L. Idda. 2020. Long noncoding RNAs and circular RANs in autoimmune diseases. Biomolecules 10: 1044.PubMedCentralCrossRef
7.
go back to reference Geng, L.Y., X. Xu, H.Y. Zhang, C. Chen, Y.Y. Hou, G.H. Yao, S.Y. Wang, D.D. Wang, X.B. Feng, L.Y. Sun, and J. Liang. 2020. Comprehensive expression profile of long non-coding RNAs in peripheral blood mononuclear cells from patients with neuropsychiatric systemic lupus erythematosus. Annals of Translational Medicine 8: 349. Geng, L.Y., X. Xu, H.Y. Zhang, C. Chen, Y.Y. Hou, G.H. Yao, S.Y. Wang, D.D. Wang, X.B. Feng, L.Y. Sun, and J. Liang. 2020. Comprehensive expression profile of long non-coding RNAs in peripheral blood mononuclear cells from patients with neuropsychiatric systemic lupus erythematosus. Annals of Translational Medicine 8: 349.
8.
go back to reference Wang, J.B., J. Li, T.P. Zhang, T.T. Lv, L.J. Li, J. Wu, R.X. Leng, Y.G. Fan, H.F. Pan, and D.Q. Ye. 2019. Expression of several long noncoding RNAs in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Advances in Medical Sciences 64: 430–436.PubMedCrossRef Wang, J.B., J. Li, T.P. Zhang, T.T. Lv, L.J. Li, J. Wu, R.X. Leng, Y.G. Fan, H.F. Pan, and D.Q. Ye. 2019. Expression of several long noncoding RNAs in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Advances in Medical Sciences 64: 430–436.PubMedCrossRef
9.
go back to reference Xu, Y., W. Deng, and W. Zhang. 2018. Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomedicine and Pharmacotherapy 104: 509–519.PubMedCrossRef Xu, Y., W. Deng, and W. Zhang. 2018. Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomedicine and Pharmacotherapy 104: 509–519.PubMedCrossRef
10.
go back to reference Teimuri, S., A. Hosseini, A. Rezaenasab, K. Ghaedi, E. Ghoveud, M. Etemadifar, M.H. Nasr-Esfahani, and T.L. Megraw. 2018. Integrative analysis of lncRNAs in Th17 cell lineage to discover new potential biomarkers and therapeutic targets in autoimmune diseases. Molecular Therapy Nucleic Acids 12: 393–404.PubMedPubMedCentralCrossRef Teimuri, S., A. Hosseini, A. Rezaenasab, K. Ghaedi, E. Ghoveud, M. Etemadifar, M.H. Nasr-Esfahani, and T.L. Megraw. 2018. Integrative analysis of lncRNAs in Th17 cell lineage to discover new potential biomarkers and therapeutic targets in autoimmune diseases. Molecular Therapy Nucleic Acids 12: 393–404.PubMedPubMedCentralCrossRef
11.
go back to reference Zeni, P.F., and M. Mraz. 2021. LncRNAs in adaptive immunity: Role in physiological and pathological conditions. RNA Biology 18: 619–632.PubMedCrossRef Zeni, P.F., and M. Mraz. 2021. LncRNAs in adaptive immunity: Role in physiological and pathological conditions. RNA Biology 18: 619–632.PubMedCrossRef
12.
go back to reference Xin, J., J. Li, Y. Feng, L. Wang, Y. Zhang, and R. Yang. 2017. Downregulation of long noncoding RNA HOTAIRM1 promotes monocyte/dendritic cell differentiation through competitively binding to endogenous miR-3960. OncoTargets and Therapy 10: 1307–1315.PubMedPubMedCentralCrossRef Xin, J., J. Li, Y. Feng, L. Wang, Y. Zhang, and R. Yang. 2017. Downregulation of long noncoding RNA HOTAIRM1 promotes monocyte/dendritic cell differentiation through competitively binding to endogenous miR-3960. OncoTargets and Therapy 10: 1307–1315.PubMedPubMedCentralCrossRef
13.
go back to reference Wang, P., Y. Xue, Y. Han, L. Lin, C. Wu, S. Xu, Z. Jiang, J. Xu, Q. Liu, and X. Cao. 2014. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344: 310–313.PubMedCrossRef Wang, P., Y. Xue, Y. Han, L. Lin, C. Wu, S. Xu, Z. Jiang, J. Xu, Q. Liu, and X. Cao. 2014. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344: 310–313.PubMedCrossRef
14.
go back to reference Ranzani, V., G. Rossetti, I. Panzeri, A. Arrigoni, R.J. Bonnal, S. Curti, P. Gruarin, E. Provasi, E. Sugliano, M. Marconi, and R. De Francesco. 2015. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nature Immunology 16: 318–325.PubMedPubMedCentralCrossRef Ranzani, V., G. Rossetti, I. Panzeri, A. Arrigoni, R.J. Bonnal, S. Curti, P. Gruarin, E. Provasi, E. Sugliano, M. Marconi, and R. De Francesco. 2015. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nature Immunology 16: 318–325.PubMedPubMedCentralCrossRef
15.
go back to reference Hu, G., Q. Tang, S. Sharma, F. Yu, T.M. Escobar, S.A. Muljo, J. Zhu, and K. Zhao. 2013. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nature Immunology 14: 1190–1198.PubMedPubMedCentralCrossRef Hu, G., Q. Tang, S. Sharma, F. Yu, T.M. Escobar, S.A. Muljo, J. Zhu, and K. Zhao. 2013. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nature Immunology 14: 1190–1198.PubMedPubMedCentralCrossRef
16.
go back to reference Spurlock, C.F., J.T. Tossberg, Y. Guo, S.P. Collier, P.S. Crooke, and T.M. Aune. 2015. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nature Communications 6: 6932.PubMedCrossRef Spurlock, C.F., J.T. Tossberg, Y. Guo, S.P. Collier, P.S. Crooke, and T.M. Aune. 2015. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nature Communications 6: 6932.PubMedCrossRef
17.
go back to reference Gao, Y.Z., S.S. Li, Z.J. Zhang, X.H. Yu, and J.F. Zheng. 2018. The role of long non-coding RNAs in the pathogenesis of RA, SLE, and SS. Frontiers of Medicine (Lausanne) 5: 193.CrossRef Gao, Y.Z., S.S. Li, Z.J. Zhang, X.H. Yu, and J.F. Zheng. 2018. The role of long non-coding RNAs in the pathogenesis of RA, SLE, and SS. Frontiers of Medicine (Lausanne) 5: 193.CrossRef
18.
go back to reference Luo, Q., X. Li, C. Xu, L. Zeng, J. Ye, Y. Guo, Z. Huang, and J. Li. 2018. Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus. Molecular Medicine Reports 17: 3489–3496.PubMed Luo, Q., X. Li, C. Xu, L. Zeng, J. Ye, Y. Guo, Z. Huang, and J. Li. 2018. Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus. Molecular Medicine Reports 17: 3489–3496.PubMed
19.
go back to reference Ying, H., Y. Wang, Z. Gao, and Q. Zhang. 2019. Long non-coding RNA activated by transforming growth factor beta alleviates lipopolysaccharide-induced inflammatory injury via regulating microRNA-223 in ATDC5 cells. International Immunopharmacology 69: 313–320.PubMedCrossRef Ying, H., Y. Wang, Z. Gao, and Q. Zhang. 2019. Long non-coding RNA activated by transforming growth factor beta alleviates lipopolysaccharide-induced inflammatory injury via regulating microRNA-223 in ATDC5 cells. International Immunopharmacology 69: 313–320.PubMedCrossRef
20.
go back to reference Xiao, Y., X. Yan, Y. Yang, and X. Ma. 2019. Downregulation of long noncoding RNA HOTAIRM1 variant 1 contributes to osteoarthritis via regulating miR-125b/BMPR2 axis and activating JNK/MAPK/ERK pathway. Biomedicine and Pharmacotherapy 109: 1569–1577.PubMedCrossRef Xiao, Y., X. Yan, Y. Yang, and X. Ma. 2019. Downregulation of long noncoding RNA HOTAIRM1 variant 1 contributes to osteoarthritis via regulating miR-125b/BMPR2 axis and activating JNK/MAPK/ERK pathway. Biomedicine and Pharmacotherapy 109: 1569–1577.PubMedCrossRef
21.
go back to reference Yu, H. C., K. Y. Huang, M. C. Lu, H. Y. Huang Tseng, S. Q. Liu, N. S. Lai, and H. B. Huang. 2021. Down-regulation of LOC645166 in T cells of ankylosing spondylitis patients promotes the NF-kappab signaling via decreasingly blocking recruitment of the IKK complex to K63-linked polyubiquitin chains. Frontiers in Immunology (12):591706. Yu, H. C., K. Y. Huang, M. C. Lu, H. Y. Huang Tseng, S. Q. Liu, N. S. Lai, and H. B. Huang. 2021. Down-regulation of LOC645166 in T cells of ankylosing spondylitis patients promotes the NF-kappab signaling via decreasingly blocking recruitment of the IKK complex to K63-linked polyubiquitin chains. Frontiers in Immunology (12):591706.
22.
go back to reference Li, L.J., W. Zhao, S.S. Tao, J. Li, S.Z. Xu, J.B. Wang, R.X. Leng, Y.G. Fan, H.F. Pan, and D.Q. Ye. 2017. Comprehensive long non-coding RNA expression profiling reveals their potential roles in systemic lupus erythematosus. Cellular Immunology 319: 17–27.PubMedCrossRef Li, L.J., W. Zhao, S.S. Tao, J. Li, S.Z. Xu, J.B. Wang, R.X. Leng, Y.G. Fan, H.F. Pan, and D.Q. Ye. 2017. Comprehensive long non-coding RNA expression profiling reveals their potential roles in systemic lupus erythematosus. Cellular Immunology 319: 17–27.PubMedCrossRef
23.
go back to reference Cai, B., J. Cai, Z. Yin, X. Jiang, C. Yao, J. Ma, Z. Xue, P. Miao, Q. Xiao, Y. Cheng, J. Qin, Q. Guo, N. Shen, Z. Ye, B. Qu, and H. Ding. 2021. Long non-coding RNA expression profiles in neutrophils revealed potential biomarker for prediction of renal involvement in SLE patients. Rheumatology (Oxford) 60 (4): 1734–1746.CrossRef Cai, B., J. Cai, Z. Yin, X. Jiang, C. Yao, J. Ma, Z. Xue, P. Miao, Q. Xiao, Y. Cheng, J. Qin, Q. Guo, N. Shen, Z. Ye, B. Qu, and H. Ding. 2021. Long non-coding RNA expression profiles in neutrophils revealed potential biomarker for prediction of renal involvement in SLE patients. Rheumatology (Oxford) 60 (4): 1734–1746.CrossRef
24.
go back to reference Xu, F., L. Jin, Y. Jin, Z. Nie, and H. Zheng. 2019. Long noncoding RNAs in autoimmune diseases. Journal of Biomedical Materials Research: Part A 107: 468–475.CrossRef Xu, F., L. Jin, Y. Jin, Z. Nie, and H. Zheng. 2019. Long noncoding RNAs in autoimmune diseases. Journal of Biomedical Materials Research: Part A 107: 468–475.CrossRef
25.
go back to reference Yang, J., Y. Li, L. Wang, Z. Zhang, Z. Li, and Q. Jia. 2020. LncRNA H19 aggravates TNF-alpha-induced inflammatory injury via TAK1 pathway in MH7A cells. BioFactors 46: 813–820.PubMedCrossRef Yang, J., Y. Li, L. Wang, Z. Zhang, Z. Li, and Q. Jia. 2020. LncRNA H19 aggravates TNF-alpha-induced inflammatory injury via TAK1 pathway in MH7A cells. BioFactors 46: 813–820.PubMedCrossRef
26.
go back to reference Stuhlmüller, B., E. Kunisch, J.L. Franz, L. Martinez-Gamboa, M.M. Hernandez, A. Pruss, N. Ulbrich, V.A. Erdmann, G.R. Burmester, and R.W. Kinne. 2003. Detection of oncofetal h19 RNA in rheumatoid arthritis synovial tissue. American Journal of Pathology 163: 901–911.CrossRef Stuhlmüller, B., E. Kunisch, J.L. Franz, L. Martinez-Gamboa, M.M. Hernandez, A. Pruss, N. Ulbrich, V.A. Erdmann, G.R. Burmester, and R.W. Kinne. 2003. Detection of oncofetal h19 RNA in rheumatoid arthritis synovial tissue. American Journal of Pathology 163: 901–911.CrossRef
27.
go back to reference Ke, Z. Q., J. W. Lu, J. T. Zhu, Z. W. Yang, Z. X. Jin, and L. Y. Yuan. 2020. Down-regulation of lincRNA-EPS regulates apoptosis and autophagy in BCG-infected RAW264.7 macrophages via JNK/MAPK signaling pathway. Infection, Genetics and Evolution (77):104077. Ke, Z. Q., J. W. Lu, J. T. Zhu, Z. W. Yang, Z. X. Jin, and L. Y. Yuan. 2020. Down-regulation of lincRNA-EPS regulates apoptosis and autophagy in BCG-infected RAW264.7 macrophages via JNK/MAPK signaling pathway. Infection, Genetics and Evolution (77):104077.
28.
go back to reference Zhang, H.J., Q.F. Wei, S.J. Wang, H.J. Zhang, X.Y. Zhang, Q. Geng, Y.H. Cui, and X.H. Wang. 2017. LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-kappaB pathway. International Immunopharmacology 50: 283–290.PubMedCrossRef Zhang, H.J., Q.F. Wei, S.J. Wang, H.J. Zhang, X.Y. Zhang, Q. Geng, Y.H. Cui, and X.H. Wang. 2017. LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-kappaB pathway. International Immunopharmacology 50: 283–290.PubMedCrossRef
29.
go back to reference Zhu, Y., Y. Wu, L. Yang, X. Dou, J. Jiang, and L. Wang. 2019. Long non-coding RNA activated by transforming growth factor-β promotes proliferation and invasion of cervical cancer cells by regulating the miR-144/ITGA6 axis. Experimental Physiology 6: 837–844.CrossRef Zhu, Y., Y. Wu, L. Yang, X. Dou, J. Jiang, and L. Wang. 2019. Long non-coding RNA activated by transforming growth factor-β promotes proliferation and invasion of cervical cancer cells by regulating the miR-144/ITGA6 axis. Experimental Physiology 6: 837–844.CrossRef
30.
go back to reference Shi, S.J., L.J. Wang, B. Yu, Y.H. Li, Y. Jin, and X.Z. Bai. 2015. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 13: 11652–11663.CrossRef Shi, S.J., L.J. Wang, B. Yu, Y.H. Li, Y. Jin, and X.Z. Bai. 2015. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 13: 11652–11663.CrossRef
31.
go back to reference Yue, B., S. Qiu, S. Zhao, C. Liu, D. Zhang, F. Yu, Z. Peng, and D. Yan. 2016. LncRNA-ATB mediated E-cadherin repression promotes the progression of colon cancer and predicts poor prognosis. Journal of Gastroenterology and Hepatology 3: 595–603.CrossRef Yue, B., S. Qiu, S. Zhao, C. Liu, D. Zhang, F. Yu, Z. Peng, and D. Yan. 2016. LncRNA-ATB mediated E-cadherin repression promotes the progression of colon cancer and predicts poor prognosis. Journal of Gastroenterology and Hepatology 3: 595–603.CrossRef
32.
go back to reference Tang, F., H. Wang, E. Chen, E. Bian, Y. Xu, X. Ji, Z. Yang, X. Hua, Y. Zhang, and B. Zhao. 2019. LncRNA-ATB promotes TGF-beta-induced glioma cells invasion through NF-kappaB and P38/MAPK pathway. Journal of Cellular Physiology 234: 23302–23314.PubMedCrossRef Tang, F., H. Wang, E. Chen, E. Bian, Y. Xu, X. Ji, Z. Yang, X. Hua, Y. Zhang, and B. Zhao. 2019. LncRNA-ATB promotes TGF-beta-induced glioma cells invasion through NF-kappaB and P38/MAPK pathway. Journal of Cellular Physiology 234: 23302–23314.PubMedCrossRef
33.
go back to reference Roux, B.T., J.A. Heward, L.E. Donnelly, S.W. Jones, and M.A. Lindsay. 2017. Catalog of differentially expressed long non-coding RNA following activation of human and mouse innate immune response. Frontiers in Immunology 8: 1038.PubMedPubMedCentralCrossRef Roux, B.T., J.A. Heward, L.E. Donnelly, S.W. Jones, and M.A. Lindsay. 2017. Catalog of differentially expressed long non-coding RNA following activation of human and mouse innate immune response. Frontiers in Immunology 8: 1038.PubMedPubMedCentralCrossRef
34.
go back to reference Robinson, E. K., S. Covarrubias, and S. Carpenter. 2020. The how and why of lncRNA function: an innate immune perspective. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms (1863):194419. Robinson, E. K., S. Covarrubias, and S. Carpenter. 2020. The how and why of lncRNA function: an innate immune perspective. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms (1863):194419.
35.
go back to reference Wang, Z., and Y. Zheng. 2018. LncRNAs regulate innate immune responses and their roles in macrophage polarization. Mediators of Inflammation 2018: 8050956.PubMedPubMedCentral Wang, Z., and Y. Zheng. 2018. LncRNAs regulate innate immune responses and their roles in macrophage polarization. Mediators of Inflammation 2018: 8050956.PubMedPubMedCentral
36.
go back to reference Ma, S.B., Z.P. Ming, A.Y. Gong, Y. Wang, X.Q. Chen, G.K. Hu, R. Zhou, A. Shibata, P.C. Swanson, and X.M. Chen. 2016. A long noncoding RNA, lincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages. FASEB Journal 31: 1215–1225.PubMedPubMedCentralCrossRef Ma, S.B., Z.P. Ming, A.Y. Gong, Y. Wang, X.Q. Chen, G.K. Hu, R. Zhou, A. Shibata, P.C. Swanson, and X.M. Chen. 2016. A long noncoding RNA, lincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages. FASEB Journal 31: 1215–1225.PubMedPubMedCentralCrossRef
37.
go back to reference Zhang, F., L. Wu, J. Qian, B. Qu, S. Xia, T. La, Y. Wu, J. Ma, J. Zeng, Q. Guo, and Y. Cui. 2016. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Journal of Autoimmunity 75: 96–104.PubMedCrossRef Zhang, F., L. Wu, J. Qian, B. Qu, S. Xia, T. La, Y. Wu, J. Ma, J. Zeng, Q. Guo, and Y. Cui. 2016. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Journal of Autoimmunity 75: 96–104.PubMedCrossRef
38.
go back to reference Yang, C.A., J.P. Li, J.C. Yen, I.L. Lai, Y.C. Ho, Y.C. Chen, J.L. Lan, and J.G. Chang. 2018. LncRNA NTT/PBOV1 axis promotes monocyte differentiation and is elevated in rheumatoid arthritis. International Journal of Molecular Sciences 19: 2806.PubMedCentralCrossRef Yang, C.A., J.P. Li, J.C. Yen, I.L. Lai, Y.C. Ho, Y.C. Chen, J.L. Lan, and J.G. Chang. 2018. LncRNA NTT/PBOV1 axis promotes monocyte differentiation and is elevated in rheumatoid arthritis. International Journal of Molecular Sciences 19: 2806.PubMedCentralCrossRef
39.
go back to reference NE, I. I., J. A. Heward, B. Roux, E. Tsitsiou, P. S. Fenwick, L. Lenzi, I. Goodhead, C. Hertz-Fowler, A. Heger, N. Hall, and L. E. Donnelly. 2014. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nature Communications (5):3979. NE, I. I., J. A. Heward, B. Roux, E. Tsitsiou, P. S. Fenwick, L. Lenzi, I. Goodhead, C. Hertz-Fowler, A. Heger, N. Hall, and L. E. Donnelly. 2014. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nature Communications (5):3979.
40.
go back to reference Taheri, M., R. Eghtedarian, M.E. Dinger, and S. Ghafouri-Fard. 2020. Exploring the role of non-coding RNAs in the pathophysiology of systemic lupus erythematosus. Biomolecules 10: 937.PubMedCentralCrossRef Taheri, M., R. Eghtedarian, M.E. Dinger, and S. Ghafouri-Fard. 2020. Exploring the role of non-coding RNAs in the pathophysiology of systemic lupus erythematosus. Biomolecules 10: 937.PubMedCentralCrossRef
41.
go back to reference Hu, X.J., S. Goswami, J. Qiu, Q. Chen, S. Laverdure, B.T. Sherman, and T. Imamichi. 2019. Profiles of long non-coding RNAs and mRNA expression in human macrophages regulated by interleukin-27. International Journal of Molecular Sciences 20: 6207.PubMedCentralCrossRef Hu, X.J., S. Goswami, J. Qiu, Q. Chen, S. Laverdure, B.T. Sherman, and T. Imamichi. 2019. Profiles of long non-coding RNAs and mRNA expression in human macrophages regulated by interleukin-27. International Journal of Molecular Sciences 20: 6207.PubMedCentralCrossRef
42.
go back to reference Nakayama, Y., K. Fujiu, R. Yuki, Y. Oishi, M.S. Morioka, T. Isagawa, J. Matsuda, T. Oshima, T. Matsubara, J. Sugita, and F. Kudo. 2020. A long noncoding RNA regulates inflammation resolution by mouse macrophages through fatty acid oxidation activation. Proceedings of the National Academy of Sciences of the United States of America 117: 14365–14375.PubMedPubMedCentralCrossRef Nakayama, Y., K. Fujiu, R. Yuki, Y. Oishi, M.S. Morioka, T. Isagawa, J. Matsuda, T. Oshima, T. Matsubara, J. Sugita, and F. Kudo. 2020. A long noncoding RNA regulates inflammation resolution by mouse macrophages through fatty acid oxidation activation. Proceedings of the National Academy of Sciences of the United States of America 117: 14365–14375.PubMedPubMedCentralCrossRef
43.
go back to reference Scacalossi, K.R., C. van Solingen, and K.J. Moore. 2019. Long non-coding RNAs regulating macrophage functions in homeostasis and disease. Vascular Pharmacology 114: 122–130.PubMedCrossRef Scacalossi, K.R., C. van Solingen, and K.J. Moore. 2019. Long non-coding RNAs regulating macrophage functions in homeostasis and disease. Vascular Pharmacology 114: 122–130.PubMedCrossRef
44.
go back to reference Hu, G. k., A. Y. Gong, Y. Wang, S. B. Ma, X. Q. Chen, J. Chen, C. J. Su, A. Shibata, J. K. Strauss-Soukup, K. M. Drescher, and X. M. Chen. 2016. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. Journal of Immunology (196):2799–2808. Hu, G. k., A. Y. Gong, Y. Wang, S. B. Ma, X. Q. Chen, J. Chen, C. J. Su, A. Shibata, J. K. Strauss-Soukup, K. M. Drescher, and X. M. Chen. 2016. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. Journal of Immunology (196):2799–2808.
45.
go back to reference Zgheib, C., M. M. Hodges, J. Hu, K. W. Liechty, and J. Xu. 2017. Long non-coding RNA Lethe regulates hyperglycemia-induced reactive oxygen species production in macrophages. PloS One (12):e0177453. Zgheib, C., M. M. Hodges, J. Hu, K. W. Liechty, and J. Xu. 2017. Long non-coding RNA Lethe regulates hyperglycemia-induced reactive oxygen species production in macrophages. PloS One (12):e0177453.
46.
go back to reference Zhuang, L., J. Tian, X. Zhang, H. Wang, and C. Huang. 2018. Lnc-DC regulates cellular turnover and the HBV-induced immune response by TLR9/STAT3 signaling in dendritic cells. Cellular & Molecular Biology Letters 23: 43.CrossRef Zhuang, L., J. Tian, X. Zhang, H. Wang, and C. Huang. 2018. Lnc-DC regulates cellular turnover and the HBV-induced immune response by TLR9/STAT3 signaling in dendritic cells. Cellular & Molecular Biology Letters 23: 43.CrossRef
47.
go back to reference Li, Z., Q. Zhang, Y. Wu, F. Hu, L. Gu, T. Chen, and W. Wang. 2018. LncRNA Malat1 modulates the maturation process, cytokine secretion and apoptosis in airway epithelial cell-conditioned dendritic cells. Experimental and Therapeutic Medicine 16: 3951–3958.PubMedPubMedCentral Li, Z., Q. Zhang, Y. Wu, F. Hu, L. Gu, T. Chen, and W. Wang. 2018. LncRNA Malat1 modulates the maturation process, cytokine secretion and apoptosis in airway epithelial cell-conditioned dendritic cells. Experimental and Therapeutic Medicine 16: 3951–3958.PubMedPubMedCentral
48.
go back to reference Zhang, T.P., B.Q. Zhu, S.S. Tao, Y.G. Fan, X.M. Li, H.F. Pan, and D.Q. Ye. 2019. Long non-coding RNAs genes polymorphisms and their expression levels in patients with rheumatoid arthritis. Frontiers in immunology 2019 (10): 2529.CrossRef Zhang, T.P., B.Q. Zhu, S.S. Tao, Y.G. Fan, X.M. Li, H.F. Pan, and D.Q. Ye. 2019. Long non-coding RNAs genes polymorphisms and their expression levels in patients with rheumatoid arthritis. Frontiers in immunology 2019 (10): 2529.CrossRef
49.
go back to reference Liu, W., Z. Wang, L. Liu, Z. Yang, S. Liu, Z. Ma, Y. Liu, Y. Ma, L. Zhang, X. Zhang, and M. Jiang. 2020. LncRNA Malat1 inhibition of TDP43 cleavage suppresses IRF3-initiated antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America 117: 23695–23706.PubMedPubMedCentralCrossRef Liu, W., Z. Wang, L. Liu, Z. Yang, S. Liu, Z. Ma, Y. Liu, Y. Ma, L. Zhang, X. Zhang, and M. Jiang. 2020. LncRNA Malat1 inhibition of TDP43 cleavage suppresses IRF3-initiated antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America 117: 23695–23706.PubMedPubMedCentralCrossRef
50.
go back to reference Chen, J.H., S.W. Wang, S.N. Jia, G.P. Ding, G.X. Jiang, and L.P. Cao. 2018. Integrated analysis of long non-coding RNA and mRNA expression profile in pancreatic cancer derived exosomes treated dendritic cells by microarray analysis. Journal of Cancer 9: 21–31.PubMedPubMedCentralCrossRef Chen, J.H., S.W. Wang, S.N. Jia, G.P. Ding, G.X. Jiang, and L.P. Cao. 2018. Integrated analysis of long non-coding RNA and mRNA expression profile in pancreatic cancer derived exosomes treated dendritic cells by microarray analysis. Journal of Cancer 9: 21–31.PubMedPubMedCentralCrossRef
51.
go back to reference Liu, J., X. M. Zhang, K. Chen, Y. J. Cheng, S. X. Liu, M. Xia, Y. L. Chen, H. Zhu, Z. Q. Li, and X. T. Cao. 2019. CCR7 chemokine receptor-inducible lnc-dpf3 restrains dendritic cell migration by inhibiting HIF-1alpha-mediated glycolysis. Immunity (50):600–615 e615. Liu, J., X. M. Zhang, K. Chen, Y. J. Cheng, S. X. Liu, M. Xia, Y. L. Chen, H. Zhu, Z. Q. Li, and X. T. Cao. 2019. CCR7 chemokine receptor-inducible lnc-dpf3 restrains dendritic cell migration by inhibiting HIF-1alpha-mediated glycolysis. Immunity (50):600–615 e615.
52.
go back to reference Zhou, Y., L.N. Gu, J. Zhang, J. Pan, J.M. Zhang, D.Y. Zhao, and F. Liu. 2020. LncRNA-AK149641 regulates the secretion of tumor necrosis factor-alpha in P815 mast cells by targeting the nuclear factor-kappa B signaling pathway. Scientific Reports 10: 16655.PubMedPubMedCentralCrossRef Zhou, Y., L.N. Gu, J. Zhang, J. Pan, J.M. Zhang, D.Y. Zhao, and F. Liu. 2020. LncRNA-AK149641 regulates the secretion of tumor necrosis factor-alpha in P815 mast cells by targeting the nuclear factor-kappa B signaling pathway. Scientific Reports 10: 16655.PubMedPubMedCentralCrossRef
53.
go back to reference Liang, Y., S. Huang, L. Qiao, X. Peng, C. Li, K. Lin, G. Xie, J. Li, L. Lin, Y. Yin, and H. Liao. 2020. Characterization of protein, long noncoding RNA and microRNA signatures in extracellular vesicles derived from resting and degranulated mast cells. Journal of Extracellular Vesicles 9: 1697583.PubMedCrossRef Liang, Y., S. Huang, L. Qiao, X. Peng, C. Li, K. Lin, G. Xie, J. Li, L. Lin, Y. Yin, and H. Liao. 2020. Characterization of protein, long noncoding RNA and microRNA signatures in extracellular vesicles derived from resting and degranulated mast cells. Journal of Extracellular Vesicles 9: 1697583.PubMedCrossRef
54.
go back to reference Li, L., Q. Dang, H. Xie, Z. Yang, D. He, L. Liang, W. Song, S. Yeh, and C. Chang. 2015. Infiltrating mast cells enhance prostate cancer invasion via altering LncRNA-HOTAIR/PRC2-androgen receptor (AR)-MMP9 signals and increased stem/progenitor cell population. Oncotarget 7: 83828.CrossRef Li, L., Q. Dang, H. Xie, Z. Yang, D. He, L. Liang, W. Song, S. Yeh, and C. Chang. 2015. Infiltrating mast cells enhance prostate cancer invasion via altering LncRNA-HOTAIR/PRC2-androgen receptor (AR)-MMP9 signals and increased stem/progenitor cell population. Oncotarget 7: 83828.CrossRef
55.
go back to reference Roy, S., and A. Awasthi. 2019. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. International Reviews of Immunology 38: 232–245.PubMedCrossRef Roy, S., and A. Awasthi. 2019. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. International Reviews of Immunology 38: 232–245.PubMedCrossRef
56.
go back to reference Williams, G.T., M. Mourtada-Maarabouni, and F. Farzaneh. 2011. A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochemical Society Transactions 39: 482–486.PubMedCrossRef Williams, G.T., M. Mourtada-Maarabouni, and F. Farzaneh. 2011. A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochemical Society Transactions 39: 482–486.PubMedCrossRef
57.
go back to reference Li, J., J. Tian, J. Lu, Z. Wang, J. Ling, X. Wu, F. Yang, and Y. Xia. 2020. LncRNA GAS5 inhibits Th17 differentiation and alleviates immune thrombocytopenia via promoting the ubiquitination of STAT3. International Immunopharmacology (80):106127. Li, J., J. Tian, J. Lu, Z. Wang, J. Ling, X. Wu, F. Yang, and Y. Xia. 2020. LncRNA GAS5 inhibits Th17 differentiation and alleviates immune thrombocytopenia via promoting the ubiquitination of STAT3. International Immunopharmacology (80):106127.
58.
go back to reference Mourtada-Maarabouni, M., A.M. Hasan, F. Farzaneh, and G.T. Williams. 2010. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Molecular Pharmacology 78: 19–28.PubMedPubMedCentralCrossRef Mourtada-Maarabouni, M., A.M. Hasan, F. Farzaneh, and G.T. Williams. 2010. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Molecular Pharmacology 78: 19–28.PubMedPubMedCentralCrossRef
59.
go back to reference Zhang, F., G. Liu, C. Wei, C. Gao, and J. Hao. 2017. Linc-MAF-4 regulates Th1/Th2 differentiation and is associated with the pathogenesis of multiple sclerosis by targeting MAF. FASEB Journal 31: 519–525.PubMedCrossRef Zhang, F., G. Liu, C. Wei, C. Gao, and J. Hao. 2017. Linc-MAF-4 regulates Th1/Th2 differentiation and is associated with the pathogenesis of multiple sclerosis by targeting MAF. FASEB Journal 31: 519–525.PubMedCrossRef
60.
go back to reference Koh, B.H., S.S. Hwang, J.Y. Kim, W. Lee, M.J. Kang, C.G. Lee, J.W. Park, R.A. Flavell, and G.R. Lee. 2010. Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma. Proceedings of the National Academy of Sciences of the United States of America 107: 10614–10619.PubMedPubMedCentralCrossRef Koh, B.H., S.S. Hwang, J.Y. Kim, W. Lee, M.J. Kang, C.G. Lee, J.W. Park, R.A. Flavell, and G.R. Lee. 2010. Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma. Proceedings of the National Academy of Sciences of the United States of America 107: 10614–10619.PubMedPubMedCentralCrossRef
61.
go back to reference Hwang, S.S., K. Kim, and G.R. Lee. 2011. Defective GATA-3 expression in Th2 LCR-deficient mice. Biochemical and Biophysical Research Communications 410: 866–871.PubMedCrossRef Hwang, S.S., K. Kim, and G.R. Lee. 2011. Defective GATA-3 expression in Th2 LCR-deficient mice. Biochemical and Biophysical Research Communications 410: 866–871.PubMedCrossRef
62.
go back to reference Willingham, A.T., A.P. Orth, S. Batalov, E.C. Peters, B.G. Wen, P. Aza-Blanc, J.B. Hogenesch, and P.G. Schultz. 2005. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309: 1570–1573.PubMedCrossRef Willingham, A.T., A.P. Orth, S. Batalov, E.C. Peters, B.G. Wen, P. Aza-Blanc, J.B. Hogenesch, and P.G. Schultz. 2005. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309: 1570–1573.PubMedCrossRef
63.
go back to reference Lee, J.U., L.K. Kim, and J.M. Choi. 2018. Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases. Frontiers in Immunology 9: 2747.PubMedPubMedCentralCrossRef Lee, J.U., L.K. Kim, and J.M. Choi. 2018. Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases. Frontiers in Immunology 9: 2747.PubMedPubMedCentralCrossRef
64.
go back to reference Sharma, S., G.M. Findlay, H.S. Bandukwala, S. Oberdoerffer, B. Baust, Z. Li, V. Schmidt, P.G. Hogan, D.B. Sacks, and A. Rao. 2011. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proceedings of the National Academy of Sciences of the United States of America 108: 11381–11386.PubMedPubMedCentralCrossRef Sharma, S., G.M. Findlay, H.S. Bandukwala, S. Oberdoerffer, B. Baust, Z. Li, V. Schmidt, P.G. Hogan, D.B. Sacks, and A. Rao. 2011. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proceedings of the National Academy of Sciences of the United States of America 108: 11381–11386.PubMedPubMedCentralCrossRef
65.
go back to reference Tsao, H.W., T.S. Tai, W. Tseng, H.H. Chang, R. Grenningloh, S.C. Miaw, and I.C. Ho. 2013. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter. Proceedings of the National Academy of Sciences of the United States of America 110: 15776–15781.PubMedPubMedCentralCrossRef Tsao, H.W., T.S. Tai, W. Tseng, H.H. Chang, R. Grenningloh, S.C. Miaw, and I.C. Ho. 2013. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter. Proceedings of the National Academy of Sciences of the United States of America 110: 15776–15781.PubMedPubMedCentralCrossRef
66.
67.
go back to reference Sigdel, K. R., A. Cheng, Y. Wang, L. H. Duan, and Y. L. Zhang. 2015. The emerging functions of long noncoding RNA in immune cells: autoimmune diseases. Journal of Immunology Research (2015):848790. Sigdel, K. R., A. Cheng, Y. Wang, L. H. Duan, and Y. L. Zhang. 2015. The emerging functions of long noncoding RNA in immune cells: autoimmune diseases. Journal of Immunology Research (2015):848790.
68.
go back to reference Brazao, T.F., J.S. Johnson, J. Muller, A. Heger, C.P. Ponting, and V.L. Tybulewicz. 2016. Long noncoding RNAs in B-cell development and activation. Blood 128: e10-19.PubMedPubMedCentralCrossRef Brazao, T.F., J.S. Johnson, J. Muller, A. Heger, C.P. Ponting, and V.L. Tybulewicz. 2016. Long noncoding RNAs in B-cell development and activation. Blood 128: e10-19.PubMedPubMedCentralCrossRef
69.
go back to reference Sehgal, L., R. Mathur, F.K. Braun, J.F. Wise, Z. Berkova, S. Neelapu, L.W. Kwak, and F. Samaniego. 2014. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia 28: 2376–2387.PubMedPubMedCentralCrossRef Sehgal, L., R. Mathur, F.K. Braun, J.F. Wise, Z. Berkova, S. Neelapu, L.W. Kwak, and F. Samaniego. 2014. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia 28: 2376–2387.PubMedPubMedCentralCrossRef
70.
go back to reference Li, S., C. Li, J. Zhang, X. Tan, J. Deng, R. Jiang, Y. Li, Y. Piao, C. Li, W. Yang, and W. Mo. 2019. Expression profile of long noncoding RNAs in children with systemic lupus erythematosus: A microarray analysis. Clinical and Experimental Rheumatology 37: 156–163.PubMed Li, S., C. Li, J. Zhang, X. Tan, J. Deng, R. Jiang, Y. Li, Y. Piao, C. Li, W. Yang, and W. Mo. 2019. Expression profile of long noncoding RNAs in children with systemic lupus erythematosus: A microarray analysis. Clinical and Experimental Rheumatology 37: 156–163.PubMed
71.
go back to reference Dong, G. J., Y. H. Yang, X. H. Li, X. Y. Yao, Y. Z. Zhu, H. Zhang, H. Y. Wang, Q. Ma, J. F. Zhang, H. Shi, and Z. C. Ning. 2020. Granulocytic myeloid-derived suppressor cells contribute to IFN-I signaling activation of B cells and disease progression through the lncRNA NEAT1-BAFF axis in systemic lupus erythematosus. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (1866):165554. Dong, G. J., Y. H. Yang, X. H. Li, X. Y. Yao, Y. Z. Zhu, H. Zhang, H. Y. Wang, Q. Ma, J. F. Zhang, H. Shi, and Z. C. Ning. 2020. Granulocytic myeloid-derived suppressor cells contribute to IFN-I signaling activation of B cells and disease progression through the lncRNA NEAT1-BAFF axis in systemic lupus erythematosus. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (1866):165554.
72.
go back to reference Xu, H., W. Chen, F. Zheng, D. Tang, D. Liu, G. Wang, Y. Xu, L. Yin, X. Zhang, and Y. Dai. 2020. Reconstruction and analysis of the aberrant lncRNA–miRNA–mRNA network in systemic lupus erythematosus. Lupus 29: 398–406.PubMedCrossRef Xu, H., W. Chen, F. Zheng, D. Tang, D. Liu, G. Wang, Y. Xu, L. Yin, X. Zhang, and Y. Dai. 2020. Reconstruction and analysis of the aberrant lncRNA–miRNA–mRNA network in systemic lupus erythematosus. Lupus 29: 398–406.PubMedCrossRef
73.
go back to reference Wu, G.C., J. Li, R.X. Leng, X.P. Li, X.M. Li, D.G. Wang, H.F. Pan, and D.Q. Ye. 2017. Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus. Oncotarget 8: 23650–23663.PubMedPubMedCentralCrossRef Wu, G.C., J. Li, R.X. Leng, X.P. Li, X.M. Li, D.G. Wang, H.F. Pan, and D.Q. Ye. 2017. Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus. Oncotarget 8: 23650–23663.PubMedPubMedCentralCrossRef
74.
go back to reference Li, J., G.C. Wu, T.P. Zhang, X.K. Yang, S.S. Chen, L.J. Li, S.Z. Xu, T.T. Lv, R.X. Leng, H.F. Pan, and D.Q. Ye. 2017. Association of long noncoding RNAs expression levels and their gene polymorphisms with systemic lupus erythematosus. Scientific Reports 7: 15119.PubMedPubMedCentralCrossRef Li, J., G.C. Wu, T.P. Zhang, X.K. Yang, S.S. Chen, L.J. Li, S.Z. Xu, T.T. Lv, R.X. Leng, H.F. Pan, and D.Q. Ye. 2017. Association of long noncoding RNAs expression levels and their gene polymorphisms with systemic lupus erythematosus. Scientific Reports 7: 15119.PubMedPubMedCentralCrossRef
75.
go back to reference Chen, Y.H., Y.Q. Chen, B.B. Zu, J. Liu, L. Sun, C. Ding, D.P. Wang, X. Cheng, D.L. Yang, and G.P. Niu. 2020. Identification of long noncoding RNAs Lnc-DC in plasma as a new biomarker for primary Sjogren’s syndrome. Journal of Immunology Research 2020: 9236234.PubMedPubMedCentral Chen, Y.H., Y.Q. Chen, B.B. Zu, J. Liu, L. Sun, C. Ding, D.P. Wang, X. Cheng, D.L. Yang, and G.P. Niu. 2020. Identification of long noncoding RNAs Lnc-DC in plasma as a new biomarker for primary Sjogren’s syndrome. Journal of Immunology Research 2020: 9236234.PubMedPubMedCentral
76.
go back to reference Liu, C.H., Y.L. Lu, H.T. Huang, C.F. Wang, H.C. Luo, G.J. Wei, M. Lei, T. Tan, Y. Wang, Y.Y. Huang, and Y.S. Wei. 2021. Association of LncRNA-GAS5 gene polymorphisms and PBMC LncRNA-GAS5 level with risk of systemic lupus erythematosus in Chinese population. Journal of Cellular and Molecular Medicine 25: 3548–3559.PubMedPubMedCentralCrossRef Liu, C.H., Y.L. Lu, H.T. Huang, C.F. Wang, H.C. Luo, G.J. Wei, M. Lei, T. Tan, Y. Wang, Y.Y. Huang, and Y.S. Wei. 2021. Association of LncRNA-GAS5 gene polymorphisms and PBMC LncRNA-GAS5 level with risk of systemic lupus erythematosus in Chinese population. Journal of Cellular and Molecular Medicine 25: 3548–3559.PubMedPubMedCentralCrossRef
77.
go back to reference Liu, Q., Y. Deng, C.Y. Li, H.X. Xie, Q.S. Liu, S. Ming, D.Y. Wu, and F.Q. Luo. 2020. LncRNA GAS5 suppresses CD4(+) T cell activation by upregulating E4BP4 via inhibiting miR-92a-3p in systemic lupus erythematosus. Immunology Letters 227: 41–47.PubMedCrossRef Liu, Q., Y. Deng, C.Y. Li, H.X. Xie, Q.S. Liu, S. Ming, D.Y. Wu, and F.Q. Luo. 2020. LncRNA GAS5 suppresses CD4(+) T cell activation by upregulating E4BP4 via inhibiting miR-92a-3p in systemic lupus erythematosus. Immunology Letters 227: 41–47.PubMedCrossRef
78.
go back to reference Mayama, T., A.K. Marr, and T. Kino. 2016. Differential expression of glucocorticoid receptor noncoding RAN repressor Gas5 in autoimmune and inflammatory diseases. Hormone and Metabolic Research 48: 550–557.PubMedCrossRef Mayama, T., A.K. Marr, and T. Kino. 2016. Differential expression of glucocorticoid receptor noncoding RAN repressor Gas5 in autoimmune and inflammatory diseases. Hormone and Metabolic Research 48: 550–557.PubMedCrossRef
79.
go back to reference Suo, Q.F., J. Sheng, F.Y. Qiang, Z.S. Tang, and Y.Y. Yang. 2018. Association of long non-coding RNA GAS5 and miR-21 levels in CD4(+) T cells with clinical features of systemic lupus erythematosus. Experimental and Therapeutic Medicine 15: 345–350.PubMed Suo, Q.F., J. Sheng, F.Y. Qiang, Z.S. Tang, and Y.Y. Yang. 2018. Association of long non-coding RNA GAS5 and miR-21 levels in CD4(+) T cells with clinical features of systemic lupus erythematosus. Experimental and Therapeutic Medicine 15: 345–350.PubMed
80.
go back to reference Wu, G.C., Y. Hu, S.Y. Guan, D.Q. Ye, and H.F. Pan. 2019. Differential plasma expression profiles of long non-coding RNAs reveal potential biomarkers for systemic lupus erythematosus. Biomolecules 9: 206.PubMedCentralCrossRef Wu, G.C., Y. Hu, S.Y. Guan, D.Q. Ye, and H.F. Pan. 2019. Differential plasma expression profiles of long non-coding RNAs reveal potential biomarkers for systemic lupus erythematosus. Biomolecules 9: 206.PubMedCentralCrossRef
81.
go back to reference Cao, H.Y., D. Li, Y.P. Wang, H.X. Lu, J. Sun, and H.B. Li. 2020. Clinical significance of reduced expression of lncRNA TUG1 in the peripheral blood of systemic lupus erythematosus patients. International Journal of Rheumatic Diseases 23: 428–434.PubMedCrossRef Cao, H.Y., D. Li, Y.P. Wang, H.X. Lu, J. Sun, and H.B. Li. 2020. Clinical significance of reduced expression of lncRNA TUG1 in the peripheral blood of systemic lupus erythematosus patients. International Journal of Rheumatic Diseases 23: 428–434.PubMedCrossRef
82.
go back to reference Wu, Y., F. Zhang, J. Ma, X. Zhang, L. Wu, B. Qu, S. Xia, S. Chen, Y. Tang, and N. Shen. 2015. Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Research & Therapy 17: 131.CrossRef Wu, Y., F. Zhang, J. Ma, X. Zhang, L. Wu, B. Qu, S. Xia, S. Chen, Y. Tang, and N. Shen. 2015. Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Research & Therapy 17: 131.CrossRef
83.
go back to reference Chen, J., S. Ke, L. Zhong, J. Wu, A. Tseng, B. Morpurgo, A. Golovko, G. Wang, J.J. Cai, X. Ma, and D. Li. 2018. Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochemical Pharmacology 152: 94–103.PubMedCrossRef Chen, J., S. Ke, L. Zhong, J. Wu, A. Tseng, B. Morpurgo, A. Golovko, G. Wang, J.J. Cai, X. Ma, and D. Li. 2018. Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochemical Pharmacology 152: 94–103.PubMedCrossRef
84.
go back to reference Yang, H.X., N.X. Liang, M. Wang, Y.Y. Fei, J. Sun, Z.Y. Li, Y. Xu, C. Guo, Z.L. Cao, S.Q. Li, and Y.C. Jiao. 2017. Long noncoding RNA MALAT-1 is a novel inflammatory regulator in human systemic lupus erythematosus. Oncotarget 8: 77400–77406.PubMedPubMedCentralCrossRef Yang, H.X., N.X. Liang, M. Wang, Y.Y. Fei, J. Sun, Z.Y. Li, Y. Xu, C. Guo, Z.L. Cao, S.Q. Li, and Y.C. Jiao. 2017. Long noncoding RNA MALAT-1 is a novel inflammatory regulator in human systemic lupus erythematosus. Oncotarget 8: 77400–77406.PubMedPubMedCentralCrossRef
85.
go back to reference Gao, F., Y. Tan, and H. Luo. 2020. MALAT1 is involved in type I IFNs-mediated systemic lupus erythematosus by up-regulating OAS2, OAS3, and OASL. Brazilian Journal of Medical and Biological Research (53):e9292. Gao, F., Y. Tan, and H. Luo. 2020. MALAT1 is involved in type I IFNs-mediated systemic lupus erythematosus by up-regulating OAS2, OAS3, and OASL. Brazilian Journal of Medical and Biological Research (53):e9292.
86.
go back to reference Li, L., X. Zuo, D. Liu, H. Luo, H. Zhu. 2021. The functional roles of RNAs cargoes released by neutrophil-derived exosomes in dermatomyositis. Frontiers in Pharmacology 12:727901. Li, L., X. Zuo, D. Liu, H. Luo, H. Zhu. 2021. The functional roles of RNAs cargoes released by neutrophil-derived exosomes in dermatomyositis. Frontiers in Pharmacology 12:727901.
Metadata
Title
Emerging Role of LncRNAs in Autoimmune Lupus
Authors
Wangdong Xu
Qian Wu
Anfang Huang
Publication date
01-06-2022
Publisher
Springer US
Published in
Inflammation / Issue 3/2022
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01607-8

Other articles of this Issue 3/2022

Inflammation 3/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine